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This document describes the Message-Passing Interface (MPI) standard, version 2.1.
The MPI standard includes point-to-point message-passing, collective communications, group
and communicator concepts, process topologies, environmental management, process cre-
ation and management, one-sided communications, extended collective operations, external
interfaces, I/O, some miscellaneous topics, and a profiling interface. Language bindings for
C, C++ and Fortran are defined.

Technically, this version of the standard is based on “MPI: A Message-Passing Interface
Standard, June 12, 1995” (MPI-1.1) from the MPI-1 Forum, and “MPI-2: Extensions to the
Message-Passing Interface, July, 1997” (MPI-1.2 and MPI-2.0) from the MPI-2 Forum, and
errata documents from the MPI Forum.

Historically, the evolution of the standards is from MPI-1.0 (June 1994) to MPI-1.1
(June 12, 1995) to MPI-1.2 (July 18, 1997), with several clarifications and additions and
published as part of the MPI-2 document, to MPI-2.0 (July 18, 1997), with new functionality,
to MPI-1.3 (May 30, 2008), combining for historical reasons the documents 1.1 and 1.2 and
some errata documents to one combined document, and this document, MPI-2.1, combining
the previous documents. Additional clarifications and errata corrections to MPI-2.0 are also
included.

c©1993, 1994, 1995, 1996, 1997, 2008 University of Tennessee, Knoxville, Tennessee.
Permission to copy without fee all or part of this material is granted, provided the University
of Tennessee copyright notice and the title of this document appear, and notice is given that
copying is by permission of the University of Tennessee.
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Version 2.1: June 23, 2008, 2008. This document combines the previous documents MPI-
1.3 (May 30, 2008) and MPI-2.0 (July 18, 1997). Certain parts of MPI-2.0, such as some
sections of Chapter 4, Miscellany, and Chapter 7, Extended Collective Operations have been
merged into the Chapters of MPI-1.3. Additional errata and clarifications collected by the
MPI Forum are also included in this document.

Version 1.3: May 30, 2008. This document combines the previous documents MPI-1.1 (June
12, 1995) and the MPI-1.2 Chapter in MPI-2 (July 18, 1997). Additional errata collected
by the MPI Forum referring to MPI-1.1 and MPI-1.2 are also included in this document.

Version 2.0: July 18, 1997. Beginning after the release of MPI-1.1, the MPI Forum began
meeting to consider corrections and extensions. MPI-2 has been focused on process creation
and management, one-sided communications, extended collective communications, external
interfaces and parallel I/O. A miscellany chapter discusses items that don’t fit elsewhere,
in particular language interoperability.

Version 1.2: July 18, 1997. The MPI-2 Forum introduced MPI-1.2 as Chapter 3 in the
standard ”MPI-2: Extensions to the Message-Passing Interface”, July 18, 1997. This section
contains clarifications and minor corrections to Version 1.1 of the MPI Standard. The only
new function in MPI-1.2 is one for identifying to which version of the MPI Standard the
implementation conforms. There are small differences between MPI-1 and MPI-1.1. There
are very few differences between MPI-1.1 and MPI-1.2, but large differences between MPI-1.2
and MPI-2.

Version 1.1: June, 1995. Beginning in March, 1995, the Message-Passing Interface Forum
reconvened to correct errors and make clarifications in the MPI document of May 5, 1994,
referred to below as Version 1.0. These discussions resulted in Version 1.1, which is this
document. The changes from Version 1.0 are minor. A version of this document with all
changes marked is available. This paragraph is an example of a change.

Version 1.0: May, 1994. The Message-Passing Interface Forum (MPIF), with participation
from over 40 organizations, has been meeting since January 1993 to discuss and define a set
of library interface standards for message passing. MPIF is not sanctioned or supported by
any official standards organization.

The goal of the Message-Passing Interface, simply stated, is to develop a widely used
standard for writing message-passing programs. As such the interface should establish a
practical, portable, efficient, and flexible standard for message-passing.

This is the final report, Version 1.0, of the Message-Passing Interface Forum. This
document contains all the technical features proposed for the interface. This copy of the
draft was processed by LATEX on May 5, 1994.

Please send comments on MPI to mpi-comments@mpi-forum.org. Your comment will
be forwarded to MPI Forum committee members who will attempt to respond.
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Chapter 9

The Info Object

Many of the routines in MPI take an argument info. info is an opaque object with a handle
of type MPI_Info in C, MPI::Info in C++, and INTEGER in Fortran. It stores an unordered
set of (key,value) pairs (both key and value are strings). A key can have only one value. MPI
reserves several keys and requires that if an implementation uses a reserved key, it must
provide the specified functionality. An implementation is not required to support these keys
and may support any others not reserved by MPI.

An implementation must support info objects as caches for arbitrary (key, value) pairs,
regardless of whether it recognizes the key. Each function that takes hints in the form of an
MPI_Info must be prepared to ignore any key it does not recognize. This description of info
objects does not attempt to define how a particular function should react if it recognizes
a key but not the associated value. MPI_INFO_GET_NKEYS, MPI_INFO_GET_NTHKEY,
MPI_INFO_GET_VALUELEN, and MPI_INFO_GET must retain all (key,value) pairs so that
layered functionality can also use the Info object.

Keys have an implementation-defined maximum length of MPI_MAX_INFO_KEY, which
is at least 32 and at most 255. Values have an implementation-defined maximum length
of MPI_MAX_INFO_VAL. In Fortran, leading and trailing spaces are stripped from both.
Returned values will never be larger than these maximum lengths. Both key and value are
case sensitive.

Rationale. Keys have a maximum length because the set of known keys will always
be finite and known to the implementation and because there is no reason for keys
to be complex. The small maximum size allows applications to declare keys of size
MPI_MAX_INFO_KEY. The limitation on value sizes is so that an implementation is
not forced to deal with arbitrarily long strings. (End of rationale.)

Advice to users. MPI_MAX_INFO_VAL might be very large, so it might not be wise to
declare a string of that size. (End of advice to users.)

When it is an argument to a non-blocking routine, info is parsed before that routine
returns, so that it may be modified or freed immediately after return.

When the descriptions refer to a key or value as being a boolean, an integer, or a list,
they mean the string representation of these types. An implementation may define its own
rules for how info value strings are converted to other types, but to ensure portability, every
implementation must support the following representations. Legal values for a boolean must
include the strings “true” and “false” (all lowercase). For integers, legal values must include
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288 CHAPTER 9. THE INFO OBJECT

string representations of decimal values of integers that are within the range of a standard
integer type in the program. (However it is possible that not every legal integer is a legal
value for a given key.) On positive numbers, + signs are optional. No space may appear
between a + or − sign and the leading digit of a number. For comma separated lists, the
string must contain legal elements separated by commas. Leading and trailing spaces are
stripped automatically from the types of info values described above and for each element of
a comma separated list. These rules apply to all info values of these types. Implementations
are free to specify a different interpretation for values of other info keys.

MPI_INFO_CREATE(info)

OUT info info object created (handle)

int MPI_Info_create(MPI_Info *info)

MPI_INFO_CREATE(INFO, IERROR)

INTEGER INFO, IERROR

static MPI::Info MPI::Info::Create()

MPI_INFO_CREATE creates a new info object. The newly created object contains no
key/value pairs.

MPI_INFO_SET(info, key, value)

INOUT info info object (handle)

IN key key (string)

IN value value (string)

int MPI_Info_set(MPI_Info info, char *key, char *value)

MPI_INFO_SET(INFO, KEY, VALUE, IERROR)

INTEGER INFO, IERROR

CHARACTER*(*) KEY, VALUE

void MPI::Info::Set(const char* key, const char* value)

MPI_INFO_SET adds the (key,value) pair to info, and overrides the value if a value for
the same key was previously set. key and value are null-terminated strings in C. In Fortran,
leading and trailing spaces in key and value are stripped. If either key or value are larger
than the allowed maximums, the errors MPI_ERR_INFO_KEY or MPI_ERR_INFO_VALUE are
raised, respectively.

MPI_INFO_DELETE(info, key)

INOUT info info object (handle)

IN key key (string)

int MPI_Info_delete(MPI_Info info, char *key)
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MPI_INFO_DELETE(INFO, KEY, IERROR)

INTEGER INFO, IERROR

CHARACTER*(*) KEY

void MPI::Info::Delete(const char* key)

MPI_INFO_DELETE deletes a (key,value) pair from info. If key is not defined in info,
the call raises an error of class MPI_ERR_INFO_NOKEY.

MPI_INFO_GET(info, key, valuelen, value, flag)

IN info info object (handle)

IN key key (string)

IN valuelen length of value arg (integer)

OUT value value (string)

OUT flag true if key defined, false if not (boolean)

int MPI_Info_get(MPI_Info info, char *key, int valuelen, char *value,

int *flag)

MPI_INFO_GET(INFO, KEY, VALUELEN, VALUE, FLAG, IERROR)

INTEGER INFO, VALUELEN, IERROR

CHARACTER*(*) KEY, VALUE

LOGICAL FLAG

bool MPI::Info::Get(const char* key, int valuelen, char* value) const

This function retrieves the value associated with key in a previous call to
MPI_INFO_SET. If such a key exists, it sets flag to true and returns the value in value,
otherwise it sets flag to false and leaves value unchanged. valuelen is the number of characters
available in value. If it is less than the actual size of the value, the value is truncated. In
C, valuelen should be one less than the amount of allocated space to allow for the null
terminator.

If key is larger than MPI_MAX_INFO_KEY, the call is erroneous.

MPI_INFO_GET_VALUELEN(info, key, valuelen, flag)

IN info info object (handle)

IN key key (string)

OUT valuelen length of value arg (integer)

OUT flag true if key defined, false if not (boolean)

int MPI_Info_get_valuelen(MPI_Info info, char *key, int *valuelen,

int *flag)

MPI_INFO_GET_VALUELEN(INFO, KEY, VALUELEN, FLAG, IERROR)

INTEGER INFO, VALUELEN, IERROR

LOGICAL FLAG
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MPI_INFO_DELETE(INFO, KEY, IERROR)

INTEGER INFO, IERROR

CHARACTER*(*) KEY

void MPI::Info::Delete(const char* key)

MPI_INFO_DELETE deletes a (key,value) pair from info. If key is not defined in info,
the call raises an error of class MPI_ERR_INFO_NOKEY.

MPI_INFO_GET(info, key, valuelen, value, flag)

IN info info object (handle)

IN key key (string)

IN valuelen length of value arg (integer)

OUT value value (string)

OUT flag true if key defined, false if not (boolean)

int MPI_Info_get(MPI_Info info, char *key, int valuelen, char *value,

int *flag)

MPI_INFO_GET(INFO, KEY, VALUELEN, VALUE, FLAG, IERROR)

INTEGER INFO, VALUELEN, IERROR

CHARACTER*(*) KEY, VALUE

LOGICAL FLAG

bool MPI::Info::Get(const char* key, int valuelen, char* value) const

This function retrieves the value associated with key in a previous call to
MPI_INFO_SET. If such a key exists, it sets flag to true and returns the value in value,
otherwise it sets flag to false and leaves value unchanged. valuelen is the number of characters
available in value. If it is less than the actual size of the value, the value is truncated. In
C, valuelen should be one less than the amount of allocated space to allow for the null
terminator.

If key is larger than MPI_MAX_INFO_KEY, the call is erroneous.

MPI_INFO_GET_VALUELEN(info, key, valuelen, flag)

IN info info object (handle)

IN key key (string)

OUT valuelen length of value arg (integer)

OUT flag true if key defined, false if not (boolean)

int MPI_Info_get_valuelen(MPI_Info info, char *key, int *valuelen,

int *flag)

MPI_INFO_GET_VALUELEN(INFO, KEY, VALUELEN, FLAG, IERROR)
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CHARACTER*(*) KEY

bool MPI::Info::Get_valuelen(const char* key, int& valuelen) const

Retrieves the length of the value associated with key. If key is defined, valuelen is set
to the length of its associated value and flag is set to true. If key is not defined, valuelen is
not touched and flag is set to false. The length returned in C or C++ does not include the
end-of-string character.

If key is larger than MPI_MAX_INFO_KEY, the call is erroneous.

MPI_INFO_GET_NKEYS(info, nkeys)

IN info info object (handle)

OUT nkeys number of defined keys (integer)

int MPI_Info_get_nkeys(MPI_Info info, int *nkeys)

MPI_INFO_GET_NKEYS(INFO, NKEYS, IERROR)

INTEGER INFO, NKEYS, IERROR

int MPI::Info::Get_nkeys() const

MPI_INFO_GET_NKEYS returns the number of currently defined keys in info.

MPI_INFO_GET_NTHKEY(info, n, key)

IN info info object (handle)

IN n key number (integer)

OUT key key (string)

int MPI_Info_get_nthkey(MPI_Info info, int n, char *key)

MPI_INFO_GET_NTHKEY(INFO, N, KEY, IERROR)

INTEGER INFO, N, IERROR

CHARACTER*(*) KEY

void MPI::Info::Get_nthkey(int n, char* key) const

This function returns the nth defined key in info. Keys are numbered 0 . . . N − 1 where
N is the value returned by MPI_INFO_GET_NKEYS. All keys between 0 and N − 1 are
guaranteed to be defined. The number of a given key does not change as long as info is not
modified with MPI_INFO_SET or MPI_INFO_DELETE.

MPI_INFO_DUP(info, newinfo)

IN info info object (handle)

OUT newinfo info object (handle)

int MPI_Info_dup(MPI_Info info, MPI_Info *newinfo)
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CHARACTER*(*) KEY
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Retrieves the length of the value associated with key. If key is defined, valuelen is set
to the length of its associated value and flag is set to true. If key is not defined, valuelen is
not touched and flag is set to false. The length returned in C or C++ does not include the
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IN info info object (handle)

IN n key number (integer)

OUT key key (string)

int MPI_Info_get_nthkey(MPI_Info info, int n, char *key)

MPI_INFO_GET_NTHKEY(INFO, N, KEY, IERROR)

INTEGER INFO, N, IERROR

CHARACTER*(*) KEY

void MPI::Info::Get_nthkey(int n, char* key) const

This function returns the nth defined key in info. Keys are numbered 0 . . . N − 1 where
N is the value returned by MPI_INFO_GET_NKEYS. All keys between 0 and N − 1 are
guaranteed to be defined. The number of a given key does not change as long as info is not
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MPI_INFO_DUP(info, newinfo)

IN info info object (handle)

OUT newinfo info object (handle)

int MPI_Info_dup(MPI_Info info, MPI_Info *newinfo)
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MPI_INFO_DUP(INFO, NEWINFO, IERROR)

INTEGER INFO, NEWINFO, IERROR

MPI::Info MPI::Info::Dup() const

MPI_INFO_DUP duplicates an existing info object, creating a new object, with the
same (key,value) pairs and the same ordering of keys.

MPI_INFO_FREE(info)

INOUT info info object (handle)

int MPI_Info_free(MPI_Info *info)

MPI_INFO_FREE(INFO, IERROR)

INTEGER INFO, IERROR

void MPI::Info::Free()

This function frees info and sets it to MPI_INFO_NULL. The value of an info argument is
interpreted each time the info is passed to a routine. Changes to an info after return from
a routine do not affect that interpretation.
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Chapter 10

Process Creation and Management

10.1 Introduction

MPI is primarily concerned with communication rather than process or resource manage-
ment. However, it is necessary to address these issues to some degree in order to define
a useful framework for communication. This chapter presents a set of MPI interfaces that
allow for a variety of approaches to process management while placing minimal restrictions
on the execution environment.

The MPI model for process creation allows both the creation of an intial set of pro-
cesses related by their membership in a common MPI_COMM_WORLD and the creation and
management of processes after an MPI application has been started. A major impetus for
the later form of process creation comes from the PVM [23] research effort. This work
has provided a wealth of experience with process management and resource control that
illustrates their benefits and potential pitfalls.

The MPI Forum decided not to address resource control because it was not able to
design a portable interface that would be appropriate for the broad spectrum of existing
and potential resource and process controllers. Resource control can encompass a wide
range of abilities, including adding and deleting nodes from a virtual parallel machine,
reserving and scheduling resources, managing compute partitions of an MPP, and returning
information about available resources. assumes that resource control is provided externally
— probably by computer vendors, in the case of tightly coupled systems, or by a third party
software package when the environment is a cluster of workstations.

The reasons for including process management in MPI are both technical and practical.
Important classes of message-passing applications require process control. These include
task farms, serial applications with parallel modules, and problems that require a run-time
assessment of the number and type of processes that should be started. On the practical
side, users of workstation clusters who are migrating from PVM to MPI may be accustomed
to using PVM’s capabilities for process and resource management. The lack of these features
would be a practical stumbling block to migration.

The following goals are central to the design of MPI process management:

• The MPI process model must apply to the vast majority of current parallel envi-
ronments. These include everything from tightly integrated MPPs to heterogeneous
networks of workstations.

• MPI must not take over operating system responsibilities. It should instead provide a

293

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 10

Process Creation and Management

10.1 Introduction

MPI is primarily concerned with communication rather than process or resource manage-
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— probably by computer vendors, in the case of tightly coupled systems, or by a third party
software package when the environment is a cluster of workstations.
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to using PVM’s capabilities for process and resource management. The lack of these features
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networks of workstations.
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clean interface between an application and system software.

• MPI must guarantee communication determinism in the presense of dynamic processes,
i.e., dynamic process management must not introduce unavoidable race conditions.

• MPI must not contain features that compromise performance.

The process management model addresses these issues in two ways. First, MPI remains
primarily a communication library. It does not manage the parallel environment in which
a parallel program executes, though it provides a minimal interface between an application
and external resource and process managers.

Second, MPI maintains a consistent concept of a communicator, regardless of how its
members came into existence. A communicator is never changed once created, and it is
always created using deterministic collective operations.

10.2 The Dynamic Process Model

The dynamic process model allows for the creation and cooperative termination of processes
after an MPI application has started. It provides a mechanism to establish communication
between the newly created processes and the existing MPI application. It also provides a
mechanism to establish communication between two existing MPI applications, even when
one did not “start” the other.

10.2.1 Starting Processes

MPI applications may start new processes through an interface to an external process man-
ager, which can range from a parallel operating system (CMOST) to layered software (POE)
to an rsh command (p4).

MPI_COMM_SPAWN starts MPI processes and establishes communication with them,
returning an intercommunicator. MPI_COMM_SPAWN_MULTIPLE starts several different
binaries (or the same binary with different arguments), placing them in the same
MPI_COMM_WORLD and returning an intercommunicator.

MPI uses the existing group abstraction to represent processes. A process is identified
by a (group, rank) pair.

10.2.2 The Runtime Environment

The MPI_COMM_SPAWN and MPI_COMM_SPAWN_MULTIPLE routines provide an inter-
face between MPI and the runtime environment of an MPI application. The difficulty is that
there is an enormous range of runtime environments and application requirements, and MPI
must not be tailored to any particular one. Examples of such environments are:

• MPP managed by a batch queueing system. Batch queueing systems generally
allocate resources before an application begins, enforce limits on resource use (CPU
time, memory use, etc.), and do not allow a change in resource allocation after a
job begins. Moreover, many MPPs have special limitations or extensions, such as a
limit on the number of processes that may run on one processor, or the ability to
gang-schedule processes of a parallel application.
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clean interface between an application and system software.

• MPI must guarantee communication determinism in the presense of dynamic processes,
i.e., dynamic process management must not introduce unavoidable race conditions.

• MPI must not contain features that compromise performance.

The process management model addresses these issues in two ways. First, MPI remains
primarily a communication library. It does not manage the parallel environment in which
a parallel program executes, though it provides a minimal interface between an application
and external resource and process managers.

Second, MPI maintains a consistent concept of a communicator, regardless of how its
members came into existence. A communicator is never changed once created, and it is
always created using deterministic collective operations.

10.2 The Dynamic Process Model

The dynamic process model allows for the creation and cooperative termination of processes
after an MPI application has started. It provides a mechanism to establish communication
between the newly created processes and the existing MPI application. It also provides a
mechanism to establish communication between two existing MPI applications, even when
one did not “start” the other.

10.2.1 Starting Processes

MPI applications may start new processes through an interface to an external process man-
ager, which can range from a parallel operating system (CMOST) to layered software (POE)
to an rsh command (p4).

MPI_COMM_SPAWN starts MPI processes and establishes communication with them,
returning an intercommunicator. MPI_COMM_SPAWN_MULTIPLE starts several different
binaries (or the same binary with different arguments), placing them in the same
MPI_COMM_WORLD and returning an intercommunicator.

MPI uses the existing group abstraction to represent processes. A process is identified
by a (group, rank) pair.

10.2.2 The Runtime Environment

The MPI_COMM_SPAWN and MPI_COMM_SPAWN_MULTIPLE routines provide an inter-
face between MPI and the runtime environment of an MPI application. The difficulty is that
there is an enormous range of runtime environments and application requirements, and MPI
must not be tailored to any particular one. Examples of such environments are:

• MPP managed by a batch queueing system. Batch queueing systems generally
allocate resources before an application begins, enforce limits on resource use (CPU
time, memory use, etc.), and do not allow a change in resource allocation after a
job begins. Moreover, many MPPs have special limitations or extensions, such as a
limit on the number of processes that may run on one processor, or the ability to
gang-schedule processes of a parallel application.
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• Network of workstations with PVM. PVM (Parallel Virtual Machine) allows a
user to create a “virtual machine” out of a network of workstations. An application
may extend the virtual machine or manage processes (create, kill, redirect output,
etc.) through the PVM library. Requests to manage the machine or processes may
be intercepted and handled by an external resource manager.

• Network of workstations managed by a load balancing system. A load balanc-
ing system may choose the location of spawned processes based on dynamic quantities,
such as load average. It may transparently migrate processes from one machine to
another when a resource becomes unavailable.

• Large SMP with Unix. Applications are run directly by the user. They are
scheduled at a low level by the operating system. Processes may have special schedul-
ing characteristics (gang-scheduling, processor affinity, deadline scheduling, processor
locking, etc.) and be subject to OS resource limits (number of processes, amount of
memory, etc.).

MPI assumes, implicitly, the existence of an environment in which an application runs.
It does not provide “operating system” services, such as a general ability to query what
processes are running, to kill arbitrary processes, to find out properties of the runtime
environment (how many processors, how much memory, etc.).

Complex interaction of an MPI application with its runtime environment should be
done through an environment-specific API. An example of such an API would be the PVM
task and machine management routines — pvm_addhosts, pvm_config, pvm_tasks, etc.,
possibly modified to return an MPI (group,rank) when possible. A Condor or PBS API
would be another possibility.

At some low level, obviously, MPI must be able to interact with the runtime system,
but the interaction is not visible at the application level and the details of the interaction
are not specified by the MPI standard.

In many cases, it is impossible to keep environment-specific information out of the MPI
interface without seriously compromising MPI functionality. To permit applications to take
advantage of environment-specific functionality, many MPI routines take an info argument
that allows an application to specify environment-specific information. There is a tradeoff
between functionality and portability: applications that make use of info are not portable.

MPI does not require the existence of an underlying “virtual machine” model, in which
there is a consistent global view of an MPI application and an implicit “operating system”
managing resources and processes. For instance, processes spawned by one task may not
be visible to another; additional hosts added to the runtime environment by one process
may not be visible in another process; tasks spawned by different processes may not be
automatically distributed over available resources.

Interaction between MPI and the runtime environment is limited to the following areas:

• A process may start new processes with MPI_COMM_SPAWN and
MPI_COMM_SPAWN_MULTIPLE.

• When a process spawns a child process, it may optionally use an info argument to tell
the runtime environment where or how to start the process. This extra information
may be opaque to MPI.
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• An attribute MPI_UNIVERSE_SIZE on MPI_COMM_WORLD tells a program how “large”
the initial runtime environment is, namely how many processes can usefully be started
in all. One can subtract the size of MPI_COMM_WORLD from this value to find out
how many processes might usefully be started in addition to those already running.

10.3 Process Manager Interface

10.3.1 Processes in MPI

A process is represented in MPI by a (group, rank) pair. A (group, rank) pair specifies a
unique process but a process does not determine a unique (group, rank) pair, since a process
may belong to several groups.

10.3.2 Starting Processes and Establishing Communication

The following routine starts a number of MPI processes and establishes communication with
them, returning an intercommunicator.

Advice to users. It is possible in MPI to start a static SPMD or MPMD appli-
cation by starting first one process and having that process start its siblings with
MPI_COMM_SPAWN. This practice is discouraged primarily for reasons of perfor-
mance. If possible, it is preferable to start all processes at once, as a single MPI
application. (End of advice to users.)

MPI_COMM_SPAWN(command, argv, maxprocs, info, root, comm, intercomm,
array_of_errcodes)

IN command name of program to be spawned (string, significant

only at root)

IN argv arguments to command (array of strings, significant

only at root)

IN maxprocs maximum number of processes to start (integer, sig-

nificant only at root)

IN info a set of key-value pairs telling the runtime system

where and how to start the processes (handle, signifi-

cant only at root)

IN root rank of process in which previous arguments are ex-

amined (integer)

IN comm intracommunicator containing group of spawning pro-

cesses (handle)

OUT intercomm intercommunicator between original group and the

newly spawned group (handle)

OUT array_of_errcodes one code per process (array of integer)
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int MPI_Comm_spawn(char *command, char *argv[], int maxprocs, MPI_Info

info, int root, MPI_Comm comm, MPI_Comm *intercomm,

int array_of_errcodes[])

MPI_COMM_SPAWN(COMMAND, ARGV, MAXPROCS, INFO, ROOT, COMM, INTERCOMM,

ARRAY_OF_ERRCODES, IERROR)

CHARACTER*(*) COMMAND, ARGV(*)

INTEGER INFO, MAXPROCS, ROOT, COMM, INTERCOMM, ARRAY_OF_ERRCODES(*),

IERROR

MPI::Intercomm MPI::Intracomm::Spawn(const char* command,

const char* argv[], int maxprocs, const MPI::Info& info,

int root, int array_of_errcodes[]) const

MPI::Intercomm MPI::Intracomm::Spawn(const char* command,

const char* argv[], int maxprocs, const MPI::Info& info,

int root) const

MPI_COMM_SPAWN tries to start maxprocs identical copies of the MPI program spec-
ified by command, establishing communication with them and returning an intercommun-
icator. The spawned processes are referred to as children. The children have their own
MPI_COMM_WORLD, which is separate from that of the parents. MPI_COMM_SPAWN is
collective over comm, and also may not return until MPI_INIT has been called in the chil-
dren. Similarly, MPI_INIT in the children may not return until all parents have called
MPI_COMM_SPAWN. In this sense, MPI_COMM_SPAWN in the parents and MPI_INIT in
the children form a collective operation over the union of parent and child processes. The
intercommunicator returned by MPI_COMM_SPAWN contains the parent processes in the
local group and the child processes in the remote group. The ordering of processes in the
local and remote groups is the same as the ordering of the group of the comm in the parents
and of MPI_COMM_WORLD of the children, respectively. This intercommunicator can be
obtained in the children through the function MPI_COMM_GET_PARENT.

Advice to users. An implementation may automatically establish communication
before MPI_INIT is called by the children. Thus, completion of MPI_COMM_SPAWN
in the parent does not necessarily mean that MPI_INIT has been called in the children
(although the returned intercommunicator can be used immediately). (End of advice
to users.)

The command argument The command argument is a string containing the name of a pro-
gram to be spawned. The string is null-terminated in C. In Fortran, leading and trailing
spaces are stripped. MPI does not specify how to find the executable or how the working
directory is determined. These rules are implementation-dependent and should be appro-
priate for the runtime environment.

Advice to implementors. The implementation should use a natural rule for finding
executables and determining working directories. For instance, a homogeneous sys-
tem with a global file system might look first in the working directory of the spawning
process, or might search the directories in a PATH environment variable as do Unix
shells. An implementation on top of PVM would use PVM’s rules for finding exe-
cutables (usually in $HOME/pvm3/bin/$PVM_ARCH). An MPI implementation running
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and of MPI_COMM_WORLD of the children, respectively. This intercommunicator can be
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Advice to users. An implementation may automatically establish communication
before MPI_INIT is called by the children. Thus, completion of MPI_COMM_SPAWN
in the parent does not necessarily mean that MPI_INIT has been called in the children
(although the returned intercommunicator can be used immediately). (End of advice
to users.)

The command argument The command argument is a string containing the name of a pro-
gram to be spawned. The string is null-terminated in C. In Fortran, leading and trailing
spaces are stripped. MPI does not specify how to find the executable or how the working
directory is determined. These rules are implementation-dependent and should be appro-
priate for the runtime environment.

Advice to implementors. The implementation should use a natural rule for finding
executables and determining working directories. For instance, a homogeneous sys-
tem with a global file system might look first in the working directory of the spawning
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under POE on an IBM SP would use POE’s method of finding executables. An imple-
mentation should document its rules for finding executables and determining working
directories, and a high-quality implementation should give the user some control over
these rules. (End of advice to implementors.)

If the program named in command does not call MPI_INIT, but instead forks a process
that calls MPI_INIT, the results are undefined. Implementations may allow this case to
work but are not required to.

Advice to users. MPI does not say what happens if the program you start is a
shell script and that shell script starts a program that calls MPI_INIT. Though some
implementations may allow you to do this, they may also have restrictions, such as
requiring that arguments supplied to the shell script be supplied to the program, or
requiring that certain parts of the environment not be changed. (End of advice to
users.)

The argv argument argv is an array of strings containing arguments that are passed to
the program. The first element of argv is the first argument passed to command, not, as
is conventional in some contexts, the command itself. The argument list is terminated by
NULL in C and C++ and an empty string in Fortran. In Fortran, leading and trailing spaces
are always stripped, so that a string consisting of all spaces is considered an empty string.
The constant MPI_ARGV_NULL may be used in C, C++ and Fortran to indicate an empty
argument list. In C and C++, this constant is the same as NULL.

Example 10.1 Examples of argv in C and Fortran
To run the program “ocean” with arguments “-gridfile” and “ocean1.grd” in C:

char command[] = "ocean";

char *argv[] = {"-gridfile", "ocean1.grd", NULL};

MPI_Comm_spawn(command, argv, ...);

or, if not everything is known at compile time:

char *command;

char **argv;

command = "ocean";

argv=(char **)malloc(3 * sizeof(char *));

argv[0] = "-gridfile";

argv[1] = "ocean1.grd";

argv[2] = NULL;

MPI_Comm_spawn(command, argv, ...);

In Fortran:

CHARACTER*25 command, argv(3)

command = ’ ocean ’

argv(1) = ’ -gridfile ’

argv(2) = ’ ocean1.grd’

argv(3) = ’ ’

call MPI_COMM_SPAWN(command, argv, ...)
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Arguments are supplied to the program if this is allowed by the operating system.
In C, the MPI_COMM_SPAWN argument argv differs from the argv argument of main in
two respects. First, it is shifted by one element. Specifically, argv[0] of main is provided
by the implementation and conventionally contains the name of the program (given by
command). argv[1] of main corresponds to argv[0] in MPI_COMM_SPAWN, argv[2] of
main to argv[1] of MPI_COMM_SPAWN, etc. Second, argv of MPI_COMM_SPAWN must be
null-terminated, so that its length can be determined. Passing an argv of MPI_ARGV_NULL

to MPI_COMM_SPAWN results in main receiving argc of 1 and an argv whose element 0
is (conventionally) the name of the program.

If a Fortran implementation supplies routines that allow a program to obtain its ar-
guments, the arguments may be available through that mechanism. In C, if the operating
system does not support arguments appearing in argv of main(), the MPI implementation
may add the arguments to the argv that is passed to MPI_INIT.

The maxprocs argument MPI tries to spawn maxprocs processes. If it is unable to spawn
maxprocs processes, it raises an error of class MPI_ERR_SPAWN.

An implementation may allow the info argument to change the default behavior, such
that if the implementation is unable to spawn all maxprocs processes, it may spawn a
smaller number of processes instead of raising an error. In principle, the info argument
may specify an arbitrary set {mi : 0 ≤ mi ≤ maxprocs} of allowed values for the number
of processes spawned. The set {mi} does not necessarily include the value maxprocs. If
an implementation is able to spawn one of these allowed numbers of processes,
MPI_COMM_SPAWN returns successfully and the number of spawned processes, m, is given
by the size of the remote group of intercomm. If m is less than maxproc, reasons why the
other processes were not spawned are given in array_of_errcodes as described below. If it is
not possible to spawn one of the allowed numbers of processes, MPI_COMM_SPAWN raises
an error of class MPI_ERR_SPAWN.

A spawn call with the default behavior is called hard. A spawn call for which fewer
than maxprocs processes may be returned is called soft. See Section 10.3.4 on page 303 for
more information on the soft key for info.

Advice to users. By default, requests are hard and MPI errors are fatal. This means
that by default there will be a fatal error if MPI cannot spawn all the requested
processes. If you want the behavior “spawn as many processes as possible, up to N ,”
you should do a soft spawn, where the set of allowed values {mi} is {0 . . . N}. However,
this is not completely portable, as implementations are not required to support soft
spawning. (End of advice to users.)

The info argument The info argument to all of the routines in this chapter is an opaque
handle of type MPI_Info in C, MPI::Info in C++ and INTEGER in Fortran. It is a container for
a number of user-specified (key,value) pairs. key and value are strings (null-terminated char*

in C, character*(*) in Fortran). Routines to create and manipulate the info argument are
described in Section 9 on page 287.

For the SPAWN calls, info provides additional (and possibly implementation-dependent)
instructions to MPI and the runtime system on how to start processes. An application may
pass MPI_INFO_NULL in C or Fortran. Portable programs not requiring detailed control over
process locations should use MPI_INFO_NULL.
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that by default there will be a fatal error if MPI cannot spawn all the requested
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you should do a soft spawn, where the set of allowed values {mi} is {0 . . . N}. However,
this is not completely portable, as implementations are not required to support soft
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MPI does not specify the content of the info argument, except to reserve a number of
special key values (see Section 10.3.4 on page 303). The info argument is quite flexible and
could even be used, for example, to specify the executable and its command-line arguments.
In this case the command argument to MPI_COMM_SPAWN could be empty. The ability to
do this follows from the fact that MPI does not specify how an executable is found, and the
info argument can tell the runtime system where to “find” the executable “” (empty string).
Of course a program that does this will not be portable across MPI implementations.

The root argument All arguments before the root argument are examined only on the
process whose rank in comm is equal to root. The value of these arguments on other
processes is ignored.

The array_of_errcodes argument The array_of_errcodes is an array of length maxprocs in
which MPI reports the status of each process that MPI was requested to start. If all maxprocs
processes were spawned, array_of_errcodes is filled in with the value MPI_SUCCESS. If only m

(0 ≤ m < maxprocs) processes are spawned, m of the entries will contain MPI_SUCCESS and
the rest will contain an implementation-specific error code indicating the reason MPI could
not start the process. MPI does not specify which entries correspond to failed processes.
An implementation may, for instance, fill in error codes in one-to-one correspondence with
a detailed specification in the info argument. These error codes all belong to the error
class MPI_ERR_SPAWN if there was no error in the argument list. In C or Fortran, an
application may pass MPI_ERRCODES_IGNORE if it is not interested in the error codes. In
C++ this constant does not exist, and the array_of_errcodes argument may be omitted from
the argument list.

Advice to implementors. MPI_ERRCODES_IGNORE in Fortran is a special type of
constant, like MPI_BOTTOM. See the discussion in Section 2.5.4 on page 14. (End of
advice to implementors.)

MPI_COMM_GET_PARENT(parent)

OUT parent the parent communicator (handle)

int MPI_Comm_get_parent(MPI_Comm *parent)

MPI_COMM_GET_PARENT(PARENT, IERROR)

INTEGER PARENT, IERROR

static MPI::Intercomm MPI::Comm::Get_parent()

If a process was started with MPI_COMM_SPAWN or MPI_COMM_SPAWN_MULTIPLE,
MPI_COMM_GET_PARENT returns the “parent” intercommunicator of the current process.
This parent intercommunicator is created implicitly inside of MPI_INIT and is the same in-
tercommunicator returned by SPAWN in the parents.

If the process was not spawned, MPI_COMM_GET_PARENT returns MPI_COMM_NULL.
After the parent communicator is freed or disconnected, MPI_COMM_GET_PARENT

returns MPI_COMM_NULL.
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MPI does not specify the content of the info argument, except to reserve a number of
special key values (see Section 10.3.4 on page 303). The info argument is quite flexible and
could even be used, for example, to specify the executable and its command-line arguments.
In this case the command argument to MPI_COMM_SPAWN could be empty. The ability to
do this follows from the fact that MPI does not specify how an executable is found, and the
info argument can tell the runtime system where to “find” the executable “” (empty string).
Of course a program that does this will not be portable across MPI implementations.

The root argument All arguments before the root argument are examined only on the
process whose rank in comm is equal to root. The value of these arguments on other
processes is ignored.

The array_of_errcodes argument The array_of_errcodes is an array of length maxprocs in
which MPI reports the status of each process that MPI was requested to start. If all maxprocs
processes were spawned, array_of_errcodes is filled in with the value MPI_SUCCESS. If only m

(0 ≤ m < maxprocs) processes are spawned, m of the entries will contain MPI_SUCCESS and
the rest will contain an implementation-specific error code indicating the reason MPI could
not start the process. MPI does not specify which entries correspond to failed processes.
An implementation may, for instance, fill in error codes in one-to-one correspondence with
a detailed specification in the info argument. These error codes all belong to the error
class MPI_ERR_SPAWN if there was no error in the argument list. In C or Fortran, an
application may pass MPI_ERRCODES_IGNORE if it is not interested in the error codes. In
C++ this constant does not exist, and the array_of_errcodes argument may be omitted from
the argument list.

Advice to implementors. MPI_ERRCODES_IGNORE in Fortran is a special type of
constant, like MPI_BOTTOM. See the discussion in Section 2.5.4 on page 14. (End of
advice to implementors.)

MPI_COMM_GET_PARENT(parent)

OUT parent the parent communicator (handle)

int MPI_Comm_get_parent(MPI_Comm *parent)

MPI_COMM_GET_PARENT(PARENT, IERROR)

INTEGER PARENT, IERROR

static MPI::Intercomm MPI::Comm::Get_parent()

If a process was started with MPI_COMM_SPAWN or MPI_COMM_SPAWN_MULTIPLE,
MPI_COMM_GET_PARENT returns the “parent” intercommunicator of the current process.
This parent intercommunicator is created implicitly inside of MPI_INIT and is the same in-
tercommunicator returned by SPAWN in the parents.

If the process was not spawned, MPI_COMM_GET_PARENT returns MPI_COMM_NULL.
After the parent communicator is freed or disconnected, MPI_COMM_GET_PARENT

returns MPI_COMM_NULL.
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Advice to users. MPI_COMM_GET_PARENT returns a handle to a single intercom-
municator. Calling MPI_COMM_GET_PARENT a second time returns a handle to
the same intercommunicator. Freeing the handle with MPI_COMM_DISCONNECT or
MPI_COMM_FREE will cause other references to the intercommunicator to become
invalid (dangling). Note that calling MPI_COMM_FREE on the parent communicator
is not useful. (End of advice to users.)

Rationale. The desire of the Forum was to create a constant
MPI_COMM_PARENT similar to MPI_COMM_WORLD. Unfortunately such a constant
cannot be used (syntactically) as an argument to MPI_COMM_DISCONNECT, which
is explicitly allowed. (End of rationale.)

10.3.3 Starting Multiple Executables and Establishing Communication

While MPI_COMM_SPAWN is sufficient for most cases, it does not allow the spawning
of multiple binaries, or of the same binary with multiple sets of arguments. The follow-
ing routine spawns multiple binaries or the same binary with multiple sets of arguments,
establishing communication with them and placing them in the same MPI_COMM_WORLD.

MPI_COMM_SPAWN_MULTIPLE(count, array_of_commands, array_of_argv, array_of_maxprocs,
array_of_info, root, comm, intercomm, array_of_errcodes)

IN count number of commands (positive integer, significant to

MPI only at root — see advice to users)

IN array_of_commands programs to be executed (array of strings, significant

only at root)

IN array_of_argv arguments for commands (array of array of strings,

significant only at root)

IN array_of_maxprocs maximum number of processes to start for each com-

mand (array of integer, significant only at root)

IN array_of_info info objects telling the runtime system where and how

to start processes (array of handles, significant only at

root)

IN root rank of process in which previous arguments are ex-

amined (integer)

IN comm intracommunicator containing group of spawning pro-

cesses (handle)

OUT intercomm intercommunicator between original group and newly

spawned group (handle)

OUT array_of_errcodes one error code per process (array of integer)

int MPI_Comm_spawn_multiple(int count, char *array_of_commands[],

char **array_of_argv[], int array_of_maxprocs[],

MPI_Info array_of_info[], int root, MPI_Comm comm,

MPI_Comm *intercomm, int array_of_errcodes[])
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Advice to users. MPI_COMM_GET_PARENT returns a handle to a single intercom-
municator. Calling MPI_COMM_GET_PARENT a second time returns a handle to
the same intercommunicator. Freeing the handle with MPI_COMM_DISCONNECT or
MPI_COMM_FREE will cause other references to the intercommunicator to become
invalid (dangling). Note that calling MPI_COMM_FREE on the parent communicator
is not useful. (End of advice to users.)

Rationale. The desire of the Forum was to create a constant
MPI_COMM_PARENT similar to MPI_COMM_WORLD. Unfortunately such a constant
cannot be used (syntactically) as an argument to MPI_COMM_DISCONNECT, which
is explicitly allowed. (End of rationale.)

10.3.3 Starting Multiple Executables and Establishing Communication

While MPI_COMM_SPAWN is sufficient for most cases, it does not allow the spawning
of multiple binaries, or of the same binary with multiple sets of arguments. The follow-
ing routine spawns multiple binaries or the same binary with multiple sets of arguments,
establishing communication with them and placing them in the same MPI_COMM_WORLD.

MPI_COMM_SPAWN_MULTIPLE(count, array_of_commands, array_of_argv, array_of_maxprocs,
array_of_info, root, comm, intercomm, array_of_errcodes)

IN count number of commands (positive integer, significant to

MPI only at root — see advice to users)

IN array_of_commands programs to be executed (array of strings, significant

only at root)

IN array_of_argv arguments for commands (array of array of strings,

significant only at root)

IN array_of_maxprocs maximum number of processes to start for each com-

mand (array of integer, significant only at root)

IN array_of_info info objects telling the runtime system where and how

to start processes (array of handles, significant only at

root)

IN root rank of process in which previous arguments are ex-

amined (integer)

IN comm intracommunicator containing group of spawning pro-

cesses (handle)

OUT intercomm intercommunicator between original group and newly

spawned group (handle)

OUT array_of_errcodes one error code per process (array of integer)

int MPI_Comm_spawn_multiple(int count, char *array_of_commands[],

char **array_of_argv[], int array_of_maxprocs[],

MPI_Info array_of_info[], int root, MPI_Comm comm,

MPI_Comm *intercomm, int array_of_errcodes[])
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MPI_COMM_SPAWN_MULTIPLE(COUNT, ARRAY_OF_COMMANDS, ARRAY_OF_ARGV,

ARRAY_OF_MAXPROCS, ARRAY_OF_INFO, ROOT, COMM, INTERCOMM,

ARRAY_OF_ERRCODES, IERROR)

INTEGER COUNT, ARRAY_OF_INFO(*), ARRAY_OF_MAXPROCS(*), ROOT, COMM,

INTERCOMM, ARRAY_OF_ERRCODES(*), IERROR

CHARACTER*(*) ARRAY_OF_COMMANDS(*), ARRAY_OF_ARGV(COUNT, *)

MPI::Intercomm MPI::Intracomm::Spawn_multiple(int count,

const char* array_of_commands[], const char** array_of_argv[],

const int array_of_maxprocs[],

const MPI::Info array_of_info[], int root,

int array_of_errcodes[])

MPI::Intercomm MPI::Intracomm::Spawn_multiple(int count,

const char* array_of_commands[], const char** array_of_argv[],

const int array_of_maxprocs[],

const MPI::Info array_of_info[], int root)

MPI_COMM_SPAWN_MULTIPLE is identical to MPI_COMM_SPAWN except that there
are multiple executable specifications. The first argument, count, gives the number of
specifications. Each of the next four arguments are simply arrays of the corresponding
arguments in MPI_COMM_SPAWN. For the Fortran version of array_of_argv, the element
array_of_argv(i,j) is the j-th argument to command number i.

Rationale. This may seem backwards to Fortran programmers who are familiar
with Fortran’s column-major ordering. However, it is necessary to do it this way to
allow MPI_COMM_SPAWN to sort out arguments. Note that the leading dimension
of array_of_argv must be the same as count. (End of rationale.)

Advice to users. The argument count is interpreted by MPI only at the root, as is
array_of_argv. Since the leading dimension of array_of_argv is count, a non-positive
value of count at a non-root node could theoretically cause a runtime bounds check
error, even though array_of_argv should be ignored by the subroutine. If this happens,
you should explicitly supply a reasonable value of count on the non-root nodes. (End
of advice to users.)

In any language, an application may use the constant MPI_ARGVS_NULL (which is likely
to be (char ***)0 in C) to specify that no arguments should be passed to any commands.
The effect of setting individual elements of array_of_argv to MPI_ARGV_NULL is not defined.
To specify arguments for some commands but not others, the commands without arguments
should have a corresponding argv whose first element is null ((char *)0 in C and empty
string in Fortran).

All of the spawned processes have the same MPI_COMM_WORLD. Their ranks in
MPI_COMM_WORLD correspond directly to the order in which the commands are specified
in MPI_COMM_SPAWN_MULTIPLE. Assume that m1 processes are generated by the first
command, m2 by the second, etc. The processes corresponding to the first command have
ranks 0, 1, . . . ,m1−1. The processes in the second command have ranks m1,m1+1, . . . ,m1+
m2−1. The processes in the third have ranks m1 +m2,m1 +m2 +1, . . . ,m1 +m2 +m3−1,
etc.
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MPI_COMM_SPAWN_MULTIPLE(COUNT, ARRAY_OF_COMMANDS, ARRAY_OF_ARGV,

ARRAY_OF_MAXPROCS, ARRAY_OF_INFO, ROOT, COMM, INTERCOMM,

ARRAY_OF_ERRCODES, IERROR)

INTEGER COUNT, ARRAY_OF_INFO(*), ARRAY_OF_MAXPROCS(*), ROOT, COMM,

INTERCOMM, ARRAY_OF_ERRCODES(*), IERROR

CHARACTER*(*) ARRAY_OF_COMMANDS(*), ARRAY_OF_ARGV(COUNT, *)

MPI::Intercomm MPI::Intracomm::Spawn_multiple(int count,

const char* array_of_commands[], const char** array_of_argv[],

const int array_of_maxprocs[],

const MPI::Info array_of_info[], int root,

int array_of_errcodes[])

MPI::Intercomm MPI::Intracomm::Spawn_multiple(int count,

const char* array_of_commands[], const char** array_of_argv[],

const int array_of_maxprocs[],

const MPI::Info array_of_info[], int root)

MPI_COMM_SPAWN_MULTIPLE is identical to MPI_COMM_SPAWN except that there
are multiple executable specifications. The first argument, count, gives the number of
specifications. Each of the next four arguments are simply arrays of the corresponding
arguments in MPI_COMM_SPAWN. For the Fortran version of array_of_argv, the element
array_of_argv(i,j) is the j-th argument to command number i.

Rationale. This may seem backwards to Fortran programmers who are familiar
with Fortran’s column-major ordering. However, it is necessary to do it this way to
allow MPI_COMM_SPAWN to sort out arguments. Note that the leading dimension
of array_of_argv must be the same as count. (End of rationale.)

Advice to users. The argument count is interpreted by MPI only at the root, as is
array_of_argv. Since the leading dimension of array_of_argv is count, a non-positive
value of count at a non-root node could theoretically cause a runtime bounds check
error, even though array_of_argv should be ignored by the subroutine. If this happens,
you should explicitly supply a reasonable value of count on the non-root nodes. (End
of advice to users.)

In any language, an application may use the constant MPI_ARGVS_NULL (which is likely
to be (char ***)0 in C) to specify that no arguments should be passed to any commands.
The effect of setting individual elements of array_of_argv to MPI_ARGV_NULL is not defined.
To specify arguments for some commands but not others, the commands without arguments
should have a corresponding argv whose first element is null ((char *)0 in C and empty
string in Fortran).

All of the spawned processes have the same MPI_COMM_WORLD. Their ranks in
MPI_COMM_WORLD correspond directly to the order in which the commands are specified
in MPI_COMM_SPAWN_MULTIPLE. Assume that m1 processes are generated by the first
command, m2 by the second, etc. The processes corresponding to the first command have
ranks 0, 1, . . . ,m1−1. The processes in the second command have ranks m1,m1+1, . . . ,m1+
m2−1. The processes in the third have ranks m1 +m2,m1 +m2 +1, . . . ,m1 +m2 +m3−1,
etc.
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Advice to users. Calling MPI_COMM_SPAWN multiple times would create many
sets of children with different MPI_COMM_WORLDs whereas
MPI_COMM_SPAWN_MULTIPLE creates children with a single MPI_COMM_WORLD,
so the two methods are not completely equivalent. There are also two performance-
related reasons why, if you need to spawn multiple executables, you may want to
use MPI_COMM_SPAWN_MULTIPLE instead of calling MPI_COMM_SPAWN several
times. First, spawning several things at once may be faster than spawning them
sequentially. Second, in some implementations, communication between processes
spawned at the same time may be faster than communication between processes
spawned separately. (End of advice to users.)

The array_of_errcodes argument is a 1-dimensional array of size
∑count

i=1 ni, where ni is
the i-th element of array_of_maxprocs. Command number i corresponds to the ni contiguous

slots in this array from element
∑i−1

j=1 nj to
[

∑i
j=1 nj

]

− 1. Error codes are treated as for

MPI_COMM_SPAWN.

Example 10.2 Examples of array_of_argv in C and Fortran
To run the program “ocean” with arguments “-gridfile” and “ocean1.grd” and the program
“atmos” with argument “atmos.grd” in C:

char *array_of_commands[2] = {"ocean", "atmos"};

char **array_of_argv[2];

char *argv0[] = {"-gridfile", "ocean1.grd", (char *)0};

char *argv1[] = {"atmos.grd", (char *)0};

array_of_argv[0] = argv0;

array_of_argv[1] = argv1;

MPI_Comm_spawn_multiple(2, array_of_commands, array_of_argv, ...);

Here’s how you do it in Fortran:

CHARACTER*25 commands(2), array_of_argv(2, 3)

commands(1) = ’ ocean ’

array_of_argv(1, 1) = ’ -gridfile ’

array_of_argv(1, 2) = ’ ocean1.grd’

array_of_argv(1, 3) = ’ ’

commands(2) = ’ atmos ’

array_of_argv(2, 1) = ’ atmos.grd ’

array_of_argv(2, 2) = ’ ’

call MPI_COMM_SPAWN_MULTIPLE(2, commands, array_of_argv, ...)

10.3.4 Reserved Keys

The following keys are reserved. An implementation is not required to interpret these keys,
but if it does interpret the key, it must provide the functionality described.

host Value is a hostname. The format of the hostname is determined by the implementation.

arch Value is an architecture name. Valid architecture names and what they mean are
determined by the implementation.
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Advice to users. Calling MPI_COMM_SPAWN multiple times would create many
sets of children with different MPI_COMM_WORLDs whereas
MPI_COMM_SPAWN_MULTIPLE creates children with a single MPI_COMM_WORLD,
so the two methods are not completely equivalent. There are also two performance-
related reasons why, if you need to spawn multiple executables, you may want to
use MPI_COMM_SPAWN_MULTIPLE instead of calling MPI_COMM_SPAWN several
times. First, spawning several things at once may be faster than spawning them
sequentially. Second, in some implementations, communication between processes
spawned at the same time may be faster than communication between processes
spawned separately. (End of advice to users.)

The array_of_errcodes argument is a 1-dimensional array of size
∑count

i=1 ni, where ni is
the i-th element of array_of_maxprocs. Command number i corresponds to the ni contiguous

slots in this array from element
∑i−1

j=1 nj to
[

∑i
j=1 nj

]

− 1. Error codes are treated as for

MPI_COMM_SPAWN.

Example 10.2 Examples of array_of_argv in C and Fortran
To run the program “ocean” with arguments “-gridfile” and “ocean1.grd” and the program
“atmos” with argument “atmos.grd” in C:

char *array_of_commands[2] = {"ocean", "atmos"};

char **array_of_argv[2];

char *argv0[] = {"-gridfile", "ocean1.grd", (char *)0};

char *argv1[] = {"atmos.grd", (char *)0};

array_of_argv[0] = argv0;

array_of_argv[1] = argv1;

MPI_Comm_spawn_multiple(2, array_of_commands, array_of_argv, ...);

Here’s how you do it in Fortran:

CHARACTER*25 commands(2), array_of_argv(2, 3)

commands(1) = ’ ocean ’

array_of_argv(1, 1) = ’ -gridfile ’

array_of_argv(1, 2) = ’ ocean1.grd’

array_of_argv(1, 3) = ’ ’

commands(2) = ’ atmos ’

array_of_argv(2, 1) = ’ atmos.grd ’

array_of_argv(2, 2) = ’ ’

call MPI_COMM_SPAWN_MULTIPLE(2, commands, array_of_argv, ...)

10.3.4 Reserved Keys

The following keys are reserved. An implementation is not required to interpret these keys,
but if it does interpret the key, it must provide the functionality described.

host Value is a hostname. The format of the hostname is determined by the implementation.

arch Value is an architecture name. Valid architecture names and what they mean are
determined by the implementation.
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wdir Value is the name of a directory on a machine on which the spawned process(es)
execute(s). This directory is made the working directory of the executing process(es).
The format of the directory name is determined by the implementation.

path Value is a directory or set of directories where the implementation should look for the
executable. The format of path is determined by the implementation.

file Value is the name of a file in which additional information is specified. The format of
the filename and internal format of the file are determined by the implementation.

soft Value specifies a set of numbers which are allowed values for the number of processes
that MPI_COMM_SPAWN (et al.) may create. The format of the value is a comma-
separated list of Fortran-90 triplets each of which specifies a set of integers and which
together specify the set formed by the union of these sets. Negative values in this set
and values greater than maxprocs are ignored. MPI will spawn the largest number of
processes it can, consistent with some number in the set. The order in which triplets
are given is not significant.

By Fortran-90 triplets, we mean:

1. a means a

2. a:b means a, a + 1, a + 2, . . . , b

3. a:b:c means a, a + c, a + 2c, . . . , a + ck, where for c > 0, k is the largest integer
for which a + ck ≤ b and for c < 0, k is the largest integer for which a + ck ≥ b.
If b > a then c must be positive. If b < a then c must be negative.

Examples:

1. a:b gives a range between a and b

2. 0:N gives full “soft” functionality

3. 1,2,4,8,16,32,64,128,256,512,1024,2048,4096 allows power-of-two number
of processes.

4. 2:10000:2 allows even number of processes.

5. 2:10:2,7 allows 2, 4, 6, 7, 8, or 10 processes.

10.3.5 Spawn Example

Manager-worker Example, Using MPI_COMM_SPAWN.

/* manager */

#include "mpi.h"

int main(int argc, char *argv[])

{

int world_size, universe_size, *universe_sizep, flag;

MPI_Comm everyone; /* intercommunicator */

char worker_program[100];

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &world_size);
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wdir Value is the name of a directory on a machine on which the spawned process(es)
execute(s). This directory is made the working directory of the executing process(es).
The format of the directory name is determined by the implementation.

path Value is a directory or set of directories where the implementation should look for the
executable. The format of path is determined by the implementation.

file Value is the name of a file in which additional information is specified. The format of
the filename and internal format of the file are determined by the implementation.

soft Value specifies a set of numbers which are allowed values for the number of processes
that MPI_COMM_SPAWN (et al.) may create. The format of the value is a comma-
separated list of Fortran-90 triplets each of which specifies a set of integers and which
together specify the set formed by the union of these sets. Negative values in this set
and values greater than maxprocs are ignored. MPI will spawn the largest number of
processes it can, consistent with some number in the set. The order in which triplets
are given is not significant.

By Fortran-90 triplets, we mean:

1. a means a

2. a:b means a, a + 1, a + 2, . . . , b

3. a:b:c means a, a + c, a + 2c, . . . , a + ck, where for c > 0, k is the largest integer
for which a + ck ≤ b and for c < 0, k is the largest integer for which a + ck ≥ b.
If b > a then c must be positive. If b < a then c must be negative.

Examples:

1. a:b gives a range between a and b

2. 0:N gives full “soft” functionality

3. 1,2,4,8,16,32,64,128,256,512,1024,2048,4096 allows power-of-two number
of processes.

4. 2:10000:2 allows even number of processes.

5. 2:10:2,7 allows 2, 4, 6, 7, 8, or 10 processes.

10.3.5 Spawn Example

Manager-worker Example, Using MPI_COMM_SPAWN.

/* manager */

#include "mpi.h"

int main(int argc, char *argv[])

{

int world_size, universe_size, *universe_sizep, flag;

MPI_Comm everyone; /* intercommunicator */

char worker_program[100];

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &world_size);
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if (world_size != 1) error("Top heavy with management");

MPI_Comm_get_attr(MPI_COMM_WORLD, MPI_UNIVERSE_SIZE,

&universe_sizep, &flag);

if (!flag) {

printf("This MPI does not support UNIVERSE_SIZE. How many\n\

processes total?");

scanf("%d", &universe_size);

} else universe_size = *universe_sizep;

if (universe_size == 1) error("No room to start workers");

/*

* Now spawn the workers. Note that there is a run-time determination

* of what type of worker to spawn, and presumably this calculation must

* be done at run time and cannot be calculated before starting

* the program. If everything is known when the application is

* first started, it is generally better to start them all at once

* in a single MPI_COMM_WORLD.

*/

choose_worker_program(worker_program);

MPI_Comm_spawn(worker_program, MPI_ARGV_NULL, universe_size-1,

MPI_INFO_NULL, 0, MPI_COMM_SELF, &everyone,

MPI_ERRCODES_IGNORE);

/*

* Parallel code here. The communicator "everyone" can be used

* to communicate with the spawned processes, which have ranks 0,..

* MPI_UNIVERSE_SIZE-1 in the remote group of the intercommunicator

* "everyone".

*/

MPI_Finalize();

return 0;

}

/* worker */

#include "mpi.h"

int main(int argc, char *argv[])

{

int size;

MPI_Comm parent;

MPI_Init(&argc, &argv);

MPI_Comm_get_parent(&parent);

if (parent == MPI_COMM_NULL) error("No parent!");

MPI_Comm_remote_size(parent, &size);

if (size != 1) error("Something’s wrong with the parent");
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if (world_size != 1) error("Top heavy with management");

MPI_Comm_get_attr(MPI_COMM_WORLD, MPI_UNIVERSE_SIZE,

&universe_sizep, &flag);

if (!flag) {

printf("This MPI does not support UNIVERSE_SIZE. How many\n\

processes total?");

scanf("%d", &universe_size);

} else universe_size = *universe_sizep;

if (universe_size == 1) error("No room to start workers");

/*

* Now spawn the workers. Note that there is a run-time determination

* of what type of worker to spawn, and presumably this calculation must

* be done at run time and cannot be calculated before starting

* the program. If everything is known when the application is

* first started, it is generally better to start them all at once

* in a single MPI_COMM_WORLD.

*/

choose_worker_program(worker_program);

MPI_Comm_spawn(worker_program, MPI_ARGV_NULL, universe_size-1,

MPI_INFO_NULL, 0, MPI_COMM_SELF, &everyone,

MPI_ERRCODES_IGNORE);

/*

* Parallel code here. The communicator "everyone" can be used

* to communicate with the spawned processes, which have ranks 0,..

* MPI_UNIVERSE_SIZE-1 in the remote group of the intercommunicator

* "everyone".

*/

MPI_Finalize();

return 0;

}

/* worker */

#include "mpi.h"

int main(int argc, char *argv[])

{

int size;

MPI_Comm parent;

MPI_Init(&argc, &argv);

MPI_Comm_get_parent(&parent);

if (parent == MPI_COMM_NULL) error("No parent!");

MPI_Comm_remote_size(parent, &size);

if (size != 1) error("Something’s wrong with the parent");
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/*

* Parallel code here.

* The manager is represented as the process with rank 0 in (the remote

* group of) the parent communicator. If the workers need to communicate

* among themselves, they can use MPI_COMM_WORLD.

*/

MPI_Finalize();

return 0;

}

10.4 Establishing Communication

This section provides functions that establish communication between two sets of MPI
processes that do not share a communicator.

Some situations in which these functions are useful are:

1. Two parts of an application that are started independently need to communicate.

2. A visualization tool wants to attach to a running process.

3. A server wants to accept connections from multiple clients. Both clients and server
may be parallel programs.

In each of these situations, MPI must establish communication channels where none existed
before, and there is no parent/child relationship. The routines described in this section
establish communication between the two sets of processes by creating an MPI intercom-
municator, where the two groups of the intercommunicator are the original sets of processes.

Establishing contact between two groups of processes that do not share an existing
communicator is a collective but asymmetric process. One group of processes indicates its
willingness to accept connections from other groups of processes. We will call this group
the (parallel) server, even if this is not a client/server type of application. The other group
connects to the server; we will call it the client.

Advice to users. While the names client and server are used throughout this section,
MPI does not guarantee the traditional robustness of client server systems. The func-
tionality described in this section is intended to allow two cooperating parts of the
same application to communicate with one another. For instance, a client that gets a
segmentation fault and dies, or one that doesn’t participate in a collective operation
may cause a server to crash or hang. (End of advice to users.)

10.4.1 Names, Addresses, Ports, and All That

Almost all of the complexity in MPI client/server routines addresses the question “how
does the client find out how to contact the server?” The difficulty, of course, is that there
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/*

* Parallel code here.

* The manager is represented as the process with rank 0 in (the remote

* group of) the parent communicator. If the workers need to communicate

* among themselves, they can use MPI_COMM_WORLD.

*/

MPI_Finalize();

return 0;

}

10.4 Establishing Communication

This section provides functions that establish communication between two sets of MPI
processes that do not share a communicator.

Some situations in which these functions are useful are:

1. Two parts of an application that are started independently need to communicate.

2. A visualization tool wants to attach to a running process.

3. A server wants to accept connections from multiple clients. Both clients and server
may be parallel programs.

In each of these situations, MPI must establish communication channels where none existed
before, and there is no parent/child relationship. The routines described in this section
establish communication between the two sets of processes by creating an MPI intercom-
municator, where the two groups of the intercommunicator are the original sets of processes.

Establishing contact between two groups of processes that do not share an existing
communicator is a collective but asymmetric process. One group of processes indicates its
willingness to accept connections from other groups of processes. We will call this group
the (parallel) server, even if this is not a client/server type of application. The other group
connects to the server; we will call it the client.

Advice to users. While the names client and server are used throughout this section,
MPI does not guarantee the traditional robustness of client server systems. The func-
tionality described in this section is intended to allow two cooperating parts of the
same application to communicate with one another. For instance, a client that gets a
segmentation fault and dies, or one that doesn’t participate in a collective operation
may cause a server to crash or hang. (End of advice to users.)

10.4.1 Names, Addresses, Ports, and All That

Almost all of the complexity in MPI client/server routines addresses the question “how
does the client find out how to contact the server?” The difficulty, of course, is that there
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is no existing communication channel between them, yet they must somehow agree on a
rendezvous point where they will establish communication — Catch-22.

Agreeing on a rendezvous point always involves a third party. The third party may
itself provide the rendezvous point or may communicate rendezvous information from server
to client. Complicating matters might be the fact that a client doesn’t really care what
server it contacts, only that it be able to get in touch with one that can handle its request.

Ideally, MPI can accommodate a wide variety of run-time systems while retaining the
ability to write simple portable code. The following should be compatible with MPI:

• The server resides at a well-known internet address host:port.

• The server prints out an address to the terminal, the user gives this address to the
client program.

• The server places the address information on a nameserver, where it can be retrieved
with an agreed-upon name.

• The server to which the client connects is actually a broker, acting as a middleman
between the client and the real server.

MPI does not require a nameserver, so not all implementations will be able to support
all of the above scenarios. However, MPI provides an optional nameserver interface, and is
compatible with external name servers.

A port_name is a system-supplied string that encodes a low-level network address at
which a server can be contacted. Typically this is an IP address and a port number, but
an implementation is free to use any protocol. The server establishes a port_name with
the MPI_OPEN_PORT routine. It accepts a connection to a given port with
MPI_COMM_ACCEPT. A client uses port_name to connect to the server.

By itself, the port_name mechanism is completely portable, but it may be clumsy
to use because of the necessity to communicate port_name to the client. It would be more
convenient if a server could specify that it be known by an application-supplied service_name
so that the client could connect to that service_name without knowing the port_name.

An MPI implementation may allow the server to publish a (port_name, service_name)
pair with MPI_PUBLISH_NAME and the client to retrieve the port name from the service
name with MPI_LOOKUP_NAME. This allows three levels of portability, with increasing
levels of functionality.

1. Applications that do not rely on the ability to publish names are the most portable.
Typically the port_name must be transferred “by hand” from server to client.

2. Applications that use the MPI_PUBLISH_NAME mechanism are completely portable
among implementations that provide this service. To be portable among all imple-
mentations, these applications should have a fall-back mechanism that can be used
when names are not published.

3. Applications may ignore MPI’s name publishing functionality and use their own mech-
anism (possibly system-supplied) to publish names. This allows arbitrary flexibility
but is not portable.
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is no existing communication channel between them, yet they must somehow agree on a
rendezvous point where they will establish communication — Catch-22.

Agreeing on a rendezvous point always involves a third party. The third party may
itself provide the rendezvous point or may communicate rendezvous information from server
to client. Complicating matters might be the fact that a client doesn’t really care what
server it contacts, only that it be able to get in touch with one that can handle its request.

Ideally, MPI can accommodate a wide variety of run-time systems while retaining the
ability to write simple portable code. The following should be compatible with MPI:

• The server resides at a well-known internet address host:port.

• The server prints out an address to the terminal, the user gives this address to the
client program.

• The server places the address information on a nameserver, where it can be retrieved
with an agreed-upon name.

• The server to which the client connects is actually a broker, acting as a middleman
between the client and the real server.

MPI does not require a nameserver, so not all implementations will be able to support
all of the above scenarios. However, MPI provides an optional nameserver interface, and is
compatible with external name servers.

A port_name is a system-supplied string that encodes a low-level network address at
which a server can be contacted. Typically this is an IP address and a port number, but
an implementation is free to use any protocol. The server establishes a port_name with
the MPI_OPEN_PORT routine. It accepts a connection to a given port with
MPI_COMM_ACCEPT. A client uses port_name to connect to the server.

By itself, the port_name mechanism is completely portable, but it may be clumsy
to use because of the necessity to communicate port_name to the client. It would be more
convenient if a server could specify that it be known by an application-supplied service_name
so that the client could connect to that service_name without knowing the port_name.

An MPI implementation may allow the server to publish a (port_name, service_name)
pair with MPI_PUBLISH_NAME and the client to retrieve the port name from the service
name with MPI_LOOKUP_NAME. This allows three levels of portability, with increasing
levels of functionality.

1. Applications that do not rely on the ability to publish names are the most portable.
Typically the port_name must be transferred “by hand” from server to client.

2. Applications that use the MPI_PUBLISH_NAME mechanism are completely portable
among implementations that provide this service. To be portable among all imple-
mentations, these applications should have a fall-back mechanism that can be used
when names are not published.

3. Applications may ignore MPI’s name publishing functionality and use their own mech-
anism (possibly system-supplied) to publish names. This allows arbitrary flexibility
but is not portable.
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10.4.2 Server Routines

A server makes itself available with two routines. First it must call MPI_OPEN_PORT to
establish a port at which it may be contacted. Secondly it must call MPI_COMM_ACCEPT
to accept connections from clients.

MPI_OPEN_PORT(info, port_name)

IN info implementation-specific information on how to estab-

lish an address (handle)

OUT port_name newly established port (string)

int MPI_Open_port(MPI_Info info, char *port_name)

MPI_OPEN_PORT(INFO, PORT_NAME, IERROR)

CHARACTER*(*) PORT_NAME

INTEGER INFO, IERROR

void MPI::Open_port(const MPI::Info& info, char* port_name)

This function establishes a network address, encoded in the port_name string, at which
the server will be able to accept connections from clients. port_name is supplied by the
system, possibly using information in the info argument.

MPI copies a system-supplied port name into port_name. port_name identifies the newly
opened port and can be used by a client to contact the server. The maximum size string
that may be supplied by the system is MPI_MAX_PORT_NAME.

Advice to users. The system copies the port name into port_name. The application
must pass a buffer of sufficient size to hold this value. (End of advice to users.)

port_name is essentially a network address. It is unique within the communication
universe to which it belongs (determined by the implementation), and may be used by any
client within that communication universe. For instance, if it is an internet (host:port)
address, it will be unique on the internet. If it is a low level switch address on an IBM SP,
it will be unique to that SP.

Advice to implementors. These examples are not meant to constrain implementa-
tions. A port_name could, for instance, contain a user name or the name of a batch
job, as long as it is unique within some well-defined communication domain. The
larger the communication domain, the more useful MPI’s client/server functionality
will be. (End of advice to implementors.)

The precise form of the address is implementation-defined. For instance, an internet address
may be a host name or IP address, or anything that the implementation can decode into
an IP address. A port name may be reused after it is freed with MPI_CLOSE_PORT and
released by the system.

Advice to implementors. Since the user may type in port_name by hand, it is useful
to choose a form that is easily readable and does not have embedded spaces. (End of
advice to implementors.)
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10.4.2 Server Routines

A server makes itself available with two routines. First it must call MPI_OPEN_PORT to
establish a port at which it may be contacted. Secondly it must call MPI_COMM_ACCEPT
to accept connections from clients.

MPI_OPEN_PORT(info, port_name)

IN info implementation-specific information on how to estab-

lish an address (handle)

OUT port_name newly established port (string)

int MPI_Open_port(MPI_Info info, char *port_name)

MPI_OPEN_PORT(INFO, PORT_NAME, IERROR)

CHARACTER*(*) PORT_NAME

INTEGER INFO, IERROR

void MPI::Open_port(const MPI::Info& info, char* port_name)

This function establishes a network address, encoded in the port_name string, at which
the server will be able to accept connections from clients. port_name is supplied by the
system, possibly using information in the info argument.

MPI copies a system-supplied port name into port_name. port_name identifies the newly
opened port and can be used by a client to contact the server. The maximum size string
that may be supplied by the system is MPI_MAX_PORT_NAME.

Advice to users. The system copies the port name into port_name. The application
must pass a buffer of sufficient size to hold this value. (End of advice to users.)

port_name is essentially a network address. It is unique within the communication
universe to which it belongs (determined by the implementation), and may be used by any
client within that communication universe. For instance, if it is an internet (host:port)
address, it will be unique on the internet. If it is a low level switch address on an IBM SP,
it will be unique to that SP.

Advice to implementors. These examples are not meant to constrain implementa-
tions. A port_name could, for instance, contain a user name or the name of a batch
job, as long as it is unique within some well-defined communication domain. The
larger the communication domain, the more useful MPI’s client/server functionality
will be. (End of advice to implementors.)

The precise form of the address is implementation-defined. For instance, an internet address
may be a host name or IP address, or anything that the implementation can decode into
an IP address. A port name may be reused after it is freed with MPI_CLOSE_PORT and
released by the system.

Advice to implementors. Since the user may type in port_name by hand, it is useful
to choose a form that is easily readable and does not have embedded spaces. (End of
advice to implementors.)
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info may be used to tell the implementation how to establish the address. It may, and
usually will, be MPI_INFO_NULL in order to get the implementation defaults.

MPI_CLOSE_PORT(port_name)

IN port_name a port (string)

int MPI_Close_port(char *port_name)

MPI_CLOSE_PORT(PORT_NAME, IERROR)

CHARACTER*(*) PORT_NAME

INTEGER IERROR

void MPI::Close_port(const char* port_name)

This function releases the network address represented by port_name.

MPI_COMM_ACCEPT(port_name, info, root, comm, newcomm)

IN port_name port name (string, used only on root)

IN info implementation-dependent information (handle, used

only on root)

IN root rank in comm of root node (integer)

IN comm intracommunicator over which call is collective (han-

dle)

OUT newcomm intercommunicator with client as remote group (han-

dle)

int MPI_Comm_accept(char *port_name, MPI_Info info, int root,

MPI_Comm comm, MPI_Comm *newcomm)

MPI_COMM_ACCEPT(PORT_NAME, INFO, ROOT, COMM, NEWCOMM, IERROR)

CHARACTER*(*) PORT_NAME

INTEGER INFO, ROOT, COMM, NEWCOMM, IERROR

MPI::Intercomm MPI::Intracomm::Accept(const char* port_name,

const MPI::Info& info, int root) const

MPI_COMM_ACCEPT establishes communication with a client. It is collective over the
calling communicator. It returns an intercommunicator that allows communication with the
client.

The port_name must have been established through a call to MPI_OPEN_PORT.
info is a implementation-defined string that may allow fine control over the ACCEPT

call.

10.4.3 Client Routines

There is only one routine on the client side.
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info may be used to tell the implementation how to establish the address. It may, and
usually will, be MPI_INFO_NULL in order to get the implementation defaults.

MPI_CLOSE_PORT(port_name)

IN port_name a port (string)

int MPI_Close_port(char *port_name)

MPI_CLOSE_PORT(PORT_NAME, IERROR)

CHARACTER*(*) PORT_NAME

INTEGER IERROR

void MPI::Close_port(const char* port_name)

This function releases the network address represented by port_name.

MPI_COMM_ACCEPT(port_name, info, root, comm, newcomm)

IN port_name port name (string, used only on root)

IN info implementation-dependent information (handle, used

only on root)

IN root rank in comm of root node (integer)

IN comm intracommunicator over which call is collective (han-

dle)

OUT newcomm intercommunicator with client as remote group (han-

dle)

int MPI_Comm_accept(char *port_name, MPI_Info info, int root,

MPI_Comm comm, MPI_Comm *newcomm)

MPI_COMM_ACCEPT(PORT_NAME, INFO, ROOT, COMM, NEWCOMM, IERROR)

CHARACTER*(*) PORT_NAME

INTEGER INFO, ROOT, COMM, NEWCOMM, IERROR

MPI::Intercomm MPI::Intracomm::Accept(const char* port_name,

const MPI::Info& info, int root) const

MPI_COMM_ACCEPT establishes communication with a client. It is collective over the
calling communicator. It returns an intercommunicator that allows communication with the
client.

The port_name must have been established through a call to MPI_OPEN_PORT.
info is a implementation-defined string that may allow fine control over the ACCEPT

call.

10.4.3 Client Routines

There is only one routine on the client side.
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MPI_COMM_CONNECT(port_name, info, root, comm, newcomm)

IN port_name network address (string, used only on root)

IN info implementation-dependent information (handle, used

only on root)

IN root rank in comm of root node (integer)

IN comm intracommunicator over which call is collective (han-

dle)

OUT newcomm intercommunicator with server as remote group (han-

dle)

int MPI_Comm_connect(char *port_name, MPI_Info info, int root,

MPI_Comm comm, MPI_Comm *newcomm)

MPI_COMM_CONNECT(PORT_NAME, INFO, ROOT, COMM, NEWCOMM, IERROR)

CHARACTER*(*) PORT_NAME

INTEGER INFO, ROOT, COMM, NEWCOMM, IERROR

MPI::Intercomm MPI::Intracomm::Connect(const char* port_name,

const MPI::Info& info, int root) const

This routine establishes communication with a server specified by port_name. It is
collective over the calling communicator and returns an intercommunicator in which the
remote group participated in an MPI_COMM_ACCEPT.

If the named port does not exist (or has been closed), MPI_COMM_CONNECT raises
an error of class MPI_ERR_PORT.

If the port exists, but does not have a pending MPI_COMM_ACCEPT, the connection
attempt will eventually time out after an implementation-defined time, or succeed when
the server calls MPI_COMM_ACCEPT. In the case of a time out, MPI_COMM_CONNECT
raises an error of class MPI_ERR_PORT.

Advice to implementors. The time out period may be arbitrarily short or long.
However, a high quality implementation will try to queue connection attempts so
that a server can handle simultaneous requests from several clients. A high quality
implementation may also provide a mechanism, through the info arguments to
MPI_OPEN_PORT, MPI_COMM_ACCEPT and/or MPI_COMM_CONNECT, for the
user to control timeout and queuing behavior. (End of advice to implementors.)

MPI provides no guarantee of fairness in servicing connection attempts. That is, connec-
tion attempts are not necessarily satisfied in the order they were initiated and competition
from other connection attempts may prevent a particular connection attempt from being
satisfied.

port_name is the address of the server. It must be the same as the name returned
by MPI_OPEN_PORT on the server. Some freedom is allowed here. If there are equivalent
forms of port_name, an implementation may accept them as well. For instance, if port_name
is (hostname:port), an implementation may accept (ip_address:port) as well.
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MPI_COMM_CONNECT(port_name, info, root, comm, newcomm)

IN port_name network address (string, used only on root)

IN info implementation-dependent information (handle, used

only on root)

IN root rank in comm of root node (integer)

IN comm intracommunicator over which call is collective (han-

dle)

OUT newcomm intercommunicator with server as remote group (han-

dle)

int MPI_Comm_connect(char *port_name, MPI_Info info, int root,

MPI_Comm comm, MPI_Comm *newcomm)

MPI_COMM_CONNECT(PORT_NAME, INFO, ROOT, COMM, NEWCOMM, IERROR)

CHARACTER*(*) PORT_NAME

INTEGER INFO, ROOT, COMM, NEWCOMM, IERROR

MPI::Intercomm MPI::Intracomm::Connect(const char* port_name,

const MPI::Info& info, int root) const

This routine establishes communication with a server specified by port_name. It is
collective over the calling communicator and returns an intercommunicator in which the
remote group participated in an MPI_COMM_ACCEPT.

If the named port does not exist (or has been closed), MPI_COMM_CONNECT raises
an error of class MPI_ERR_PORT.

If the port exists, but does not have a pending MPI_COMM_ACCEPT, the connection
attempt will eventually time out after an implementation-defined time, or succeed when
the server calls MPI_COMM_ACCEPT. In the case of a time out, MPI_COMM_CONNECT
raises an error of class MPI_ERR_PORT.

Advice to implementors. The time out period may be arbitrarily short or long.
However, a high quality implementation will try to queue connection attempts so
that a server can handle simultaneous requests from several clients. A high quality
implementation may also provide a mechanism, through the info arguments to
MPI_OPEN_PORT, MPI_COMM_ACCEPT and/or MPI_COMM_CONNECT, for the
user to control timeout and queuing behavior. (End of advice to implementors.)

MPI provides no guarantee of fairness in servicing connection attempts. That is, connec-
tion attempts are not necessarily satisfied in the order they were initiated and competition
from other connection attempts may prevent a particular connection attempt from being
satisfied.

port_name is the address of the server. It must be the same as the name returned
by MPI_OPEN_PORT on the server. Some freedom is allowed here. If there are equivalent
forms of port_name, an implementation may accept them as well. For instance, if port_name
is (hostname:port), an implementation may accept (ip_address:port) as well.
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10.4.4 Name Publishing

The routines in this section provide a mechanism for publishing names. A (service_name,
port_name) pair is published by the server, and may be retrieved by a client using the
service_name only. An MPI implementation defines the scope of the service_name, that is,
the domain over which the service_name can be retrieved. If the domain is the empty
set, that is, if no client can retrieve the information, then we say that name publishing
is not supported. Implementations should document how the scope is determined. High-
quality implementations will give some control to users through the info arguments to name
publishing functions. Examples are given in the descriptions of individual functions.

MPI_PUBLISH_NAME(service_name, info, port_name)

IN service_name a service name to associate with the port (string)

IN info implementation-specific information (handle)

IN port_name a port name (string)

int MPI_Publish_name(char *service_name, MPI_Info info, char *port_name)

MPI_PUBLISH_NAME(SERVICE_NAME, INFO, PORT_NAME, IERROR)

INTEGER INFO, IERROR

CHARACTER*(*) SERVICE_NAME, PORT_NAME

void MPI::Publish_name(const char* service_name, const MPI::Info& info,

const char* port_name)

This routine publishes the pair (port_name, service_name) so that an application may
retrieve a system-supplied port_name using a well-known service_name.

The implementation must define the scope of a published service name, that is, the
domain over which the service name is unique, and conversely, the domain over which the
(port name, service name) pair may be retrieved. For instance, a service name may be
unique to a job (where job is defined by a distributed operating system or batch scheduler),
unique to a machine, or unique to a Kerberos realm. The scope may depend on the info
argument to MPI_PUBLISH_NAME.

MPI permits publishing more than one service_name for a single port_name. On the
other hand, if service_name has already been published within the scope determined by info,
the behavior of MPI_PUBLISH_NAME is undefined. An MPI implementation may, through
a mechanism in the info argument to MPI_PUBLISH_NAME, provide a way to allow multiple
servers with the same service in the same scope. In this case, an implementation-defined
policy will determine which of several port names is returned by MPI_LOOKUP_NAME.

Note that while service_name has a limited scope, determined by the implementation,
port_name always has global scope within the communication universe used by the imple-
mentation (i.e., it is globally unique).

port_name should be the name of a port established by MPI_OPEN_PORT and not yet
deleted by MPI_CLOSE_PORT. If it is not, the result is undefined.

Advice to implementors. In some cases, an MPI implementation may use a name
service that a user can also access directly. In this case, a name published by MPI
could easily conflict with a name published by a user. In order to avoid such conflicts,
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10.4.4 Name Publishing

The routines in this section provide a mechanism for publishing names. A (service_name,
port_name) pair is published by the server, and may be retrieved by a client using the
service_name only. An MPI implementation defines the scope of the service_name, that is,
the domain over which the service_name can be retrieved. If the domain is the empty
set, that is, if no client can retrieve the information, then we say that name publishing
is not supported. Implementations should document how the scope is determined. High-
quality implementations will give some control to users through the info arguments to name
publishing functions. Examples are given in the descriptions of individual functions.

MPI_PUBLISH_NAME(service_name, info, port_name)

IN service_name a service name to associate with the port (string)

IN info implementation-specific information (handle)

IN port_name a port name (string)

int MPI_Publish_name(char *service_name, MPI_Info info, char *port_name)

MPI_PUBLISH_NAME(SERVICE_NAME, INFO, PORT_NAME, IERROR)

INTEGER INFO, IERROR

CHARACTER*(*) SERVICE_NAME, PORT_NAME

void MPI::Publish_name(const char* service_name, const MPI::Info& info,

const char* port_name)

This routine publishes the pair (port_name, service_name) so that an application may
retrieve a system-supplied port_name using a well-known service_name.

The implementation must define the scope of a published service name, that is, the
domain over which the service name is unique, and conversely, the domain over which the
(port name, service name) pair may be retrieved. For instance, a service name may be
unique to a job (where job is defined by a distributed operating system or batch scheduler),
unique to a machine, or unique to a Kerberos realm. The scope may depend on the info
argument to MPI_PUBLISH_NAME.

MPI permits publishing more than one service_name for a single port_name. On the
other hand, if service_name has already been published within the scope determined by info,
the behavior of MPI_PUBLISH_NAME is undefined. An MPI implementation may, through
a mechanism in the info argument to MPI_PUBLISH_NAME, provide a way to allow multiple
servers with the same service in the same scope. In this case, an implementation-defined
policy will determine which of several port names is returned by MPI_LOOKUP_NAME.

Note that while service_name has a limited scope, determined by the implementation,
port_name always has global scope within the communication universe used by the imple-
mentation (i.e., it is globally unique).

port_name should be the name of a port established by MPI_OPEN_PORT and not yet
deleted by MPI_CLOSE_PORT. If it is not, the result is undefined.

Advice to implementors. In some cases, an MPI implementation may use a name
service that a user can also access directly. In this case, a name published by MPI
could easily conflict with a name published by a user. In order to avoid such conflicts,
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MPI implementations should mangle service names so that they are unlikely to conflict
with user code that makes use of the same service. Such name mangling will of course
be completely transparent to the user.

The following situation is problematic but unavoidable, if we want to allow implemen-
tations to use nameservers. Suppose there are multiple instances of “ocean” running
on a machine. If the scope of a service name is confined to a job, then multiple
oceans can coexist. If an implementation provides site-wide scope, however, multiple
instances are not possible as all calls to MPI_PUBLISH_NAME after the first may fail.
There is no universal solution to this.

To handle these situations, a high-quality implementation should make it possible to
limit the domain over which names are published. (End of advice to implementors.)

MPI_UNPUBLISH_NAME(service_name, info, port_name)

IN service_name a service name (string)

IN info implementation-specific information (handle)

IN port_name a port name (string)

int MPI_Unpublish_name(char *service_name, MPI_Info info, char *port_name)

MPI_UNPUBLISH_NAME(SERVICE_NAME, INFO, PORT_NAME, IERROR)

INTEGER INFO, IERROR

CHARACTER*(*) SERVICE_NAME, PORT_NAME

void MPI::Unpublish_name(const char* service_name, const MPI::Info& info,

const char* port_name)

This routine unpublishes a service name that has been previously published. Attempt-
ing to unpublish a name that has not been published or has already been unpublished is
erroneous and is indicated by the error class MPI_ERR_SERVICE.

All published names must be unpublished before the corresponding port is closed and
before the publishing process exits. The behavior of MPI_UNPUBLISH_NAME is implemen-
tation dependent when a process tries to unpublish a name that it did not publish.

If the info argument was used with MPI_PUBLISH_NAME to tell the implementation
how to publish names, the implementation may require that info passed to
MPI_UNPUBLISH_NAME contain information to tell the implementation how to unpublish
a name.

MPI_LOOKUP_NAME(service_name, info, port_name)

IN service_name a service name (string)

IN info implementation-specific information (handle)

OUT port_name a port name (string)

int MPI_Lookup_name(char *service_name, MPI_Info info, char *port_name)

MPI_LOOKUP_NAME(SERVICE_NAME, INFO, PORT_NAME, IERROR)
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MPI implementations should mangle service names so that they are unlikely to conflict
with user code that makes use of the same service. Such name mangling will of course
be completely transparent to the user.

The following situation is problematic but unavoidable, if we want to allow implemen-
tations to use nameservers. Suppose there are multiple instances of “ocean” running
on a machine. If the scope of a service name is confined to a job, then multiple
oceans can coexist. If an implementation provides site-wide scope, however, multiple
instances are not possible as all calls to MPI_PUBLISH_NAME after the first may fail.
There is no universal solution to this.

To handle these situations, a high-quality implementation should make it possible to
limit the domain over which names are published. (End of advice to implementors.)

MPI_UNPUBLISH_NAME(service_name, info, port_name)

IN service_name a service name (string)

IN info implementation-specific information (handle)

IN port_name a port name (string)

int MPI_Unpublish_name(char *service_name, MPI_Info info, char *port_name)

MPI_UNPUBLISH_NAME(SERVICE_NAME, INFO, PORT_NAME, IERROR)

INTEGER INFO, IERROR

CHARACTER*(*) SERVICE_NAME, PORT_NAME

void MPI::Unpublish_name(const char* service_name, const MPI::Info& info,

const char* port_name)

This routine unpublishes a service name that has been previously published. Attempt-
ing to unpublish a name that has not been published or has already been unpublished is
erroneous and is indicated by the error class MPI_ERR_SERVICE.

All published names must be unpublished before the corresponding port is closed and
before the publishing process exits. The behavior of MPI_UNPUBLISH_NAME is implemen-
tation dependent when a process tries to unpublish a name that it did not publish.

If the info argument was used with MPI_PUBLISH_NAME to tell the implementation
how to publish names, the implementation may require that info passed to
MPI_UNPUBLISH_NAME contain information to tell the implementation how to unpublish
a name.

MPI_LOOKUP_NAME(service_name, info, port_name)

IN service_name a service name (string)

IN info implementation-specific information (handle)

OUT port_name a port name (string)

int MPI_Lookup_name(char *service_name, MPI_Info info, char *port_name)

MPI_LOOKUP_NAME(SERVICE_NAME, INFO, PORT_NAME, IERROR)
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CHARACTER*(*) SERVICE_NAME, PORT_NAME

INTEGER INFO, IERROR

void MPI::Lookup_name(const char* service_name, const MPI::Info& info,

char* port_name)

This function retrieves a port_name published by MPI_PUBLISH_NAME with
service_name. If service_name has not been published, it raises an error in the error class
MPI_ERR_NAME. The application must supply a port_name buffer large enough to hold the
largest possible port name (see discussion above under MPI_OPEN_PORT).

If an implementation allows multiple entries with the same service_name within the
same scope, a particular port_name is chosen in a way determined by the implementation.

If the info argument was used with MPI_PUBLISH_NAME to tell the implementation
how to publish names, a similar info argument may be required for MPI_LOOKUP_NAME.

10.4.5 Reserved Key Values

The following key values are reserved. An implementation is not required to interpret these
key values, but if it does interpret the key value, it must provide the functionality described.

ip_port Value contains IP port number at which to establish a port. (Reserved for
MPI_OPEN_PORT only).

ip_address Value contains IP address at which to establish a port. If the address is not a
valid IP address of the host on which the MPI_OPEN_PORT call is made, the results
are undefined. (Reserved for MPI_OPEN_PORT only).

10.4.6 Client/Server Examples

Simplest Example — Completely Portable.

The following example shows the simplest way to use the client/server interface. It does
not use service names at all.

On the server side:

char myport[MPI_MAX_PORT_NAME];

MPI_Comm intercomm;

/* ... */

MPI_Open_port(MPI_INFO_NULL, myport);

printf("port name is: %s\n", myport);

MPI_Comm_accept(myport, MPI_INFO_NULL, 0, MPI_COMM_SELF, &intercomm);

/* do something with intercomm */

The server prints out the port name to the terminal and the user must type it in when
starting up the client (assuming the MPI implementation supports stdin such that this
works). On the client side:

MPI_Comm intercomm;

char name[MPI_MAX_PORT_NAME];
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CHARACTER*(*) SERVICE_NAME, PORT_NAME

INTEGER INFO, IERROR

void MPI::Lookup_name(const char* service_name, const MPI::Info& info,

char* port_name)

This function retrieves a port_name published by MPI_PUBLISH_NAME with
service_name. If service_name has not been published, it raises an error in the error class
MPI_ERR_NAME. The application must supply a port_name buffer large enough to hold the
largest possible port name (see discussion above under MPI_OPEN_PORT).

If an implementation allows multiple entries with the same service_name within the
same scope, a particular port_name is chosen in a way determined by the implementation.

If the info argument was used with MPI_PUBLISH_NAME to tell the implementation
how to publish names, a similar info argument may be required for MPI_LOOKUP_NAME.

10.4.5 Reserved Key Values

The following key values are reserved. An implementation is not required to interpret these
key values, but if it does interpret the key value, it must provide the functionality described.

ip_port Value contains IP port number at which to establish a port. (Reserved for
MPI_OPEN_PORT only).

ip_address Value contains IP address at which to establish a port. If the address is not a
valid IP address of the host on which the MPI_OPEN_PORT call is made, the results
are undefined. (Reserved for MPI_OPEN_PORT only).

10.4.6 Client/Server Examples

Simplest Example — Completely Portable.

The following example shows the simplest way to use the client/server interface. It does
not use service names at all.

On the server side:

char myport[MPI_MAX_PORT_NAME];

MPI_Comm intercomm;

/* ... */

MPI_Open_port(MPI_INFO_NULL, myport);

printf("port name is: %s\n", myport);

MPI_Comm_accept(myport, MPI_INFO_NULL, 0, MPI_COMM_SELF, &intercomm);

/* do something with intercomm */

The server prints out the port name to the terminal and the user must type it in when
starting up the client (assuming the MPI implementation supports stdin such that this
works). On the client side:

MPI_Comm intercomm;

char name[MPI_MAX_PORT_NAME];
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printf("enter port name: ");

gets(name);

MPI_Comm_connect(name, MPI_INFO_NULL, 0, MPI_COMM_SELF, &intercomm);

Ocean/Atmosphere - Relies on Name Publishing

In this example, the “ocean” application is the “server” side of a coupled ocean-atmosphere
climate model. It assumes that the MPI implementation publishes names.

MPI_Open_port(MPI_INFO_NULL, port_name);

MPI_Publish_name("ocean", MPI_INFO_NULL, port_name);

MPI_Comm_accept(port_name, MPI_INFO_NULL, 0, MPI_COMM_SELF, &intercomm);

/* do something with intercomm */

MPI_Unpublish_name("ocean", MPI_INFO_NULL, port_name);

On the client side:

MPI_Lookup_name("ocean", MPI_INFO_NULL, port_name);

MPI_Comm_connect( port_name, MPI_INFO_NULL, 0, MPI_COMM_SELF,

&intercomm);

Simple Client-Server Example.

This is a simple example; the server accepts only a single connection at a time and serves
that connection until the client requests to be disconnected. The server is a single process.

Here is the server. It accepts a single connection and then processes data until it
receives a message with tag 1. A message with tag 0 tells the server to exit.

#include "mpi.h"

int main( int argc, char **argv )

{

MPI_Comm client;

MPI_Status status;

char port_name[MPI_MAX_PORT_NAME];

double buf[MAX_DATA];

int size, again;

MPI_Init( &argc, &argv );

MPI_Comm_size(MPI_COMM_WORLD, &size);

if (size != 1) error(FATAL, "Server too big");

MPI_Open_port(MPI_INFO_NULL, port_name);

printf("server available at %s\n",port_name);

while (1) {

MPI_Comm_accept( port_name, MPI_INFO_NULL, 0, MPI_COMM_WORLD,

&client );

again = 1;

while (again) {

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

314 CHAPTER 10. PROCESS CREATION AND MANAGEMENT

printf("enter port name: ");

gets(name);

MPI_Comm_connect(name, MPI_INFO_NULL, 0, MPI_COMM_SELF, &intercomm);

Ocean/Atmosphere - Relies on Name Publishing

In this example, the “ocean” application is the “server” side of a coupled ocean-atmosphere
climate model. It assumes that the MPI implementation publishes names.

MPI_Open_port(MPI_INFO_NULL, port_name);

MPI_Publish_name("ocean", MPI_INFO_NULL, port_name);

MPI_Comm_accept(port_name, MPI_INFO_NULL, 0, MPI_COMM_SELF, &intercomm);

/* do something with intercomm */

MPI_Unpublish_name("ocean", MPI_INFO_NULL, port_name);

On the client side:

MPI_Lookup_name("ocean", MPI_INFO_NULL, port_name);

MPI_Comm_connect( port_name, MPI_INFO_NULL, 0, MPI_COMM_SELF,

&intercomm);

Simple Client-Server Example.

This is a simple example; the server accepts only a single connection at a time and serves
that connection until the client requests to be disconnected. The server is a single process.

Here is the server. It accepts a single connection and then processes data until it
receives a message with tag 1. A message with tag 0 tells the server to exit.

#include "mpi.h"

int main( int argc, char **argv )

{

MPI_Comm client;

MPI_Status status;

char port_name[MPI_MAX_PORT_NAME];

double buf[MAX_DATA];

int size, again;

MPI_Init( &argc, &argv );

MPI_Comm_size(MPI_COMM_WORLD, &size);

if (size != 1) error(FATAL, "Server too big");

MPI_Open_port(MPI_INFO_NULL, port_name);

printf("server available at %s\n",port_name);

while (1) {

MPI_Comm_accept( port_name, MPI_INFO_NULL, 0, MPI_COMM_WORLD,

&client );

again = 1;

while (again) {
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MPI_Recv( buf, MAX_DATA, MPI_DOUBLE,

MPI_ANY_SOURCE, MPI_ANY_TAG, client, &status );

switch (status.MPI_TAG) {

case 0: MPI_Comm_free( &client );

MPI_Close_port(port_name);

MPI_Finalize();

return 0;

case 1: MPI_Comm_disconnect( &client );

again = 0;

break;

case 2: /* do something */

...

default:

/* Unexpected message type */

MPI_Abort( MPI_COMM_WORLD, 1 );

}

}

}

}

Here is the client.

#include "mpi.h"

int main( int argc, char **argv )

{

MPI_Comm server;

double buf[MAX_DATA];

char port_name[MPI_MAX_PORT_NAME];

MPI_Init( &argc, &argv );

strcpy(port_name, argv[1] );/* assume server’s name is cmd-line arg */

MPI_Comm_connect( port_name, MPI_INFO_NULL, 0, MPI_COMM_WORLD,

&server );

while (!done) {

tag = 2; /* Action to perform */

MPI_Send( buf, n, MPI_DOUBLE, 0, tag, server );

/* etc */

}

MPI_Send( buf, 0, MPI_DOUBLE, 0, 1, server );

MPI_Comm_disconnect( &server );

MPI_Finalize();

return 0;

}
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MPI_Recv( buf, MAX_DATA, MPI_DOUBLE,

MPI_ANY_SOURCE, MPI_ANY_TAG, client, &status );

switch (status.MPI_TAG) {

case 0: MPI_Comm_free( &client );

MPI_Close_port(port_name);

MPI_Finalize();

return 0;

case 1: MPI_Comm_disconnect( &client );

again = 0;

break;

case 2: /* do something */

...

default:

/* Unexpected message type */

MPI_Abort( MPI_COMM_WORLD, 1 );

}

}

}

}

Here is the client.

#include "mpi.h"

int main( int argc, char **argv )

{

MPI_Comm server;

double buf[MAX_DATA];

char port_name[MPI_MAX_PORT_NAME];

MPI_Init( &argc, &argv );

strcpy(port_name, argv[1] );/* assume server’s name is cmd-line arg */

MPI_Comm_connect( port_name, MPI_INFO_NULL, 0, MPI_COMM_WORLD,

&server );

while (!done) {

tag = 2; /* Action to perform */

MPI_Send( buf, n, MPI_DOUBLE, 0, tag, server );

/* etc */

}

MPI_Send( buf, 0, MPI_DOUBLE, 0, 1, server );

MPI_Comm_disconnect( &server );

MPI_Finalize();

return 0;

}
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10.5 Other Functionality

10.5.1 Universe Size

Many “dynamic” MPI applications are expected to exist in a static runtime environment,
in which resources have been allocated before the application is run. When a user (or
possibly a batch system) runs one of these quasi-static applications, she will usually specify
a number of processes to start and a total number of processes that are expected. An
application simply needs to know how many slots there are, i.e., how many processes it
should spawn.

MPI provides an attribute on MPI_COMM_WORLD, MPI_UNIVERSE_SIZE, that allows
the application to obtain this information in a portable manner. This attribute indicates
the total number of processes that are expected. In Fortran, the attribute is the integer
value. In C, the attribute is a pointer to the integer value. An application typically subtracts
the size of MPI_COMM_WORLD from MPI_UNIVERSE_SIZE to find out how many processes it
should spawn. MPI_UNIVERSE_SIZE is initialized in MPI_INIT and is not changed by MPI. If
defined, it has the same value on all processes of MPI_COMM_WORLD. MPI_UNIVERSE_SIZE

is determined by the application startup mechanism in a way not specified by MPI. (The
size of MPI_COMM_WORLD is another example of such a parameter.)

Possibilities for how MPI_UNIVERSE_SIZE might be set include

• A -universe_size argument to a program that starts MPI processes.

• Automatic interaction with a batch scheduler to figure out how many processors have
been allocated to an application.

• An environment variable set by the user.

• Extra information passed to MPI_COMM_SPAWN through the info argument.

An implementation must document how MPI_UNIVERSE_SIZE is set. An implementation
may not support the ability to set MPI_UNIVERSE_SIZE, in which case the attribute
MPI_UNIVERSE_SIZE is not set.

MPI_UNIVERSE_SIZE is a recommendation, not necessarily a hard limit. For instance,
some implementations may allow an application to spawn 50 processes per processor, if
they are requested. However, it is likely that the user only wants to spawn one process per
processor.

MPI_UNIVERSE_SIZE is assumed to have been specified when an application was started,
and is in essence a portable mechanism to allow the user to pass to the application (through
the MPI process startup mechanism, such as mpiexec) a piece of critical runtime informa-
tion. Note that no interaction with the runtime environment is required. If the runtime
environment changes size while an application is running, MPI_UNIVERSE_SIZE is not up-
dated, and the application must find out about the change through direct communication
with the runtime system.

10.5.2 Singleton MPI_INIT

A high-quality implementation will allow any process (including those not started with a
“parallel application” mechanism) to become an MPI process by calling MPI_INIT. Such
a process can then connect to other MPI processes using the MPI_COMM_ACCEPT and
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MPI_COMM_CONNECT routines, or spawn other MPI processes. MPI does not mandate
this behavior, but strongly encourages it where technically feasible.

Advice to implementors. To start MPI processes belonging to the same
MPI_COMM_WORLD requires some special coordination. The processes must be started
at the “same” time, they must have a mechanism to establish communication, etc.
Either the user or the operating system must take special steps beyond simply starting
processes.

When an application enters MPI_INIT, clearly it must be able to determine if these
special steps were taken. If a process enters MPI_INIT and determines that no
special steps were taken (i.e., it has not been given the information to form an
MPI_COMM_WORLD with other processes) it succeeds and forms a singleton MPI pro-
gram, that is, one in which MPI_COMM_WORLD has size 1.

In some implementations, MPI may not be able to function without an “MPI environ-
ment.” For example, MPI may require that daemons be running or MPI may not be
able to work at all on the front-end of an MPP. In this case, an MPI implementation
may either

1. Create the environment (e.g., start a daemon) or

2. Raise an error if it cannot create the environment and the environment has not
been started independently.

A high-quality implementation will try to create a singleton MPI process and not raise
an error.

(End of advice to implementors.)

10.5.3 MPI_APPNUM

There is a predefined attribute MPI_APPNUM of MPI_COMM_WORLD. In Fortran, the at-
tribute is an integer value. In C, the attribute is a pointer to an integer value. If a process
was spawned with MPI_COMM_SPAWN_MULTIPLE, MPI_APPNUM is the command number
that generated the current process. Numbering starts from zero. If a process was spawned
with MPI_COMM_SPAWN, it will have MPI_APPNUM equal to zero.

Additionally, if the process was not started by a spawn call, but by an implementation-
specific startup mechanism that can handle multiple process specifications, MPI_APPNUM

should be set to the number of the corresponding process specification. In particular, if it
is started with

mpiexec spec0 [: spec1 : spec2 : ...]

MPI_APPNUM should be set to the number of the corresponding specification.
If an application was not spawned with MPI_COMM_SPAWN or

MPI_COMM_SPAWN_MULTIPLE, and MPI_APPNUM doesn’t make sense in the context of
the implementation-specific startup mechanism, MPI_APPNUM is not set.

MPI implementations may optionally provide a mechanism to override the value of
MPI_APPNUM through the info argument. MPI reserves the following key for all SPAWN
calls.
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appnum Value contains an integer that overrides the default value for MPI_APPNUM in the
child.

Rationale. When a single application is started, it is able to figure out how many pro-
cesses there are by looking at the size of MPI_COMM_WORLD. An application consisting
of multiple SPMD sub-applications has no way to find out how many sub-applications
there are and to which sub-application the process belongs. While there are ways to
figure it out in special cases, there is no general mechanism. MPI_APPNUM provides
such a general mechanism. (End of rationale.)

10.5.4 Releasing Connections

Before a client and server connect, they are independent MPI applications. An error in one
does not affect the other. After establishing a connection with MPI_COMM_CONNECT and
MPI_COMM_ACCEPT, an error in one may affect the other. It is desirable for a client and
server to be able to disconnect, so that an error in one will not affect the other. Similarly,
it might be desirable for a parent and child to disconnect, so that errors in the child do not
affect the parent, or vice-versa.

• Two processes are connected if there is a communication path (direct or indirect)
between them. More precisely:

1. Two processes are connected if

(a) they both belong to the same communicator (inter- or intra-, including
MPI_COMM_WORLD) or

(b) they have previously belonged to a communicator that was freed with
MPI_COMM_FREE instead of MPI_COMM_DISCONNECT or

(c) they both belong to the group of the same window or filehandle.

2. If A is connected to B and B to C, then A is connected to C.

• Two processes are disconnected (also independent) if they are not connected.

• By the above definitions, connectivity is a transitive property, and divides the uni-
verse of MPI processes into disconnected (independent) sets (equivalence classes) of
processes.

• Processes which are connected, but don’t share the same MPI_COMM_WORLD may be-
come disconnected (independent) if the communication path between them is broken
by using MPI_COMM_DISCONNECT.

The following additional rules apply to MPI routines in other chapters:

• MPI_FINALIZE is collective over a set of connected processes.

• MPI_ABORT does not abort independent processes. It may abort all processes in
the caller’s MPI_COMM_WORLD (ignoring its comm argument). Additionally, it may
abort connected processes as well, though it makes a “best attempt” to abort only
the processes in comm.

• If a process terminates without calling MPI_FINALIZE, independent processes are not
affected but the effect on connected processes is not defined.
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MPI_COMM_DISCONNECT(comm)

INOUT comm communicator (handle)

int MPI_Comm_disconnect(MPI_Comm *comm)

MPI_COMM_DISCONNECT(COMM, IERROR)

INTEGER COMM, IERROR

void MPI::Comm::Disconnect()

This function waits for all pending communication on comm to complete internally,
deallocates the communicator object, and sets the handle to MPI_COMM_NULL. It is a
collective operation.

It may not be called with the communicator MPI_COMM_WORLD or MPI_COMM_SELF.
MPI_COMM_DISCONNECT may be called only if all communication is complete and

matched, so that buffered data can be delivered to its destination. This requirement is the
same as for MPI_FINALIZE.

MPI_COMM_DISCONNECT has the same action as MPI_COMM_FREE, except that it
waits for pending communication to finish internally and enables the guarantee about the
behavior of disconnected processes.

Advice to users. To disconnect two processes you may need to call
MPI_COMM_DISCONNECT, MPI_WIN_FREE and MPI_FILE_CLOSE to remove all
communication paths between the two processes. Notes that it may be necessary
to disconnect several communicators (or to free several windows or files) before two
processes are completely independent. (End of advice to users.)

Rationale. It would be nice to be able to use MPI_COMM_FREE instead, but that
function explicitly does not wait for pending communication to complete. (End of
rationale.)

10.5.5 Another Way to Establish MPI Communication

MPI_COMM_JOIN(fd, intercomm)

IN fd socket file descriptor

OUT intercomm new intercommunicator (handle)

int MPI_Comm_join(int fd, MPI_Comm *intercomm)

MPI_COMM_JOIN(FD, INTERCOMM, IERROR)

INTEGER FD, INTERCOMM, IERROR

static MPI::Intercomm MPI::Comm::Join(const int fd)

MPI_COMM_JOIN is intended for MPI implementations that exist in an environment
supporting the Berkeley Socket interface [33, 37]. Implementations that exist in an environ-
ment not supporting Berkeley Sockets should provide the entry point for MPI_COMM_JOIN
and should return MPI_COMM_NULL.
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matched, so that buffered data can be delivered to its destination. This requirement is the
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behavior of disconnected processes.
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MPI_COMM_DISCONNECT, MPI_WIN_FREE and MPI_FILE_CLOSE to remove all
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to disconnect several communicators (or to free several windows or files) before two
processes are completely independent. (End of advice to users.)

Rationale. It would be nice to be able to use MPI_COMM_FREE instead, but that
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This call creates an intercommunicator from the union of two MPI processes which are
connected by a socket. MPI_COMM_JOIN should normally succeed if the local and remote
processes have access to the same implementation-defined MPI communication universe.

Advice to users. An MPI implementation may require a specific communication
medium for MPI communication, such as a shared memory segment or a special switch.
In this case, it may not be possible for two processes to successfully join even if there
is a socket connecting them and they are using the same MPI implementation. (End
of advice to users.)

Advice to implementors. A high-quality implementation will attempt to establish
communication over a slow medium if its preferred one is not available. If implemen-
tations do not do this, they must document why they cannot do MPI communication
over the medium used by the socket (especially if the socket is a TCP connection).
(End of advice to implementors.)

fd is a file descriptor representing a socket of type SOCK_STREAM (a two-way reliable
byte-stream connection). Non-blocking I/O and asynchronous notification via SIGIO must
not be enabled for the socket. The socket must be in a connected state. The socket must
be quiescent when MPI_COMM_JOIN is called (see below). It is the responsibility of the
application to create the socket using standard socket API calls.

MPI_COMM_JOIN must be called by the process at each end of the socket. It does not
return until both processes have called MPI_COMM_JOIN. The two processes are referred
to as the local and remote processes.

MPI uses the socket to bootstrap creation of the intercommunicator, and for nothing
else. Upon return from MPI_COMM_JOIN, the file descriptor will be open and quiescent
(see below).

If MPI is unable to create an intercommunicator, but is able to leave the socket in its
original state, with no pending communication, it succeeds and sets intercomm to
MPI_COMM_NULL.

The socket must be quiescent before MPI_COMM_JOIN is called and after
MPI_COMM_JOIN returns. More specifically, on entry to MPI_COMM_JOIN, a read on the
socket will not read any data that was written to the socket before the remote process called
MPI_COMM_JOIN. On exit from MPI_COMM_JOIN, a read will not read any data that was
written to the socket before the remote process returned from MPI_COMM_JOIN. It is the
responsibility of the application to ensure the first condition, and the responsibility of the
MPI implementation to ensure the second. In a multithreaded application, the application
must ensure that one thread does not access the socket while another is calling
MPI_COMM_JOIN, or call MPI_COMM_JOIN concurrently.

Advice to implementors. MPI is free to use any available communication path(s)
for MPI messages in the new communicator; the socket is only used for the initial
handshaking. (End of advice to implementors.)

MPI_COMM_JOIN uses non-MPI communication to do its work. The interaction of
non-MPI communication with pending MPI communication is not defined. Therefore, the
result of calling MPI_COMM_JOIN on two connected processes (see Section 10.5.4 on page
318 for the definition of connected) is undefined.

The returned communicator may be used to establish MPI communication with addi-
tional processes, through the usual MPI communicator creation mechanisms.
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In this case, it may not be possible for two processes to successfully join even if there
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tations do not do this, they must document why they cannot do MPI communication
over the medium used by the socket (especially if the socket is a TCP connection).
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fd is a file descriptor representing a socket of type SOCK_STREAM (a two-way reliable
byte-stream connection). Non-blocking I/O and asynchronous notification via SIGIO must
not be enabled for the socket. The socket must be in a connected state. The socket must
be quiescent when MPI_COMM_JOIN is called (see below). It is the responsibility of the
application to create the socket using standard socket API calls.

MPI_COMM_JOIN must be called by the process at each end of the socket. It does not
return until both processes have called MPI_COMM_JOIN. The two processes are referred
to as the local and remote processes.

MPI uses the socket to bootstrap creation of the intercommunicator, and for nothing
else. Upon return from MPI_COMM_JOIN, the file descriptor will be open and quiescent
(see below).

If MPI is unable to create an intercommunicator, but is able to leave the socket in its
original state, with no pending communication, it succeeds and sets intercomm to
MPI_COMM_NULL.

The socket must be quiescent before MPI_COMM_JOIN is called and after
MPI_COMM_JOIN returns. More specifically, on entry to MPI_COMM_JOIN, a read on the
socket will not read any data that was written to the socket before the remote process called
MPI_COMM_JOIN. On exit from MPI_COMM_JOIN, a read will not read any data that was
written to the socket before the remote process returned from MPI_COMM_JOIN. It is the
responsibility of the application to ensure the first condition, and the responsibility of the
MPI implementation to ensure the second. In a multithreaded application, the application
must ensure that one thread does not access the socket while another is calling
MPI_COMM_JOIN, or call MPI_COMM_JOIN concurrently.

Advice to implementors. MPI is free to use any available communication path(s)
for MPI messages in the new communicator; the socket is only used for the initial
handshaking. (End of advice to implementors.)

MPI_COMM_JOIN uses non-MPI communication to do its work. The interaction of
non-MPI communication with pending MPI communication is not defined. Therefore, the
result of calling MPI_COMM_JOIN on two connected processes (see Section 10.5.4 on page
318 for the definition of connected) is undefined.

The returned communicator may be used to establish MPI communication with addi-
tional processes, through the usual MPI communicator creation mechanisms.
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Chapter 11

One-Sided Communications

11.1 Introduction

Remote Memory Access (RMA) extends the communication mechanisms of MPI by allowing
one process to specify all communication parameters, both for the sending side and for the
receiving side. This mode of communication facilitates the coding of some applications with
dynamically changing data access patterns where the data distribution is fixed or slowly
changing. In such a case, each process can compute what data it needs to access or update
at other processes. However, processes may not know which data in their own memory
need to be accessed or updated by remote processes, and may not even know the identity of
these processes. Thus, the transfer parameters are all available only on one side. Regular
send/receive communication requires matching operations by sender and receiver. In order
to issue the matching operations, an application needs to distribute the transfer parameters.
This may require all processes to participate in a time consuming global computation, or
to periodically poll for potential communication requests to receive and act upon. The use
of RMA communication mechanisms avoids the need for global computations or explicit
polling. A generic example of this nature is the execution of an assignment of the form A =

B(map), where map is a permutation vector, and A, B and map are distributed in the same
manner.

Message-passing communication achieves two effects: communication of data from
sender to receiver; and synchronization of sender with receiver. The RMA design sepa-
rates these two functions. Three communication calls are provided: MPI_PUT (remote
write), MPI_GET (remote read) and MPI_ACCUMULATE (remote update). A larger num-
ber of synchronization calls are provided that support different synchronization styles. The
design is similar to that of weakly coherent memory systems: correct ordering of memory
accesses has to be imposed by the user, using synchronization calls; the implementation can
delay communication operations until the synchronization calls occur, for efficiency.

The design of the RMA functions allows implementors to take advantage, in many
cases, of fast communication mechanisms provided by various platforms, such as coherent or
noncoherent shared memory, DMA engines, hardware-supported put/get operations, com-
munication coprocessors, etc. The most frequently used RMA communication mechanisms
can be layered on top of message-passing. However, support for asynchronous communica-
tion agents (handlers, threads, etc.) is needed, for certain RMA functions, in a distributed
memory environment.

We shall denote by origin the process that performs the call, and by target the
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One-Sided Communications

11.1 Introduction

Remote Memory Access (RMA) extends the communication mechanisms of MPI by allowing
one process to specify all communication parameters, both for the sending side and for the
receiving side. This mode of communication facilitates the coding of some applications with
dynamically changing data access patterns where the data distribution is fixed or slowly
changing. In such a case, each process can compute what data it needs to access or update
at other processes. However, processes may not know which data in their own memory
need to be accessed or updated by remote processes, and may not even know the identity of
these processes. Thus, the transfer parameters are all available only on one side. Regular
send/receive communication requires matching operations by sender and receiver. In order
to issue the matching operations, an application needs to distribute the transfer parameters.
This may require all processes to participate in a time consuming global computation, or
to periodically poll for potential communication requests to receive and act upon. The use
of RMA communication mechanisms avoids the need for global computations or explicit
polling. A generic example of this nature is the execution of an assignment of the form A =

B(map), where map is a permutation vector, and A, B and map are distributed in the same
manner.

Message-passing communication achieves two effects: communication of data from
sender to receiver; and synchronization of sender with receiver. The RMA design sepa-
rates these two functions. Three communication calls are provided: MPI_PUT (remote
write), MPI_GET (remote read) and MPI_ACCUMULATE (remote update). A larger num-
ber of synchronization calls are provided that support different synchronization styles. The
design is similar to that of weakly coherent memory systems: correct ordering of memory
accesses has to be imposed by the user, using synchronization calls; the implementation can
delay communication operations until the synchronization calls occur, for efficiency.

The design of the RMA functions allows implementors to take advantage, in many
cases, of fast communication mechanisms provided by various platforms, such as coherent or
noncoherent shared memory, DMA engines, hardware-supported put/get operations, com-
munication coprocessors, etc. The most frequently used RMA communication mechanisms
can be layered on top of message-passing. However, support for asynchronous communica-
tion agents (handlers, threads, etc.) is needed, for certain RMA functions, in a distributed
memory environment.

We shall denote by origin the process that performs the call, and by target the
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process in which the memory is accessed. Thus, in a put operation, source=origin and
destination=target; in a get operation, source=target and destination=origin.

11.2 Initialization

11.2.1 Window Creation

The initialization operation allows each process in an intracommunicator group to specify,
in a collective operation, a “window” in its memory that is made accessible to accesses by
remote processes. The call returns an opaque object that represents the group of processes
that own and access the set of windows, and the attributes of each window, as specified by
the initialization call.

MPI_WIN_CREATE(base, size, disp_unit, info, comm, win)

IN base initial address of window (choice)

IN size size of window in bytes (nonnegative integer)

IN disp_unit local unit size for displacements, in bytes (positive in-

teger)

IN info info argument (handle)

IN comm communicator (handle)

OUT win window object returned by the call (handle)

int MPI_Win_create(void *base, MPI_Aint size, int disp_unit, MPI_Info info,

MPI_Comm comm, MPI_Win *win)

MPI_WIN_CREATE(BASE, SIZE, DISP_UNIT, INFO, COMM, WIN, IERROR)

<type> BASE(*)

INTEGER(KIND=MPI_ADDRESS_KIND) SIZE

INTEGER DISP_UNIT, INFO, COMM, WIN, IERROR

static MPI::Win MPI::Win::Create(const void* base, MPI::Aint size, int

disp_unit, const MPI::Info& info, const MPI::Intracomm& comm)

This is a collective call executed by all processes in the group of comm. It returns
a window object that can be used by these processes to perform RMA operations. Each
process specifies a window of existing memory that it exposes to RMA accesses by the
processes in the group of comm. The window consists of size bytes, starting at address base.
A process may elect to expose no memory by specifying size = 0.

The displacement unit argument is provided to facilitate address arithmetic in RMA
operations: the target displacement argument of an RMA operation is scaled by the factor
disp_unit specified by the target process, at window creation.

Rationale. The window size is specified using an address sized integer, so as to allow
windows that span more than 4 GB of address space. (Even if the physical memory
size is less than 4 GB, the address range may be larger than 4 GB, if addresses are
not contiguous.) (End of rationale.)
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process in which the memory is accessed. Thus, in a put operation, source=origin and
destination=target; in a get operation, source=target and destination=origin.

11.2 Initialization

11.2.1 Window Creation

The initialization operation allows each process in an intracommunicator group to specify,
in a collective operation, a “window” in its memory that is made accessible to accesses by
remote processes. The call returns an opaque object that represents the group of processes
that own and access the set of windows, and the attributes of each window, as specified by
the initialization call.

MPI_WIN_CREATE(base, size, disp_unit, info, comm, win)

IN base initial address of window (choice)

IN size size of window in bytes (nonnegative integer)

IN disp_unit local unit size for displacements, in bytes (positive in-

teger)

IN info info argument (handle)

IN comm communicator (handle)

OUT win window object returned by the call (handle)

int MPI_Win_create(void *base, MPI_Aint size, int disp_unit, MPI_Info info,

MPI_Comm comm, MPI_Win *win)

MPI_WIN_CREATE(BASE, SIZE, DISP_UNIT, INFO, COMM, WIN, IERROR)

<type> BASE(*)

INTEGER(KIND=MPI_ADDRESS_KIND) SIZE

INTEGER DISP_UNIT, INFO, COMM, WIN, IERROR

static MPI::Win MPI::Win::Create(const void* base, MPI::Aint size, int

disp_unit, const MPI::Info& info, const MPI::Intracomm& comm)

This is a collective call executed by all processes in the group of comm. It returns
a window object that can be used by these processes to perform RMA operations. Each
process specifies a window of existing memory that it exposes to RMA accesses by the
processes in the group of comm. The window consists of size bytes, starting at address base.
A process may elect to expose no memory by specifying size = 0.

The displacement unit argument is provided to facilitate address arithmetic in RMA
operations: the target displacement argument of an RMA operation is scaled by the factor
disp_unit specified by the target process, at window creation.

Rationale. The window size is specified using an address sized integer, so as to allow
windows that span more than 4 GB of address space. (Even if the physical memory
size is less than 4 GB, the address range may be larger than 4 GB, if addresses are
not contiguous.) (End of rationale.)
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Advice to users. Common choices for disp_unit are 1 (no scaling), and (in C syntax)
sizeof(type), for a window that consists of an array of elements of type type. The
later choice will allow one to use array indices in RMA calls, and have those scaled
correctly to byte displacements, even in a heterogeneous environment. (End of advice
to users.)

The info argument provides optimization hints to the runtime about the expected usage
pattern of the window. The following info key is predefined:

no_locks — if set to true, then the implementation may assume that the local window is
never locked (by a call to MPI_WIN_LOCK). This implies that this window is not used
for 3-party communication, and RMA can be implemented with no (less) asynchronous
agent activity at this process.

The various processes in the group of comm may specify completely different target
windows, in location, size, displacement units and info arguments. As long as all the get,
put and accumulate accesses to a particular process fit their specific target window this
should pose no problem. The same area in memory may appear in multiple windows, each
associated with a different window object. However, concurrent communications to distinct,
overlapping windows may lead to erroneous results.

Advice to users. A window can be created in any part of the process memory.
However, on some systems, the performance of windows in memory allocated by
MPI_ALLOC_MEM (Section 8.2, page 262) will be better. Also, on some systems,
performance is improved when window boundaries are aligned at “natural” boundaries
(word, double-word, cache line, page frame, etc.). (End of advice to users.)

Advice to implementors. In cases where RMA operations use different mechanisms
in different memory areas (e.g., load/store in a shared memory segment, and an asyn-
chronous handler in private memory), the MPI_WIN_CREATE call needs to figure out
which type of memory is used for the window. To do so, MPI maintains, internally, the
list of memory segments allocated by MPI_ALLOC_MEM, or by other, implementa-
tion specific, mechanisms, together with information on the type of memory segment
allocated. When a call to MPI_WIN_CREATE occurs, then MPI checks which segment
contains each window, and decides, accordingly, which mechanism to use for RMA
operations.

Vendors may provide additional, implementation-specific mechanisms to allow “good”
memory to be used for static variables.

Implementors should document any performance impact of window alignment. (End
of advice to implementors.)

MPI_WIN_FREE(win)

INOUT win window object (handle)

int MPI_Win_free(MPI_Win *win)

MPI_WIN_FREE(WIN, IERROR)
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Advice to users. Common choices for disp_unit are 1 (no scaling), and (in C syntax)
sizeof(type), for a window that consists of an array of elements of type type. The
later choice will allow one to use array indices in RMA calls, and have those scaled
correctly to byte displacements, even in a heterogeneous environment. (End of advice
to users.)

The info argument provides optimization hints to the runtime about the expected usage
pattern of the window. The following info key is predefined:

no_locks — if set to true, then the implementation may assume that the local window is
never locked (by a call to MPI_WIN_LOCK). This implies that this window is not used
for 3-party communication, and RMA can be implemented with no (less) asynchronous
agent activity at this process.

The various processes in the group of comm may specify completely different target
windows, in location, size, displacement units and info arguments. As long as all the get,
put and accumulate accesses to a particular process fit their specific target window this
should pose no problem. The same area in memory may appear in multiple windows, each
associated with a different window object. However, concurrent communications to distinct,
overlapping windows may lead to erroneous results.

Advice to users. A window can be created in any part of the process memory.
However, on some systems, the performance of windows in memory allocated by
MPI_ALLOC_MEM (Section 8.2, page 262) will be better. Also, on some systems,
performance is improved when window boundaries are aligned at “natural” boundaries
(word, double-word, cache line, page frame, etc.). (End of advice to users.)

Advice to implementors. In cases where RMA operations use different mechanisms
in different memory areas (e.g., load/store in a shared memory segment, and an asyn-
chronous handler in private memory), the MPI_WIN_CREATE call needs to figure out
which type of memory is used for the window. To do so, MPI maintains, internally, the
list of memory segments allocated by MPI_ALLOC_MEM, or by other, implementa-
tion specific, mechanisms, together with information on the type of memory segment
allocated. When a call to MPI_WIN_CREATE occurs, then MPI checks which segment
contains each window, and decides, accordingly, which mechanism to use for RMA
operations.

Vendors may provide additional, implementation-specific mechanisms to allow “good”
memory to be used for static variables.

Implementors should document any performance impact of window alignment. (End
of advice to implementors.)

MPI_WIN_FREE(win)

INOUT win window object (handle)

int MPI_Win_free(MPI_Win *win)

MPI_WIN_FREE(WIN, IERROR)
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INTEGER WIN, IERROR

void MPI::Win::Free()

Frees the window object win and returns a null handle (equal to MPI_WIN_NULL). This
is a collective call executed by all processes in the group associated with
win. MPI_WIN_FREE(win) can be invoked by a process only after it has completed its
involvement in RMA communications on window win: i.e., the process has called
MPI_WIN_FENCE, or called MPI_WIN_WAIT to match a previous call to MPI_WIN_POST
or called MPI_WIN_COMPLETE to match a previous call to MPI_WIN_START or called
MPI_WIN_UNLOCK to match a previous call to MPI_WIN_LOCK. When the call returns,
the window memory can be freed.

Advice to implementors. MPI_WIN_FREE requires a barrier synchronization: no
process can return from free until all processes in the group of win called free. This, to
ensure that no process will attempt to access a remote window (e.g., with lock/unlock)
after it was freed. (End of advice to implementors.)

11.2.2 Window Attributes

The following three attributes are cached with a window, when the window is created.

MPI_WIN_BASE window base address.
MPI_WIN_SIZE window size, in bytes.
MPI_WIN_DISP_UNIT displacement unit associated with the window.

In C, calls to MPI_Win_get_attr(win, MPI_WIN_BASE, &base, &flag),
MPI_Win_get_attr(win, MPI_WIN_SIZE, &size, &flag) and
MPI_Win_get_attr(win, MPI_WIN_DISP_UNIT, &disp_unit, &flag) will return in
base a pointer to the start of the window win, and will return in size and disp_unit pointers
to the size and displacement unit of the window, respectively. And similarly, in C++.

In Fortran, calls to MPI_WIN_GET_ATTR(win, MPI_WIN_BASE, base, flag, ierror),
MPI_WIN_GET_ATTR(win, MPI_WIN_SIZE, size, flag, ierror) and
MPI_WIN_GET_ATTR(win, MPI_WIN_DISP_UNIT, disp_unit, flag, ierror) will return in
base, size and disp_unit the (integer representation of) the base address, the size and the
displacement unit of the window win, respectively. (The window attribute access functions
are defined in Section 6.7.3, page 227.)

The other “window attribute,” namely the group of processes attached to the window,
can be retrieved using the call below.

MPI_WIN_GET_GROUP(win, group)

IN win window object (handle)

OUT group group of processes which share access to the window

(handle)

int MPI_Win_get_group(MPI_Win win, MPI_Group *group)

MPI_WIN_GET_GROUP(WIN, GROUP, IERROR)

INTEGER WIN, GROUP, IERROR
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INTEGER WIN, IERROR

void MPI::Win::Free()

Frees the window object win and returns a null handle (equal to MPI_WIN_NULL). This
is a collective call executed by all processes in the group associated with
win. MPI_WIN_FREE(win) can be invoked by a process only after it has completed its
involvement in RMA communications on window win: i.e., the process has called
MPI_WIN_FENCE, or called MPI_WIN_WAIT to match a previous call to MPI_WIN_POST
or called MPI_WIN_COMPLETE to match a previous call to MPI_WIN_START or called
MPI_WIN_UNLOCK to match a previous call to MPI_WIN_LOCK. When the call returns,
the window memory can be freed.

Advice to implementors. MPI_WIN_FREE requires a barrier synchronization: no
process can return from free until all processes in the group of win called free. This, to
ensure that no process will attempt to access a remote window (e.g., with lock/unlock)
after it was freed. (End of advice to implementors.)

11.2.2 Window Attributes

The following three attributes are cached with a window, when the window is created.

MPI_WIN_BASE window base address.
MPI_WIN_SIZE window size, in bytes.
MPI_WIN_DISP_UNIT displacement unit associated with the window.

In C, calls to MPI_Win_get_attr(win, MPI_WIN_BASE, &base, &flag),
MPI_Win_get_attr(win, MPI_WIN_SIZE, &size, &flag) and
MPI_Win_get_attr(win, MPI_WIN_DISP_UNIT, &disp_unit, &flag) will return in
base a pointer to the start of the window win, and will return in size and disp_unit pointers
to the size and displacement unit of the window, respectively. And similarly, in C++.

In Fortran, calls to MPI_WIN_GET_ATTR(win, MPI_WIN_BASE, base, flag, ierror),
MPI_WIN_GET_ATTR(win, MPI_WIN_SIZE, size, flag, ierror) and
MPI_WIN_GET_ATTR(win, MPI_WIN_DISP_UNIT, disp_unit, flag, ierror) will return in
base, size and disp_unit the (integer representation of) the base address, the size and the
displacement unit of the window win, respectively. (The window attribute access functions
are defined in Section 6.7.3, page 227.)

The other “window attribute,” namely the group of processes attached to the window,
can be retrieved using the call below.

MPI_WIN_GET_GROUP(win, group)

IN win window object (handle)

OUT group group of processes which share access to the window

(handle)

int MPI_Win_get_group(MPI_Win win, MPI_Group *group)

MPI_WIN_GET_GROUP(WIN, GROUP, IERROR)

INTEGER WIN, GROUP, IERROR
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MPI::Group MPI::Win::Get_group() const

MPI_WIN_GET_GROUP returns a duplicate of the group of the communicator used to
create the window. associated with win. The group is returned in group.

11.3 Communication Calls

MPI supports three RMA communication calls: MPI_PUT transfers data from the caller
memory (origin) to the target memory; MPI_GET transfers data from the target memory
to the caller memory; and MPI_ACCUMULATE updates locations in the target memory,
e.g. by adding to these locations values sent from the caller memory. These operations
are nonblocking: the call initiates the transfer, but the transfer may continue after the
call returns. The transfer is completed, both at the origin and at the target, when a
subsequent synchronization call is issued by the caller on the involved window object. These
synchronization calls are described in Section 11.4, page 333.

The local communication buffer of an RMA call should not be updated, and the local
communication buffer of a get call should not be accessed after the RMA call, until the
subsequent synchronization call completes.

Rationale. The rule above is more lenient than for message-passing, where we do
not allow two concurrent sends, with overlapping send buffers. Here, we allow two
concurrent puts with overlapping send buffers. The reasons for this relaxation are

1. Users do not like that restriction, which is not very natural (it prohibits concur-
rent reads).

2. Weakening the rule does not prevent efficient implementation, as far as we know.

3. Weakening the rule is important for performance of RMA: we want to associate
one synchronization call with as many RMA operations is possible. If puts from
overlapping buffers cannot be concurrent, then we need to needlessly add syn-
chronization points in the code.

(End of rationale.)

It is erroneous to have concurrent conflicting accesses to the same memory location in a
window; if a location is updated by a put or accumulate operation, then this location cannot
be accessed by a load or another RMA operation until the updating operation has completed
at the target. There is one exception to this rule; namely, the same location can be updated
by several concurrent accumulate calls, the outcome being as if these updates occurred in
some order. In addition, a window cannot concurrently be updated by a put or accumulate
operation and by a local store operation. This, even if these two updates access different
locations in the window. The last restriction enables more efficient implementations of RMA
operations on many systems. These restrictions are described in more detail in Section 11.7,
page 349.

The calls use general datatype arguments to specify communication buffers at the origin
and at the target. Thus, a transfer operation may also gather data at the source and scatter
it at the destination. However, all arguments specifying both communication buffers are
provided by the caller.

For all three calls, the target process may be identical with the origin process; i.e., a
process may use an RMA operation to move data in its memory.
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MPI::Group MPI::Win::Get_group() const

MPI_WIN_GET_GROUP returns a duplicate of the group of the communicator used to
create the window. associated with win. The group is returned in group.

11.3 Communication Calls

MPI supports three RMA communication calls: MPI_PUT transfers data from the caller
memory (origin) to the target memory; MPI_GET transfers data from the target memory
to the caller memory; and MPI_ACCUMULATE updates locations in the target memory,
e.g. by adding to these locations values sent from the caller memory. These operations
are nonblocking: the call initiates the transfer, but the transfer may continue after the
call returns. The transfer is completed, both at the origin and at the target, when a
subsequent synchronization call is issued by the caller on the involved window object. These
synchronization calls are described in Section 11.4, page 333.

The local communication buffer of an RMA call should not be updated, and the local
communication buffer of a get call should not be accessed after the RMA call, until the
subsequent synchronization call completes.

Rationale. The rule above is more lenient than for message-passing, where we do
not allow two concurrent sends, with overlapping send buffers. Here, we allow two
concurrent puts with overlapping send buffers. The reasons for this relaxation are

1. Users do not like that restriction, which is not very natural (it prohibits concur-
rent reads).

2. Weakening the rule does not prevent efficient implementation, as far as we know.

3. Weakening the rule is important for performance of RMA: we want to associate
one synchronization call with as many RMA operations is possible. If puts from
overlapping buffers cannot be concurrent, then we need to needlessly add syn-
chronization points in the code.

(End of rationale.)

It is erroneous to have concurrent conflicting accesses to the same memory location in a
window; if a location is updated by a put or accumulate operation, then this location cannot
be accessed by a load or another RMA operation until the updating operation has completed
at the target. There is one exception to this rule; namely, the same location can be updated
by several concurrent accumulate calls, the outcome being as if these updates occurred in
some order. In addition, a window cannot concurrently be updated by a put or accumulate
operation and by a local store operation. This, even if these two updates access different
locations in the window. The last restriction enables more efficient implementations of RMA
operations on many systems. These restrictions are described in more detail in Section 11.7,
page 349.

The calls use general datatype arguments to specify communication buffers at the origin
and at the target. Thus, a transfer operation may also gather data at the source and scatter
it at the destination. However, all arguments specifying both communication buffers are
provided by the caller.

For all three calls, the target process may be identical with the origin process; i.e., a
process may use an RMA operation to move data in its memory.
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Rationale. The choice of supporting “self-communication” is the same as for message-
passing. It simplifies some coding, and is very useful with accumulate operations, to
allow atomic updates of local variables. (End of rationale.)

MPI_PROC_NULL is a valid target rank in the MPI RMA calls MPI_ACCUMULATE,
MPI_GET, and MPI_PUT. The effect is the same as for MPI_PROC_NULL in MPI point-
to-point communication. After any RMA operation with rank MPI_PROC_NULL, it is still
necessary to finish the RMA epoch with the synchronization method that started the epoch.

11.3.1 Put

The execution of a put operation is similar to the execution of a send by the origin process
and a matching receive by the target process. The obvious difference is that all arguments
are provided by one call — the call executed by the origin process.

MPI_PUT(origin_addr, origin_count, origin_datatype, target_rank, target_disp, target_count,
target_datatype, win)

IN origin_addr initial address of origin buffer (choice)

IN origin_count number of entries in origin buffer (nonnegative inte-

ger)

IN origin_datatype datatype of each entry in origin buffer (handle)

IN target_rank rank of target (nonnegative integer)

IN target_disp displacement from start of window to target buffer

(nonnegative integer)

IN target_count number of entries in target buffer (nonnegative inte-

ger)

IN target_datatype datatype of each entry in target buffer (handle)

IN win window object used for communication (handle)

int MPI_Put(void *origin_addr, int origin_count, MPI_Datatype

origin_datatype, int target_rank, MPI_Aint target_disp, int

target_count, MPI_Datatype target_datatype, MPI_Win win)

MPI_PUT(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,

TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, WIN, IERROR)

<type> ORIGIN_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,

TARGET_DATATYPE, WIN, IERROR

void MPI::Win::Put(const void* origin_addr, int origin_count, const

MPI::Datatype& origin_datatype, int target_rank, MPI::Aint

target_disp, int target_count, const MPI::Datatype&

target_datatype) const
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Rationale. The choice of supporting “self-communication” is the same as for message-
passing. It simplifies some coding, and is very useful with accumulate operations, to
allow atomic updates of local variables. (End of rationale.)

MPI_PROC_NULL is a valid target rank in the MPI RMA calls MPI_ACCUMULATE,
MPI_GET, and MPI_PUT. The effect is the same as for MPI_PROC_NULL in MPI point-
to-point communication. After any RMA operation with rank MPI_PROC_NULL, it is still
necessary to finish the RMA epoch with the synchronization method that started the epoch.

11.3.1 Put

The execution of a put operation is similar to the execution of a send by the origin process
and a matching receive by the target process. The obvious difference is that all arguments
are provided by one call — the call executed by the origin process.

MPI_PUT(origin_addr, origin_count, origin_datatype, target_rank, target_disp, target_count,
target_datatype, win)

IN origin_addr initial address of origin buffer (choice)

IN origin_count number of entries in origin buffer (nonnegative inte-

ger)

IN origin_datatype datatype of each entry in origin buffer (handle)

IN target_rank rank of target (nonnegative integer)

IN target_disp displacement from start of window to target buffer

(nonnegative integer)

IN target_count number of entries in target buffer (nonnegative inte-

ger)

IN target_datatype datatype of each entry in target buffer (handle)

IN win window object used for communication (handle)

int MPI_Put(void *origin_addr, int origin_count, MPI_Datatype

origin_datatype, int target_rank, MPI_Aint target_disp, int

target_count, MPI_Datatype target_datatype, MPI_Win win)

MPI_PUT(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,

TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, WIN, IERROR)

<type> ORIGIN_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,

TARGET_DATATYPE, WIN, IERROR

void MPI::Win::Put(const void* origin_addr, int origin_count, const

MPI::Datatype& origin_datatype, int target_rank, MPI::Aint

target_disp, int target_count, const MPI::Datatype&

target_datatype) const

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



11.3. COMMUNICATION CALLS 327

Transfers origin_count successive entries of the type specified by the origin_datatype,
starting at address origin_addr on the origin node to the target node specified by the
win, target_rank pair. The data are written in the target buffer at address target_addr =
window_base + target_disp×disp_unit, where window_base and disp_unit are the base address
and window displacement unit specified at window initialization, by the target process.

The target buffer is specified by the arguments target_count and target_datatype.
The data transfer is the same as that which would occur if the origin process executed

a send operation with arguments origin_addr, origin_count, origin_datatype, target_rank, tag,
comm, and the target process executed a receive operation with arguments target_addr,
target_count, target_datatype, source, tag, comm, where target_addr is the target buffer
address computed as explained above, and comm is a communicator for the group of win.

The communication must satisfy the same constraints as for a similar message-passing
communication. The target_datatype may not specify overlapping entries in the target
buffer. The message sent must fit, without truncation, in the target buffer. Furthermore,
the target buffer must fit in the target window.

The target_datatype argument is a handle to a datatype object defined at the origin
process. However, this object is interpreted at the target process: the outcome is as if the
target datatype object was defined at the target process, by the same sequence of calls
used to define it at the origin process. The target datatype must contain only relative
displacements, not absolute addresses. The same holds for get and accumulate.

Advice to users. The target_datatype argument is a handle to a datatype object that
is defined at the origin process, even though it defines a data layout in the target
process memory. This causes no problems in a homogeneous environment, or in a
heterogeneous environment, if only portable datatypes are used (portable datatypes
are defined in Section 2.4, page 11).

The performance of a put transfer can be significantly affected, on some systems, from
the choice of window location and the shape and location of the origin and target
buffer: transfers to a target window in memory allocated by MPI_ALLOC_MEM may
be much faster on shared memory systems; transfers from contiguous buffers will be
faster on most, if not all, systems; the alignment of the communication buffers may
also impact performance. (End of advice to users.)

Advice to implementors. A high-quality implementation will attempt to prevent
remote accesses to memory outside the window that was exposed by the process.
This, both for debugging purposes, and for protection with client-server codes that
use RMA. I.e., a high-quality implementation will check, if possible, window bounds
on each RMA call, and raise an MPI exception at the origin call if an out-of-bound
situation occurred. Note that the condition can be checked at the origin. Of course,
the added safety achieved by such checks has to be weighed against the added cost of
such checks. (End of advice to implementors.)
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Transfers origin_count successive entries of the type specified by the origin_datatype,
starting at address origin_addr on the origin node to the target node specified by the
win, target_rank pair. The data are written in the target buffer at address target_addr =
window_base + target_disp×disp_unit, where window_base and disp_unit are the base address
and window displacement unit specified at window initialization, by the target process.

The target buffer is specified by the arguments target_count and target_datatype.
The data transfer is the same as that which would occur if the origin process executed

a send operation with arguments origin_addr, origin_count, origin_datatype, target_rank, tag,
comm, and the target process executed a receive operation with arguments target_addr,
target_count, target_datatype, source, tag, comm, where target_addr is the target buffer
address computed as explained above, and comm is a communicator for the group of win.

The communication must satisfy the same constraints as for a similar message-passing
communication. The target_datatype may not specify overlapping entries in the target
buffer. The message sent must fit, without truncation, in the target buffer. Furthermore,
the target buffer must fit in the target window.

The target_datatype argument is a handle to a datatype object defined at the origin
process. However, this object is interpreted at the target process: the outcome is as if the
target datatype object was defined at the target process, by the same sequence of calls
used to define it at the origin process. The target datatype must contain only relative
displacements, not absolute addresses. The same holds for get and accumulate.

Advice to users. The target_datatype argument is a handle to a datatype object that
is defined at the origin process, even though it defines a data layout in the target
process memory. This causes no problems in a homogeneous environment, or in a
heterogeneous environment, if only portable datatypes are used (portable datatypes
are defined in Section 2.4, page 11).

The performance of a put transfer can be significantly affected, on some systems, from
the choice of window location and the shape and location of the origin and target
buffer: transfers to a target window in memory allocated by MPI_ALLOC_MEM may
be much faster on shared memory systems; transfers from contiguous buffers will be
faster on most, if not all, systems; the alignment of the communication buffers may
also impact performance. (End of advice to users.)

Advice to implementors. A high-quality implementation will attempt to prevent
remote accesses to memory outside the window that was exposed by the process.
This, both for debugging purposes, and for protection with client-server codes that
use RMA. I.e., a high-quality implementation will check, if possible, window bounds
on each RMA call, and raise an MPI exception at the origin call if an out-of-bound
situation occurred. Note that the condition can be checked at the origin. Of course,
the added safety achieved by such checks has to be weighed against the added cost of
such checks. (End of advice to implementors.)
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11.3.2 Get

MPI_GET(origin_addr, origin_count, origin_datatype, target_rank, target_disp, target_count,
target_datatype, win)

OUT origin_addr initial address of origin buffer (choice)

IN origin_count number of entries in origin buffer (nonnegative inte-

ger)

IN origin_datatype datatype of each entry in origin buffer (handle)

IN target_rank rank of target (nonnegative integer)

IN target_disp displacement from window start to the beginning of

the target buffer (nonnegative integer)

IN target_count number of entries in target buffer (nonnegative inte-

ger)

IN target_datatype datatype of each entry in target buffer (handle)

IN win window object used for communication (handle)

int MPI_Get(void *origin_addr, int origin_count, MPI_Datatype

origin_datatype, int target_rank, MPI_Aint target_disp, int

target_count, MPI_Datatype target_datatype, MPI_Win win)

MPI_GET(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,

TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, WIN, IERROR)

<type> ORIGIN_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,

TARGET_DATATYPE, WIN, IERROR

void MPI::Win::Get(void *origin_addr, int origin_count, const

MPI::Datatype& origin_datatype, int target_rank, MPI::Aint

target_disp, int target_count, const MPI::Datatype&

target_datatype) const

Similar to MPI_PUT, except that the direction of data transfer is reversed. Data
are copied from the target memory to the origin. The origin_datatype may not specify
overlapping entries in the origin buffer. The target buffer must be contained within the
target window, and the copied data must fit, without truncation, in the origin buffer.

11.3.3 Examples

Example 11.1 We show how to implement the generic indirect assignment A = B(map),
where A, B and map have the same distribution, and map is a permutation. To simplify, we
assume a block distribution with equal size blocks.

SUBROUTINE MAPVALS(A, B, map, m, comm, p)

USE MPI

INTEGER m, map(m), comm, p
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11.3.2 Get

MPI_GET(origin_addr, origin_count, origin_datatype, target_rank, target_disp, target_count,
target_datatype, win)

OUT origin_addr initial address of origin buffer (choice)

IN origin_count number of entries in origin buffer (nonnegative inte-

ger)

IN origin_datatype datatype of each entry in origin buffer (handle)

IN target_rank rank of target (nonnegative integer)

IN target_disp displacement from window start to the beginning of

the target buffer (nonnegative integer)

IN target_count number of entries in target buffer (nonnegative inte-

ger)

IN target_datatype datatype of each entry in target buffer (handle)

IN win window object used for communication (handle)

int MPI_Get(void *origin_addr, int origin_count, MPI_Datatype

origin_datatype, int target_rank, MPI_Aint target_disp, int

target_count, MPI_Datatype target_datatype, MPI_Win win)

MPI_GET(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,

TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, WIN, IERROR)

<type> ORIGIN_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,

TARGET_DATATYPE, WIN, IERROR

void MPI::Win::Get(void *origin_addr, int origin_count, const

MPI::Datatype& origin_datatype, int target_rank, MPI::Aint

target_disp, int target_count, const MPI::Datatype&

target_datatype) const

Similar to MPI_PUT, except that the direction of data transfer is reversed. Data
are copied from the target memory to the origin. The origin_datatype may not specify
overlapping entries in the origin buffer. The target buffer must be contained within the
target window, and the copied data must fit, without truncation, in the origin buffer.

11.3.3 Examples

Example 11.1 We show how to implement the generic indirect assignment A = B(map),
where A, B and map have the same distribution, and map is a permutation. To simplify, we
assume a block distribution with equal size blocks.

SUBROUTINE MAPVALS(A, B, map, m, comm, p)

USE MPI

INTEGER m, map(m), comm, p
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REAL A(m), B(m)

INTEGER otype(p), oindex(m), & ! used to construct origin datatypes

ttype(p), tindex(m), & ! used to construct target datatypes

count(p), total(p), &

win, ierr

INTEGER (KIND=MPI_ADDRESS_KIND) lowerbound, sizeofreal

! This part does the work that depends on the locations of B.

! Can be reused while this does not change

CALL MPI_TYPE_GET_EXTENT(MPI_REAL, lowerbound, sizeofreal, ierr)

CALL MPI_WIN_CREATE(B, m*sizeofreal, sizeofreal, MPI_INFO_NULL, &

comm, win, ierr)

! This part does the work that depends on the value of map and

! the locations of the arrays.

! Can be reused while these do not change

! Compute number of entries to be received from each process

DO i=1,p

count(i) = 0

END DO

DO i=1,m

j = map(i)/m+1

count(j) = count(j)+1

END DO

total(1) = 0

DO i=2,p

total(i) = total(i-1) + count(i-1)

END DO

DO i=1,p

count(i) = 0

END DO

! compute origin and target indices of entries.

! entry i at current process is received from location

! k at process (j-1), where map(i) = (j-1)*m + (k-1),

! j = 1..p and k = 1..m

DO i=1,m

j = map(i)/m+1

k = MOD(map(i),m)+1

count(j) = count(j)+1

oindex(total(j) + count(j)) = i
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REAL A(m), B(m)

INTEGER otype(p), oindex(m), & ! used to construct origin datatypes

ttype(p), tindex(m), & ! used to construct target datatypes

count(p), total(p), &

win, ierr

INTEGER (KIND=MPI_ADDRESS_KIND) lowerbound, sizeofreal

! This part does the work that depends on the locations of B.

! Can be reused while this does not change

CALL MPI_TYPE_GET_EXTENT(MPI_REAL, lowerbound, sizeofreal, ierr)

CALL MPI_WIN_CREATE(B, m*sizeofreal, sizeofreal, MPI_INFO_NULL, &

comm, win, ierr)

! This part does the work that depends on the value of map and

! the locations of the arrays.

! Can be reused while these do not change

! Compute number of entries to be received from each process

DO i=1,p

count(i) = 0

END DO

DO i=1,m

j = map(i)/m+1

count(j) = count(j)+1

END DO

total(1) = 0

DO i=2,p

total(i) = total(i-1) + count(i-1)

END DO

DO i=1,p

count(i) = 0

END DO

! compute origin and target indices of entries.

! entry i at current process is received from location

! k at process (j-1), where map(i) = (j-1)*m + (k-1),

! j = 1..p and k = 1..m

DO i=1,m

j = map(i)/m+1

k = MOD(map(i),m)+1

count(j) = count(j)+1

oindex(total(j) + count(j)) = i
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tindex(total(j) + count(j)) = k

END DO

! create origin and target datatypes for each get operation

DO i=1,p

CALL MPI_TYPE_CREATE_INDEXED_BLOCK(count(i), 1, oindex(total(i)+1), &

MPI_REAL, otype(i), ierr)

CALL MPI_TYPE_COMMIT(otype(i), ierr)

CALL MPI_TYPE_CREATE_INDEXED_BLOCK(count(i), 1, tindex(total(i)+1), &

MPI_REAL, ttype(i), ierr)

CALL MPI_TYPE_COMMIT(ttype(i), ierr)

END DO

! this part does the assignment itself

CALL MPI_WIN_FENCE(0, win, ierr)

DO i=1,p

CALL MPI_GET(A, 1, otype(i), i-1, 0, 1, ttype(i), win, ierr)

END DO

CALL MPI_WIN_FENCE(0, win, ierr)

CALL MPI_WIN_FREE(win, ierr)

DO i=1,p

CALL MPI_TYPE_FREE(otype(i), ierr)

CALL MPI_TYPE_FREE(ttype(i), ierr)

END DO

RETURN

END

Example 11.2 A simpler version can be written that does not require that a datatype
be built for the target buffer. But, one then needs a separate get call for each entry, as
illustrated below. This code is much simpler, but usually much less efficient, for large arrays.

SUBROUTINE MAPVALS(A, B, map, m, comm, p)

USE MPI

INTEGER m, map(m), comm, p

REAL A(m), B(m)

INTEGER win, ierr

INTEGER (KIND=MPI_ADDRESS_KIND) lowerbound, sizeofreal

CALL MPI_TYPE_GET_EXTENT(MPI_REAL, lowerbound, sizeofreal, ierr)

CALL MPI_WIN_CREATE(B, m*sizeofreal, sizeofreal, MPI_INFO_NULL, &

comm, win, ierr)

CALL MPI_WIN_FENCE(0, win, ierr)

DO i=1,m

j = map(i)/p

k = MOD(map(i),p)
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tindex(total(j) + count(j)) = k

END DO

! create origin and target datatypes for each get operation

DO i=1,p

CALL MPI_TYPE_CREATE_INDEXED_BLOCK(count(i), 1, oindex(total(i)+1), &

MPI_REAL, otype(i), ierr)

CALL MPI_TYPE_COMMIT(otype(i), ierr)

CALL MPI_TYPE_CREATE_INDEXED_BLOCK(count(i), 1, tindex(total(i)+1), &

MPI_REAL, ttype(i), ierr)

CALL MPI_TYPE_COMMIT(ttype(i), ierr)

END DO

! this part does the assignment itself

CALL MPI_WIN_FENCE(0, win, ierr)

DO i=1,p

CALL MPI_GET(A, 1, otype(i), i-1, 0, 1, ttype(i), win, ierr)

END DO

CALL MPI_WIN_FENCE(0, win, ierr)

CALL MPI_WIN_FREE(win, ierr)

DO i=1,p

CALL MPI_TYPE_FREE(otype(i), ierr)

CALL MPI_TYPE_FREE(ttype(i), ierr)

END DO

RETURN

END

Example 11.2 A simpler version can be written that does not require that a datatype
be built for the target buffer. But, one then needs a separate get call for each entry, as
illustrated below. This code is much simpler, but usually much less efficient, for large arrays.

SUBROUTINE MAPVALS(A, B, map, m, comm, p)

USE MPI

INTEGER m, map(m), comm, p

REAL A(m), B(m)

INTEGER win, ierr

INTEGER (KIND=MPI_ADDRESS_KIND) lowerbound, sizeofreal

CALL MPI_TYPE_GET_EXTENT(MPI_REAL, lowerbound, sizeofreal, ierr)

CALL MPI_WIN_CREATE(B, m*sizeofreal, sizeofreal, MPI_INFO_NULL, &

comm, win, ierr)

CALL MPI_WIN_FENCE(0, win, ierr)

DO i=1,m

j = map(i)/p

k = MOD(map(i),p)
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CALL MPI_GET(A(i), 1, MPI_REAL, j, k, 1, MPI_REAL, win, ierr)

END DO

CALL MPI_WIN_FENCE(0, win, ierr)

CALL MPI_WIN_FREE(win, ierr)

RETURN

END

11.3.4 Accumulate Functions

It is often useful in a put operation to combine the data moved to the target process with the
data that resides at that process, rather then replacing the data there. This will allow, for
example, the accumulation of a sum by having all involved processes add their contribution
to the sum variable in the memory of one process.

MPI_ACCUMULATE(origin_addr, origin_count, origin_datatype, target_rank, target_disp, tar-
get_count, target_datatype, op, win)

IN origin_addr initial address of buffer (choice)

IN origin_count number of entries in buffer (nonnegative integer)

IN origin_datatype datatype of each buffer entry (handle)

IN target_rank rank of target (nonnegative integer)

IN target_disp displacement from start of window to beginning of tar-

get buffer (nonnegative integer)

IN target_count number of entries in target buffer (nonnegative inte-

ger)

IN target_datatype datatype of each entry in target buffer (handle)

IN op reduce operation (handle)

IN win window object (handle)

int MPI_Accumulate(void *origin_addr, int origin_count,

MPI_Datatype origin_datatype, int target_rank,

MPI_Aint target_disp, int target_count,

MPI_Datatype target_datatype, MPI_Op op, MPI_Win win)

MPI_ACCUMULATE(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,

TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, OP, WIN, IERROR)

<type> ORIGIN_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE,TARGET_RANK, TARGET_COUNT,

TARGET_DATATYPE, OP, WIN, IERROR

void MPI::Win::Accumulate(const void* origin_addr, int origin_count, const

MPI::Datatype& origin_datatype, int target_rank, MPI::Aint

target_disp, int target_count, const MPI::Datatype&

target_datatype, const MPI::Op& op) const
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CALL MPI_GET(A(i), 1, MPI_REAL, j, k, 1, MPI_REAL, win, ierr)

END DO

CALL MPI_WIN_FENCE(0, win, ierr)

CALL MPI_WIN_FREE(win, ierr)

RETURN

END

11.3.4 Accumulate Functions

It is often useful in a put operation to combine the data moved to the target process with the
data that resides at that process, rather then replacing the data there. This will allow, for
example, the accumulation of a sum by having all involved processes add their contribution
to the sum variable in the memory of one process.

MPI_ACCUMULATE(origin_addr, origin_count, origin_datatype, target_rank, target_disp, tar-
get_count, target_datatype, op, win)

IN origin_addr initial address of buffer (choice)

IN origin_count number of entries in buffer (nonnegative integer)

IN origin_datatype datatype of each buffer entry (handle)

IN target_rank rank of target (nonnegative integer)

IN target_disp displacement from start of window to beginning of tar-

get buffer (nonnegative integer)

IN target_count number of entries in target buffer (nonnegative inte-

ger)

IN target_datatype datatype of each entry in target buffer (handle)

IN op reduce operation (handle)

IN win window object (handle)

int MPI_Accumulate(void *origin_addr, int origin_count,

MPI_Datatype origin_datatype, int target_rank,

MPI_Aint target_disp, int target_count,

MPI_Datatype target_datatype, MPI_Op op, MPI_Win win)

MPI_ACCUMULATE(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,

TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, OP, WIN, IERROR)

<type> ORIGIN_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE,TARGET_RANK, TARGET_COUNT,

TARGET_DATATYPE, OP, WIN, IERROR

void MPI::Win::Accumulate(const void* origin_addr, int origin_count, const

MPI::Datatype& origin_datatype, int target_rank, MPI::Aint

target_disp, int target_count, const MPI::Datatype&

target_datatype, const MPI::Op& op) const
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Accumulate the contents of the origin buffer (as defined by origin_addr, origin_count and
origin_datatype) to the buffer specified by arguments target_count and target_datatype, at
offset target_disp, in the target window specified by target_rank and win, using the operation
op. This is like MPI_PUT except that data is combined into the target area instead of
overwriting it.

Any of the predefined operations for MPI_REDUCE can be used. User-defined functions
cannot be used. For example, if op is MPI_SUM, each element of the origin buffer is added
to the corresponding element in the target, replacing the former value in the target.

Each datatype argument must be a predefined datatype or a derived datatype, where
all basic components are of the same predefined datatype. Both datatype arguments must
be constructed from the same predefined datatype. The operation op applies to elements of
that predefined type. target_datatype must not specify overlapping entries, and the target
buffer must fit in the target window.

A new predefined operation, MPI_REPLACE, is defined. It corresponds to the associative
function f(a, b) = b; i.e., the current value in the target memory is replaced by the value
supplied by the origin. MPI_REPLACE, like the other predefined operations, is defined only
for the predefined MPI datatypes.

Rationale. The rationale for this is that, for consistency, MPI_REPLACE should have
the same limitations as the other operations. Extending it to all datatypes doesn’t
provide any real benefit. (End of rationale.)

Advice to users. MPI_PUT is a special case of MPI_ACCUMULATE, with the op-
eration MPI_REPLACE. Note, however, that MPI_PUT and MPI_ACCUMULATE have
different constraints on concurrent updates. (End of advice to users.)

Example 11.3 We want to compute B(j) =
∑

map(i)=j A(i). The arrays A, B and map are
distributed in the same manner. We write the simple version.

SUBROUTINE SUM(A, B, map, m, comm, p)

USE MPI

INTEGER m, map(m), comm, p, win, ierr

REAL A(m), B(m)

INTEGER (KIND=MPI_ADDRESS_KIND) lowerbound, sizeofreal

CALL MPI_TYPE_GET_EXTENT(MPI_REAL, lowerbound, sizeofreal, ierr)

CALL MPI_WIN_CREATE(B, m*sizeofreal, sizeofreal, MPI_INFO_NULL, &

comm, win, ierr)

CALL MPI_WIN_FENCE(0, win, ierr)

DO i=1,m

j = map(i)/p

k = MOD(map(i),p)

CALL MPI_ACCUMULATE(A(i), 1, MPI_REAL, j, k, 1, MPI_REAL, &

MPI_SUM, win, ierr)

END DO

CALL MPI_WIN_FENCE(0, win, ierr)
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Accumulate the contents of the origin buffer (as defined by origin_addr, origin_count and
origin_datatype) to the buffer specified by arguments target_count and target_datatype, at
offset target_disp, in the target window specified by target_rank and win, using the operation
op. This is like MPI_PUT except that data is combined into the target area instead of
overwriting it.

Any of the predefined operations for MPI_REDUCE can be used. User-defined functions
cannot be used. For example, if op is MPI_SUM, each element of the origin buffer is added
to the corresponding element in the target, replacing the former value in the target.

Each datatype argument must be a predefined datatype or a derived datatype, where
all basic components are of the same predefined datatype. Both datatype arguments must
be constructed from the same predefined datatype. The operation op applies to elements of
that predefined type. target_datatype must not specify overlapping entries, and the target
buffer must fit in the target window.

A new predefined operation, MPI_REPLACE, is defined. It corresponds to the associative
function f(a, b) = b; i.e., the current value in the target memory is replaced by the value
supplied by the origin. MPI_REPLACE, like the other predefined operations, is defined only
for the predefined MPI datatypes.

Rationale. The rationale for this is that, for consistency, MPI_REPLACE should have
the same limitations as the other operations. Extending it to all datatypes doesn’t
provide any real benefit. (End of rationale.)

Advice to users. MPI_PUT is a special case of MPI_ACCUMULATE, with the op-
eration MPI_REPLACE. Note, however, that MPI_PUT and MPI_ACCUMULATE have
different constraints on concurrent updates. (End of advice to users.)

Example 11.3 We want to compute B(j) =
∑

map(i)=j A(i). The arrays A, B and map are
distributed in the same manner. We write the simple version.

SUBROUTINE SUM(A, B, map, m, comm, p)

USE MPI

INTEGER m, map(m), comm, p, win, ierr

REAL A(m), B(m)

INTEGER (KIND=MPI_ADDRESS_KIND) lowerbound, sizeofreal

CALL MPI_TYPE_GET_EXTENT(MPI_REAL, lowerbound, sizeofreal, ierr)

CALL MPI_WIN_CREATE(B, m*sizeofreal, sizeofreal, MPI_INFO_NULL, &

comm, win, ierr)

CALL MPI_WIN_FENCE(0, win, ierr)

DO i=1,m

j = map(i)/p

k = MOD(map(i),p)

CALL MPI_ACCUMULATE(A(i), 1, MPI_REAL, j, k, 1, MPI_REAL, &

MPI_SUM, win, ierr)

END DO

CALL MPI_WIN_FENCE(0, win, ierr)
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CALL MPI_WIN_FREE(win, ierr)

RETURN

END

This code is identical to the code in Example 11.2, page 330, except that a call to
get has been replaced by a call to accumulate. (Note that, if map is one-to-one, then the
code computes B = A(map−1), which is the reverse assignment to the one computed in
that previous example.) In a similar manner, we can replace in Example 11.1, page 328,
the call to get by a call to accumulate, thus performing the computation with only one
communication between any two processes.

11.4 Synchronization Calls

RMA communications fall in two categories:

• active target communication, where data is moved from the memory of one process
to the memory of another, and both are explicitly involved in the communication. This
communication pattern is similar to message passing, except that all the data transfer
arguments are provided by one process, and the second process only participates in
the synchronization.

• passive target communication, where data is moved from the memory of one process
to the memory of another, and only the origin process is explicitly involved in the
transfer. Thus, two origin processes may communicate by accessing the same location
in a target window. The process that owns the target window may be distinct from
the two communicating processes, in which case it does not participate explicitly in
the communication. This communication paradigm is closest to a shared memory
model, where shared data can be accessed by all processes, irrespective of location.

RMA communication calls with argument win must occur at a process only within
an access epoch for win. Such an epoch starts with an RMA synchronization call on
win; it proceeds with zero or more RMA communication calls (MPI_PUT,
MPI_GET or MPI_ACCUMULATE) on win; it completes with another synchronization call
on win. This allows users to amortize one synchronization with multiple data transfers and
provide implementors more flexibility in the implementation of RMA operations.

Distinct access epochs for win at the same process must be disjoint. On the other hand,
epochs pertaining to different win arguments may overlap. Local operations or other MPI
calls may also occur during an epoch.

In active target communication, a target window can be accessed by RMA operations
only within an exposure epoch. Such an epoch is started and completed by RMA syn-
chronization calls executed by the target process. Distinct exposure epochs at a process on
the same window must be disjoint, but such an exposure epoch may overlap with exposure
epochs on other windows or with access epochs for the same or other win arguments. There
is a one-to-one matching between access epochs at origin processes and exposure epochs
on target processes: RMA operations issued by an origin process for a target window will
access that target window during the same exposure epoch if and only if they were issued
during the same access epoch.

In passive target communication the target process does not execute RMA synchro-
nization calls, and there is no concept of an exposure epoch.
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CALL MPI_WIN_FREE(win, ierr)

RETURN

END

This code is identical to the code in Example 11.2, page 330, except that a call to
get has been replaced by a call to accumulate. (Note that, if map is one-to-one, then the
code computes B = A(map−1), which is the reverse assignment to the one computed in
that previous example.) In a similar manner, we can replace in Example 11.1, page 328,
the call to get by a call to accumulate, thus performing the computation with only one
communication between any two processes.

11.4 Synchronization Calls

RMA communications fall in two categories:

• active target communication, where data is moved from the memory of one process
to the memory of another, and both are explicitly involved in the communication. This
communication pattern is similar to message passing, except that all the data transfer
arguments are provided by one process, and the second process only participates in
the synchronization.

• passive target communication, where data is moved from the memory of one process
to the memory of another, and only the origin process is explicitly involved in the
transfer. Thus, two origin processes may communicate by accessing the same location
in a target window. The process that owns the target window may be distinct from
the two communicating processes, in which case it does not participate explicitly in
the communication. This communication paradigm is closest to a shared memory
model, where shared data can be accessed by all processes, irrespective of location.

RMA communication calls with argument win must occur at a process only within
an access epoch for win. Such an epoch starts with an RMA synchronization call on
win; it proceeds with zero or more RMA communication calls (MPI_PUT,
MPI_GET or MPI_ACCUMULATE) on win; it completes with another synchronization call
on win. This allows users to amortize one synchronization with multiple data transfers and
provide implementors more flexibility in the implementation of RMA operations.

Distinct access epochs for win at the same process must be disjoint. On the other hand,
epochs pertaining to different win arguments may overlap. Local operations or other MPI
calls may also occur during an epoch.

In active target communication, a target window can be accessed by RMA operations
only within an exposure epoch. Such an epoch is started and completed by RMA syn-
chronization calls executed by the target process. Distinct exposure epochs at a process on
the same window must be disjoint, but such an exposure epoch may overlap with exposure
epochs on other windows or with access epochs for the same or other win arguments. There
is a one-to-one matching between access epochs at origin processes and exposure epochs
on target processes: RMA operations issued by an origin process for a target window will
access that target window during the same exposure epoch if and only if they were issued
during the same access epoch.

In passive target communication the target process does not execute RMA synchro-
nization calls, and there is no concept of an exposure epoch.
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MPI provides three synchronization mechanisms:

1. The MPI_WIN_FENCE collective synchronization call supports a simple synchroniza-
tion pattern that is often used in parallel computations: namely a loosely-synchronous
model, where global computation phases alternate with global communication phases.
This mechanism is most useful for loosely synchronous algorithms where the graph
of communicating processes changes very frequently, or where each process communi-
cates with many others.

This call is used for active target communication. An access epoch at an origin
process or an exposure epoch at a target process are started and completed by calls to
MPI_WIN_FENCE. A process can access windows at all processes in the group of win
during such an access epoch, and the local window can be accessed by all processes
in the group of win during such an exposure epoch.

2. The four functions MPI_WIN_START, MPI_WIN_COMPLETE, MPI_WIN_POST and
MPI_WIN_WAIT can be used to restrict synchronization to the minimum: only pairs
of communicating processes synchronize, and they do so only when a synchronization
is needed to order correctly RMA accesses to a window with respect to local accesses
to that same window. This mechanism may be more efficient when each process
communicates with few (logical) neighbors, and the communication graph is fixed or
changes infrequently.

These calls are used for active target communication. An access epoch is started
at the origin process by a call to MPI_WIN_START and is terminated by a call to
MPI_WIN_COMPLETE. The start call has a group argument that specifies the group
of target processes for that epoch. An exposure epoch is started at the target process
by a call to MPI_WIN_POST and is completed by a call to MPI_WIN_WAIT. The post
call has a group argument that specifies the set of origin processes for that epoch.

3. Finally, shared and exclusive locks are provided by the two functions MPI_WIN_LOCK
and MPI_WIN_UNLOCK. Lock synchronization is useful for MPI applications that
emulate a shared memory model via MPI calls; e.g., in a “billboard” model, where
processes can, at random times, access or update different parts of the billboard.

These two calls provide passive target communication. An access epoch is started by
a call to MPI_WIN_LOCK and terminated by a call to MPI_WIN_UNLOCK. Only one
target window can be accessed during that epoch with win.

Figure 11.1 illustrates the general synchronization pattern for active target communi-
cation. The synchronization between post and start ensures that the put call of the origin
process does not start until the target process exposes the window (with the post call);
the target process will expose the window only after preceding local accesses to the window
have completed. The synchronization between complete and wait ensures that the put call
of the origin process completes before the window is unexposed (with the wait call). The
target process will execute following local accesses to the target window only after the wait
returned.

Figure 11.1 shows operations occurring in the natural temporal order implied by the
synchronizations: the post occurs before the matching start, and complete occurs before
the matching wait. However, such strong synchronization is more than needed for correct
ordering of window accesses. The semantics of MPI calls allow weak synchronization, as
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MPI provides three synchronization mechanisms:

1. The MPI_WIN_FENCE collective synchronization call supports a simple synchroniza-
tion pattern that is often used in parallel computations: namely a loosely-synchronous
model, where global computation phases alternate with global communication phases.
This mechanism is most useful for loosely synchronous algorithms where the graph
of communicating processes changes very frequently, or where each process communi-
cates with many others.

This call is used for active target communication. An access epoch at an origin
process or an exposure epoch at a target process are started and completed by calls to
MPI_WIN_FENCE. A process can access windows at all processes in the group of win
during such an access epoch, and the local window can be accessed by all processes
in the group of win during such an exposure epoch.

2. The four functions MPI_WIN_START, MPI_WIN_COMPLETE, MPI_WIN_POST and
MPI_WIN_WAIT can be used to restrict synchronization to the minimum: only pairs
of communicating processes synchronize, and they do so only when a synchronization
is needed to order correctly RMA accesses to a window with respect to local accesses
to that same window. This mechanism may be more efficient when each process
communicates with few (logical) neighbors, and the communication graph is fixed or
changes infrequently.

These calls are used for active target communication. An access epoch is started
at the origin process by a call to MPI_WIN_START and is terminated by a call to
MPI_WIN_COMPLETE. The start call has a group argument that specifies the group
of target processes for that epoch. An exposure epoch is started at the target process
by a call to MPI_WIN_POST and is completed by a call to MPI_WIN_WAIT. The post
call has a group argument that specifies the set of origin processes for that epoch.

3. Finally, shared and exclusive locks are provided by the two functions MPI_WIN_LOCK
and MPI_WIN_UNLOCK. Lock synchronization is useful for MPI applications that
emulate a shared memory model via MPI calls; e.g., in a “billboard” model, where
processes can, at random times, access or update different parts of the billboard.

These two calls provide passive target communication. An access epoch is started by
a call to MPI_WIN_LOCK and terminated by a call to MPI_WIN_UNLOCK. Only one
target window can be accessed during that epoch with win.

Figure 11.1 illustrates the general synchronization pattern for active target communi-
cation. The synchronization between post and start ensures that the put call of the origin
process does not start until the target process exposes the window (with the post call);
the target process will expose the window only after preceding local accesses to the window
have completed. The synchronization between complete and wait ensures that the put call
of the origin process completes before the window is unexposed (with the wait call). The
target process will execute following local accesses to the target window only after the wait
returned.

Figure 11.1 shows operations occurring in the natural temporal order implied by the
synchronizations: the post occurs before the matching start, and complete occurs before
the matching wait. However, such strong synchronization is more than needed for correct
ordering of window accesses. The semantics of MPI calls allow weak synchronization, as
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Figure 11.1: Active target communication. Dashed arrows represent synchronizations (or-
dering of events).
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illustrated in Figure 11.2. The access to the target window is delayed until the window is ex-
posed, after the post. However the start may complete earlier; the put and complete may
also terminate earlier, if put data is buffered by the implementation. The synchronization
calls order correctly window accesses, but do not necessarily synchronize other operations.
This weaker synchronization semantic allows for more efficient implementations.

Figure 11.3 illustrates the general synchronization pattern for passive target commu-
nication. The first origin process communicates data to the second origin process, through
the memory of the target process; the target process is not explicitly involved in the com-
munication. The lock and unlock calls ensure that the two RMA accesses do not occur
concurrently. However, they do not ensure that the put by origin 1 will precede the get by
origin 2.
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calls order correctly window accesses, but do not necessarily synchronize other operations.
This weaker synchronization semantic allows for more efficient implementations.

Figure 11.3 illustrates the general synchronization pattern for passive target commu-
nication. The first origin process communicates data to the second origin process, through
the memory of the target process; the target process is not explicitly involved in the com-
munication. The lock and unlock calls ensure that the two RMA accesses do not occur
concurrently. However, they do not ensure that the put by origin 1 will precede the get by
origin 2.
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11.4.1 Fence

MPI_WIN_FENCE(assert, win)

IN assert program assertion (integer)

IN win window object (handle)

int MPI_Win_fence(int assert, MPI_Win win)

MPI_WIN_FENCE(ASSERT, WIN, IERROR)

INTEGER ASSERT, WIN, IERROR

void MPI::Win::Fence(int assert) const

The MPI call MPI_WIN_FENCE(assert, win) synchronizes RMA calls on win. The call
is collective on the group of win. All RMA operations on win originating at a given process
and started before the fence call will complete at that process before the fence call returns.
They will be completed at their target before the fence call returns at the target. RMA
operations on win started by a process after the fence call returns will access their target
window only after MPI_WIN_FENCE has been called by the target process.

The call completes an RMA access epoch if it was preceded by another fence call and
the local process issued RMA communication calls on win between these two calls. The call
completes an RMA exposure epoch if it was preceded by another fence call and the local
window was the target of RMA accesses between these two calls. The call starts an RMA
access epoch if it is followed by another fence call and by RMA communication calls issued
between these two fence calls. The call starts an exposure epoch if it is followed by another
fence call and the local window is the target of RMA accesses between these two fence calls.
Thus, the fence call is equivalent to calls to a subset of post, start, complete, wait.

A fence call usually entails a barrier synchronization: a process completes a call to
MPI_WIN_FENCE only after all other processes in the group entered their matching call.
However, a call to MPI_WIN_FENCE that is known not to end any epoch (in particular, a
call with assert = MPI_MODE_NOPRECEDE) does not necessarily act as a barrier.

The assert argument is used to provide assertions on the context of the call that may
be used for various optimizations. This is described in Section 11.4.4. A value of assert =
0 is always valid.

Advice to users. Calls to MPI_WIN_FENCE should both precede and follow calls
to put, get or accumulate that are synchronized with fence calls. (End of advice to
users.)
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11.4.1 Fence

MPI_WIN_FENCE(assert, win)
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between these two fence calls. The call starts an exposure epoch if it is followed by another
fence call and the local window is the target of RMA accesses between these two fence calls.
Thus, the fence call is equivalent to calls to a subset of post, start, complete, wait.

A fence call usually entails a barrier synchronization: a process completes a call to
MPI_WIN_FENCE only after all other processes in the group entered their matching call.
However, a call to MPI_WIN_FENCE that is known not to end any epoch (in particular, a
call with assert = MPI_MODE_NOPRECEDE) does not necessarily act as a barrier.

The assert argument is used to provide assertions on the context of the call that may
be used for various optimizations. This is described in Section 11.4.4. A value of assert =
0 is always valid.

Advice to users. Calls to MPI_WIN_FENCE should both precede and follow calls
to put, get or accumulate that are synchronized with fence calls. (End of advice to
users.)
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11.4.2 General Active Target Synchronization

MPI_WIN_START(group, assert, win)

IN group group of target processes (handle)

IN assert program assertion (integer)

IN win window object (handle)

int MPI_Win_start(MPI_Group group, int assert, MPI_Win win)

MPI_WIN_START(GROUP, ASSERT, WIN, IERROR)

INTEGER GROUP, ASSERT, WIN, IERROR

void MPI::Win::Start(const MPI::Group& group, int assert) const

Starts an RMA access epoch for win. RMA calls issued on win during this epoch must
access only windows at processes in group. Each process in group must issue a matching
call to MPI_WIN_POST. RMA accesses to each target window will be delayed, if necessary,
until the target process executed the matching call to MPI_WIN_POST. MPI_WIN_START
is allowed to block until the corresponding MPI_WIN_POST calls are executed, but is not
required to.

The assert argument is used to provide assertions on the context of the call that may
be used for various optimizations. This is described in Section 11.4.4. A value of assert =
0 is always valid.

MPI_WIN_COMPLETE(win)

IN win window object (handle)

int MPI_Win_complete(MPI_Win win)

MPI_WIN_COMPLETE(WIN, IERROR)

INTEGER WIN, IERROR

void MPI::Win::Complete() const

Completes an RMA access epoch on win started by a call to MPI_WIN_START. All
RMA communication calls issued on win during this epoch will have completed at the origin
when the call returns.

MPI_WIN_COMPLETE enforces completion of preceding RMA calls at the origin, but
not at the target. A put or accumulate call may not have completed at the target when it
has completed at the origin.

Consider the sequence of calls in the example below.

Example 11.4

MPI_Win_start(group, flag, win);

MPI_Put(...,win);

MPI_Win_complete(win);
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11.4.2 General Active Target Synchronization

MPI_WIN_START(group, assert, win)

IN group group of target processes (handle)

IN assert program assertion (integer)

IN win window object (handle)

int MPI_Win_start(MPI_Group group, int assert, MPI_Win win)

MPI_WIN_START(GROUP, ASSERT, WIN, IERROR)

INTEGER GROUP, ASSERT, WIN, IERROR

void MPI::Win::Start(const MPI::Group& group, int assert) const

Starts an RMA access epoch for win. RMA calls issued on win during this epoch must
access only windows at processes in group. Each process in group must issue a matching
call to MPI_WIN_POST. RMA accesses to each target window will be delayed, if necessary,
until the target process executed the matching call to MPI_WIN_POST. MPI_WIN_START
is allowed to block until the corresponding MPI_WIN_POST calls are executed, but is not
required to.

The assert argument is used to provide assertions on the context of the call that may
be used for various optimizations. This is described in Section 11.4.4. A value of assert =
0 is always valid.

MPI_WIN_COMPLETE(win)

IN win window object (handle)

int MPI_Win_complete(MPI_Win win)

MPI_WIN_COMPLETE(WIN, IERROR)

INTEGER WIN, IERROR

void MPI::Win::Complete() const

Completes an RMA access epoch on win started by a call to MPI_WIN_START. All
RMA communication calls issued on win during this epoch will have completed at the origin
when the call returns.

MPI_WIN_COMPLETE enforces completion of preceding RMA calls at the origin, but
not at the target. A put or accumulate call may not have completed at the target when it
has completed at the origin.

Consider the sequence of calls in the example below.

Example 11.4

MPI_Win_start(group, flag, win);

MPI_Put(...,win);

MPI_Win_complete(win);
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The call to MPI_WIN_COMPLETE does not return until the put call has completed
at the origin; and the target window will be accessed by the put operation only after the
call to MPI_WIN_START has matched a call to MPI_WIN_POST by the target process.
This still leaves much choice to implementors. The call to MPI_WIN_START can block
until the matching call to MPI_WIN_POST occurs at all target processes. One can also
have implementations where the call to MPI_WIN_START is nonblocking, but the call to
MPI_PUT blocks until the matching call to MPI_WIN_POST occurred; or implementations
where the first two calls are nonblocking, but the call to MPI_WIN_COMPLETE blocks
until the call to MPI_WIN_POST occurred; or even implementations where all three calls
can complete before any target process called MPI_WIN_POST — the data put must be
buffered, in this last case, so as to allow the put to complete at the origin ahead of its
completion at the target. However, once the call to MPI_WIN_POST is issued, the sequence
above must complete, without further dependencies.

MPI_WIN_POST(group, assert, win)

IN group group of origin processes (handle)

IN assert program assertion (integer)

IN win window object (handle)

int MPI_Win_post(MPI_Group group, int assert, MPI_Win win)

MPI_WIN_POST(GROUP, ASSERT, WIN, IERROR)

INTEGER GROUP, ASSERT, WIN, IERROR

void MPI::Win::Post(const MPI::Group& group, int assert) const

Starts an RMA exposure epoch for the local window associated with win. Only processes
in group should access the window with RMA calls on win during this epoch. Each process
in group must issue a matching call to MPI_WIN_START. MPI_WIN_POST does not block.

MPI_WIN_WAIT(win)

IN win window object (handle)

int MPI_Win_wait(MPI_Win win)

MPI_WIN_WAIT(WIN, IERROR)

INTEGER WIN, IERROR

void MPI::Win::Wait() const

Completes an RMA exposure epoch started by a call to MPI_WIN_POST on win. This
call matches calls to MPI_WIN_COMPLETE(win) issued by each of the origin processes that
were granted access to the window during this epoch. The call to MPI_WIN_WAIT will block
until all matching calls to MPI_WIN_COMPLETE have occurred. This guarantees that all
these origin processes have completed their RMA accesses to the local window. When the
call returns, all these RMA accesses will have completed at the target window.

Figure 11.4 illustrates the use of these four functions. Process 0 puts data in the
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The call to MPI_WIN_COMPLETE does not return until the put call has completed
at the origin; and the target window will be accessed by the put operation only after the
call to MPI_WIN_START has matched a call to MPI_WIN_POST by the target process.
This still leaves much choice to implementors. The call to MPI_WIN_START can block
until the matching call to MPI_WIN_POST occurs at all target processes. One can also
have implementations where the call to MPI_WIN_START is nonblocking, but the call to
MPI_PUT blocks until the matching call to MPI_WIN_POST occurred; or implementations
where the first two calls are nonblocking, but the call to MPI_WIN_COMPLETE blocks
until the call to MPI_WIN_POST occurred; or even implementations where all three calls
can complete before any target process called MPI_WIN_POST — the data put must be
buffered, in this last case, so as to allow the put to complete at the origin ahead of its
completion at the target. However, once the call to MPI_WIN_POST is issued, the sequence
above must complete, without further dependencies.

MPI_WIN_POST(group, assert, win)

IN group group of origin processes (handle)

IN assert program assertion (integer)

IN win window object (handle)

int MPI_Win_post(MPI_Group group, int assert, MPI_Win win)

MPI_WIN_POST(GROUP, ASSERT, WIN, IERROR)

INTEGER GROUP, ASSERT, WIN, IERROR

void MPI::Win::Post(const MPI::Group& group, int assert) const

Starts an RMA exposure epoch for the local window associated with win. Only processes
in group should access the window with RMA calls on win during this epoch. Each process
in group must issue a matching call to MPI_WIN_START. MPI_WIN_POST does not block.

MPI_WIN_WAIT(win)

IN win window object (handle)

int MPI_Win_wait(MPI_Win win)

MPI_WIN_WAIT(WIN, IERROR)

INTEGER WIN, IERROR

void MPI::Win::Wait() const

Completes an RMA exposure epoch started by a call to MPI_WIN_POST on win. This
call matches calls to MPI_WIN_COMPLETE(win) issued by each of the origin processes that
were granted access to the window during this epoch. The call to MPI_WIN_WAIT will block
until all matching calls to MPI_WIN_COMPLETE have occurred. This guarantees that all
these origin processes have completed their RMA accesses to the local window. When the
call returns, all these RMA accesses will have completed at the target window.

Figure 11.4 illustrates the use of these four functions. Process 0 puts data in the
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Figure 11.4: Active target communication. Dashed arrows represent synchronizations and
solid arrows represent data transfer.

windows of processes 1 and 2 and process 3 puts data in the window of process 2. Each
start call lists the ranks of the processes whose windows will be accessed; each post call lists
the ranks of the processes that access the local window. The figure illustrates a possible
timing for the events, assuming strong synchronization; in a weak synchronization, the start,
put or complete calls may occur ahead of the matching post calls.

MPI_WIN_TEST(win, flag)

IN win window object (handle)

OUT flag success flag (logical)

int MPI_Win_test(MPI_Win win, int *flag)

MPI_WIN_TEST(WIN, FLAG, IERROR)

INTEGER WIN, IERROR

LOGICAL FLAG

bool MPI::Win::Test() const

This is the nonblocking version of MPI_WIN_WAIT. It returns flag = true if
MPI_WIN_WAIT would return, flag = false, otherwise. The effect of return of
MPI_WIN_TEST with flag = true is the same as the effect of a return of MPI_WIN_WAIT.
If flag = false is returned, then the call has no visible effect.

MPI_WIN_TEST should be invoked only where MPI_WIN_WAIT can be invoked. Once
the call has returned flag = true, it must not be invoked anew, until the window is posted
anew.

Assume that window win is associated with a “hidden” communicator wincomm, used
for communication by the processes of win. The rules for matching of post and start calls
and for matching complete and wait call can be derived from the rules for matching sends
and receives, by considering the following (partial) model implementation.

MPI_WIN_POST(group,0,win) initiate a nonblocking send with tag tag0 to each process in
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windows of processes 1 and 2 and process 3 puts data in the window of process 2. Each
start call lists the ranks of the processes whose windows will be accessed; each post call lists
the ranks of the processes that access the local window. The figure illustrates a possible
timing for the events, assuming strong synchronization; in a weak synchronization, the start,
put or complete calls may occur ahead of the matching post calls.

MPI_WIN_TEST(win, flag)

IN win window object (handle)

OUT flag success flag (logical)

int MPI_Win_test(MPI_Win win, int *flag)

MPI_WIN_TEST(WIN, FLAG, IERROR)

INTEGER WIN, IERROR

LOGICAL FLAG

bool MPI::Win::Test() const

This is the nonblocking version of MPI_WIN_WAIT. It returns flag = true if
MPI_WIN_WAIT would return, flag = false, otherwise. The effect of return of
MPI_WIN_TEST with flag = true is the same as the effect of a return of MPI_WIN_WAIT.
If flag = false is returned, then the call has no visible effect.

MPI_WIN_TEST should be invoked only where MPI_WIN_WAIT can be invoked. Once
the call has returned flag = true, it must not be invoked anew, until the window is posted
anew.

Assume that window win is associated with a “hidden” communicator wincomm, used
for communication by the processes of win. The rules for matching of post and start calls
and for matching complete and wait call can be derived from the rules for matching sends
and receives, by considering the following (partial) model implementation.

MPI_WIN_POST(group,0,win) initiate a nonblocking send with tag tag0 to each process in
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group, using wincomm. No need to wait for the completion of these sends.

MPI_WIN_START(group,0,win) initiate a nonblocking receive with tag
tag0 from each process in group, using wincomm. An RMA access to a window in
target process i is delayed until the receive from i is completed.

MPI_WIN_COMPLETE(win) initiate a nonblocking send with tag tag1 to each process in
the group of the preceding start call. No need to wait for the completion of these
sends.

MPI_WIN_WAIT(win) initiate a nonblocking receive with tag tag1 from each process in the
group of the preceding post call. Wait for the completion of all receives.

No races can occur in a correct program: each of the sends matches a unique receive,
and vice-versa.

Rationale. The design for general active target synchronization requires the user to
provide complete information on the communication pattern, at each end of a com-
munication link: each origin specifies a list of targets, and each target specifies a list
of origins. This provides maximum flexibility (hence, efficiency) for the implementor:
each synchronization can be initiated by either side, since each “knows” the identity of
the other. This also provides maximum protection from possible races. On the other
hand, the design requires more information than RMA needs, in general: in general,
it is sufficient for the origin to know the rank of the target, but not vice versa. Users
that want more “anonymous” communication will be required to use the fence or lock
mechanisms. (End of rationale.)

Advice to users. Assume a communication pattern that is represented by a di-
rected graph G = < V,E >, where V = {0, . . . , n − 1} and ij ∈ E if origin
process i accesses the window at target process j. Then each process i issues a
call to MPI_WIN_POST(ingroupi, . . . ), followed by a call to
MPI_WIN_START(outgroupi,. . . ), where outgroupi = {j : ij ∈ E} and ingroupi =
{j : ji ∈ E}. A call is a noop, and can be skipped, if the group argument is empty.
After the communications calls, each process that issued a start will issue a complete.
Finally, each process that issued a post will issue a wait.

Note that each process may call with a group argument that has different members.
(End of advice to users.)

11.4.3 Lock

MPI_WIN_LOCK(lock_type, rank, assert, win)

IN lock_type either MPI_LOCK_EXCLUSIVE or

MPI_LOCK_SHARED (state)

IN rank rank of locked window (nonnegative integer)

IN assert program assertion (integer)

IN win window object (handle)
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group, using wincomm. No need to wait for the completion of these sends.

MPI_WIN_START(group,0,win) initiate a nonblocking receive with tag
tag0 from each process in group, using wincomm. An RMA access to a window in
target process i is delayed until the receive from i is completed.

MPI_WIN_COMPLETE(win) initiate a nonblocking send with tag tag1 to each process in
the group of the preceding start call. No need to wait for the completion of these
sends.

MPI_WIN_WAIT(win) initiate a nonblocking receive with tag tag1 from each process in the
group of the preceding post call. Wait for the completion of all receives.

No races can occur in a correct program: each of the sends matches a unique receive,
and vice-versa.

Rationale. The design for general active target synchronization requires the user to
provide complete information on the communication pattern, at each end of a com-
munication link: each origin specifies a list of targets, and each target specifies a list
of origins. This provides maximum flexibility (hence, efficiency) for the implementor:
each synchronization can be initiated by either side, since each “knows” the identity of
the other. This also provides maximum protection from possible races. On the other
hand, the design requires more information than RMA needs, in general: in general,
it is sufficient for the origin to know the rank of the target, but not vice versa. Users
that want more “anonymous” communication will be required to use the fence or lock
mechanisms. (End of rationale.)
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rected graph G = < V,E >, where V = {0, . . . , n − 1} and ij ∈ E if origin
process i accesses the window at target process j. Then each process i issues a
call to MPI_WIN_POST(ingroupi, . . . ), followed by a call to
MPI_WIN_START(outgroupi,. . . ), where outgroupi = {j : ij ∈ E} and ingroupi =
{j : ji ∈ E}. A call is a noop, and can be skipped, if the group argument is empty.
After the communications calls, each process that issued a start will issue a complete.
Finally, each process that issued a post will issue a wait.

Note that each process may call with a group argument that has different members.
(End of advice to users.)

11.4.3 Lock

MPI_WIN_LOCK(lock_type, rank, assert, win)

IN lock_type either MPI_LOCK_EXCLUSIVE or

MPI_LOCK_SHARED (state)

IN rank rank of locked window (nonnegative integer)

IN assert program assertion (integer)

IN win window object (handle)
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int MPI_Win_lock(int lock_type, int rank, int assert, MPI_Win win)

MPI_WIN_LOCK(LOCK_TYPE, RANK, ASSERT, WIN, IERROR)

INTEGER LOCK_TYPE, RANK, ASSERT, WIN, IERROR

void MPI::Win::Lock(int lock_type, int rank, int assert) const

Starts an RMA access epoch. Only the window at the process with rank rank can be
accessed by RMA operations on win during that epoch.

MPI_WIN_UNLOCK(rank, win)

IN rank rank of window (nonnegative integer)

IN win window object (handle)

int MPI_Win_unlock(int rank, MPI_Win win)

MPI_WIN_UNLOCK(RANK, WIN, IERROR)

INTEGER RANK, WIN, IERROR

void MPI::Win::Unlock(int rank) const

Completes an RMA access epoch started by a call to MPI_WIN_LOCK(...,win). RMA
operations issued during this period will have completed both at the origin and at the target
when the call returns.

Locks are used to protect accesses to the locked target window effected by RMA calls
issued between the lock and unlock call, and to protect local load/store accesses to a locked
local window executed between the lock and unlock call. Accesses that are protected by
an exclusive lock will not be concurrent at the window site with other accesses to the same
window that are lock protected. Accesses that are protected by a shared lock will not be
concurrent at the window site with accesses protected by an exclusive lock to the same
window.

It is erroneous to have a window locked and exposed (in an exposure epoch) concur-
rently. I.e., a process may not call MPI_WIN_LOCK to lock a target window if the target
process has called MPI_WIN_POST and has not yet called MPI_WIN_WAIT; it is erroneous
to call MPI_WIN_POST while the local window is locked.

Rationale. An alternative is to require MPI to enforce mutual exclusion between
exposure epochs and locking periods. But this would entail additional overheads
when locks or active target synchronization do not interact in support of those rare
interactions between the two mechanisms. The programming style that we encourage
here is that a set of windows is used with only one synchronization mechanism at
a time, with shifts from one mechanism to another being rare and involving global
synchronization. (End of rationale.)

Advice to users. Users need to use explicit synchronization code in order to enforce
mutual exclusion between locking periods and exposure epochs on a window. (End of
advice to users.)

Implementors may restrict the use of RMA communication that is synchronized by lock
calls to windows in memory allocated by MPI_ALLOC_MEM (Section 8.2, page 262). Locks
can be used portably only in such memory.
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Completes an RMA access epoch started by a call to MPI_WIN_LOCK(...,win). RMA
operations issued during this period will have completed both at the origin and at the target
when the call returns.

Locks are used to protect accesses to the locked target window effected by RMA calls
issued between the lock and unlock call, and to protect local load/store accesses to a locked
local window executed between the lock and unlock call. Accesses that are protected by
an exclusive lock will not be concurrent at the window site with other accesses to the same
window that are lock protected. Accesses that are protected by a shared lock will not be
concurrent at the window site with accesses protected by an exclusive lock to the same
window.

It is erroneous to have a window locked and exposed (in an exposure epoch) concur-
rently. I.e., a process may not call MPI_WIN_LOCK to lock a target window if the target
process has called MPI_WIN_POST and has not yet called MPI_WIN_WAIT; it is erroneous
to call MPI_WIN_POST while the local window is locked.

Rationale. An alternative is to require MPI to enforce mutual exclusion between
exposure epochs and locking periods. But this would entail additional overheads
when locks or active target synchronization do not interact in support of those rare
interactions between the two mechanisms. The programming style that we encourage
here is that a set of windows is used with only one synchronization mechanism at
a time, with shifts from one mechanism to another being rare and involving global
synchronization. (End of rationale.)

Advice to users. Users need to use explicit synchronization code in order to enforce
mutual exclusion between locking periods and exposure epochs on a window. (End of
advice to users.)

Implementors may restrict the use of RMA communication that is synchronized by lock
calls to windows in memory allocated by MPI_ALLOC_MEM (Section 8.2, page 262). Locks
can be used portably only in such memory.
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Rationale. The implementation of passive target communication when memory is
not shared requires an asynchronous agent. Such an agent can be implemented more
easily, and can achieve better performance, if restricted to specially allocated memory.
It can be avoided altogether if shared memory is used. It seems natural to impose
restrictions that allows one to use shared memory for 3-rd party communication in
shared memory machines.

The downside of this decision is that passive target communication cannot be used
without taking advantage of nonstandard Fortran features: namely, the availability
of C-like pointers; these are not supported by some Fortran compilers (g77 and Win-
dows/NT compilers, at the time of writing). Also, passive target communication
cannot be portably targeted to COMMON blocks, or other statically declared Fortran
arrays. (End of rationale.)

Consider the sequence of calls in the example below.

Example 11.5

MPI_Win_lock(MPI_LOCK_EXCLUSIVE, rank, assert, win)

MPI_Put(..., rank, ..., win)

MPI_Win_unlock(rank, win)

The call to MPI_WIN_UNLOCK will not return until the put transfer has completed at
the origin and at the target. This still leaves much freedom to implementors. The call to
MPI_WIN_LOCK may block until an exclusive lock on the window is acquired; or, the call
MPI_WIN_LOCK may not block, while the call to MPI_PUT blocks until a lock is acquired;
or, the first two calls may not block, while MPI_WIN_UNLOCK blocks until a lock is acquired
— the update of the target window is then postponed until the call to MPI_WIN_UNLOCK
occurs. However, if the call to MPI_WIN_LOCK is used to lock a local window, then the call
must block until the lock is acquired, since the lock may protect local load/store accesses
to the window issued after the lock call returns.

11.4.4 Assertions

The assert argument in the calls MPI_WIN_POST, MPI_WIN_START, MPI_WIN_FENCE
and MPI_WIN_LOCK is used to provide assertions on the context of the call that may be
used to optimize performance. The assert argument does not change program semantics
if it provides correct information on the program — it is erroneous to provides incorrect
information. Users may always provide assert = 0 to indicate a general case, where no
guarantees are made.

Advice to users. Many implementations may not take advantage of the information
in assert; some of the information is relevant only for noncoherent, shared memory ma-
chines. Users should consult their implementation manual to find which information
is useful on each system. On the other hand, applications that provide correct asser-
tions whenever applicable are portable and will take advantage of assertion specific
optimizations, whenever available. (End of advice to users.)

Advice to implementors. Implementations can always ignore the
assert argument. Implementors should document which assert values are significant
on their implementation. (End of advice to implementors.)
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Rationale. The implementation of passive target communication when memory is
not shared requires an asynchronous agent. Such an agent can be implemented more
easily, and can achieve better performance, if restricted to specially allocated memory.
It can be avoided altogether if shared memory is used. It seems natural to impose
restrictions that allows one to use shared memory for 3-rd party communication in
shared memory machines.

The downside of this decision is that passive target communication cannot be used
without taking advantage of nonstandard Fortran features: namely, the availability
of C-like pointers; these are not supported by some Fortran compilers (g77 and Win-
dows/NT compilers, at the time of writing). Also, passive target communication
cannot be portably targeted to COMMON blocks, or other statically declared Fortran
arrays. (End of rationale.)

Consider the sequence of calls in the example below.

Example 11.5

MPI_Win_lock(MPI_LOCK_EXCLUSIVE, rank, assert, win)

MPI_Put(..., rank, ..., win)

MPI_Win_unlock(rank, win)

The call to MPI_WIN_UNLOCK will not return until the put transfer has completed at
the origin and at the target. This still leaves much freedom to implementors. The call to
MPI_WIN_LOCK may block until an exclusive lock on the window is acquired; or, the call
MPI_WIN_LOCK may not block, while the call to MPI_PUT blocks until a lock is acquired;
or, the first two calls may not block, while MPI_WIN_UNLOCK blocks until a lock is acquired
— the update of the target window is then postponed until the call to MPI_WIN_UNLOCK
occurs. However, if the call to MPI_WIN_LOCK is used to lock a local window, then the call
must block until the lock is acquired, since the lock may protect local load/store accesses
to the window issued after the lock call returns.

11.4.4 Assertions

The assert argument in the calls MPI_WIN_POST, MPI_WIN_START, MPI_WIN_FENCE
and MPI_WIN_LOCK is used to provide assertions on the context of the call that may be
used to optimize performance. The assert argument does not change program semantics
if it provides correct information on the program — it is erroneous to provides incorrect
information. Users may always provide assert = 0 to indicate a general case, where no
guarantees are made.

Advice to users. Many implementations may not take advantage of the information
in assert; some of the information is relevant only for noncoherent, shared memory ma-
chines. Users should consult their implementation manual to find which information
is useful on each system. On the other hand, applications that provide correct asser-
tions whenever applicable are portable and will take advantage of assertion specific
optimizations, whenever available. (End of advice to users.)

Advice to implementors. Implementations can always ignore the
assert argument. Implementors should document which assert values are significant
on their implementation. (End of advice to implementors.)
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assert is the bit-vector OR of zero or more of the following integer constants:
MPI_MODE_NOCHECK, MPI_MODE_NOSTORE, MPI_MODE_NOPUT,
MPI_MODE_NOPRECEDE and MPI_MODE_NOSUCCEED. The significant options are listed
below, for each call.

Advice to users. C/C++ users can use bit vector or (|) to combine these constants;
Fortran 90 users can use the bit-vector IOR intrinsic. Fortran 77 users can use (non-
portably) bit vector IOR on systems that support it. Alternatively, Fortran users can
portably use integer addition to OR the constants (each constant should appear at
most once in the addition!). (End of advice to users.)

MPI_WIN_START:

MPI_MODE_NOCHECK — the matching calls to MPI_WIN_POST have already com-
pleted on all target processes when the call to MPI_WIN_START is made. The
nocheck option can be specified in a start call if and only if it is specified in
each matching post call. This is similar to the optimization of “ready-send” that
may save a handshake when the handshake is implicit in the code. (However,
ready-send is matched by a regular receive, whereas both start and post must
specify the nocheck option.)

MPI_WIN_POST:

MPI_MODE_NOCHECK — the matching calls to MPI_WIN_START have not yet oc-
curred on any origin processes when the call to MPI_WIN_POST is made. The
nocheck option can be specified by a post call if and only if it is specified by each
matching start call.

MPI_MODE_NOSTORE — the local window was not updated by local stores (or local
get or receive calls) since last synchronization. This may avoid the need for cache
synchronization at the post call.

MPI_MODE_NOPUT — the local window will not be updated by put or accumulate
calls after the post call, until the ensuing (wait) synchronization. This may avoid
the need for cache synchronization at the wait call.

MPI_WIN_FENCE:

MPI_MODE_NOSTORE — the local window was not updated by local stores (or local
get or receive calls) since last synchronization.

MPI_MODE_NOPUT — the local window will not be updated by put or accumulate
calls after the fence call, until the ensuing (fence) synchronization.

MPI_MODE_NOPRECEDE — the fence does not complete any sequence of locally issued
RMA calls. If this assertion is given by any process in the window group, then it
must be given by all processes in the group.

MPI_MODE_NOSUCCEED — the fence does not start any sequence of locally issued
RMA calls. If the assertion is given by any process in the window group, then it
must be given by all processes in the group.

MPI_WIN_LOCK:
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assert is the bit-vector OR of zero or more of the following integer constants:
MPI_MODE_NOCHECK, MPI_MODE_NOSTORE, MPI_MODE_NOPUT,
MPI_MODE_NOPRECEDE and MPI_MODE_NOSUCCEED. The significant options are listed
below, for each call.

Advice to users. C/C++ users can use bit vector or (|) to combine these constants;
Fortran 90 users can use the bit-vector IOR intrinsic. Fortran 77 users can use (non-
portably) bit vector IOR on systems that support it. Alternatively, Fortran users can
portably use integer addition to OR the constants (each constant should appear at
most once in the addition!). (End of advice to users.)

MPI_WIN_START:

MPI_MODE_NOCHECK — the matching calls to MPI_WIN_POST have already com-
pleted on all target processes when the call to MPI_WIN_START is made. The
nocheck option can be specified in a start call if and only if it is specified in
each matching post call. This is similar to the optimization of “ready-send” that
may save a handshake when the handshake is implicit in the code. (However,
ready-send is matched by a regular receive, whereas both start and post must
specify the nocheck option.)

MPI_WIN_POST:

MPI_MODE_NOCHECK — the matching calls to MPI_WIN_START have not yet oc-
curred on any origin processes when the call to MPI_WIN_POST is made. The
nocheck option can be specified by a post call if and only if it is specified by each
matching start call.

MPI_MODE_NOSTORE — the local window was not updated by local stores (or local
get or receive calls) since last synchronization. This may avoid the need for cache
synchronization at the post call.

MPI_MODE_NOPUT — the local window will not be updated by put or accumulate
calls after the post call, until the ensuing (wait) synchronization. This may avoid
the need for cache synchronization at the wait call.

MPI_WIN_FENCE:

MPI_MODE_NOSTORE — the local window was not updated by local stores (or local
get or receive calls) since last synchronization.

MPI_MODE_NOPUT — the local window will not be updated by put or accumulate
calls after the fence call, until the ensuing (fence) synchronization.

MPI_MODE_NOPRECEDE — the fence does not complete any sequence of locally issued
RMA calls. If this assertion is given by any process in the window group, then it
must be given by all processes in the group.

MPI_MODE_NOSUCCEED — the fence does not start any sequence of locally issued
RMA calls. If the assertion is given by any process in the window group, then it
must be given by all processes in the group.

MPI_WIN_LOCK:
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MPI_MODE_NOCHECK — no other process holds, or will attempt to acquire a con-
flicting lock, while the caller holds the window lock. This is useful when mutual
exclusion is achieved by other means, but the coherence operations that may be
attached to the lock and unlock calls are still required.

Advice to users. Note that the nostore and noprecede flags provide information on
what happened before the call; the noput and nosucceed flags provide information on
what will happen after the call. (End of advice to users.)

11.4.5 Miscellaneous Clarifications

Once an RMA routine completes, it is safe to free any opaque objects passed as argument
to that routine. For example, the datatype argument of a MPI_PUT call can be freed as
soon as the call returns, even though the communication may not be complete.

As in message-passing, datatypes must be committed before they can be used in RMA
communication.

11.5 Examples

Example 11.6 The following example shows a generic loosely synchronous, iterative code,
using fence synchronization. The window at each process consists of array A, which contains
the origin and target buffers of the put calls.

...

while(!converged(A)){

update(A);

MPI_Win_fence(MPI_MODE_NOPRECEDE, win);

for(i=0; i < toneighbors; i++)

MPI_Put(&frombuf[i], 1, fromtype[i], toneighbor[i],

todisp[i], 1, totype[i], win);

MPI_Win_fence((MPI_MODE_NOSTORE | MPI_MODE_NOSUCCEED), win);

}

The same code could be written with get, rather than put. Note that, during the commu-
nication phase, each window is concurrently read (as origin buffer of puts) and written (as
target buffer of puts). This is OK, provided that there is no overlap between the target
buffer of a put and another communication buffer.

Example 11.7 Same generic example, with more computation/communication overlap.
We assume that the update phase is broken in two subphases: the first, where the “bound-
ary,” which is involved in communication, is updated, and the second, where the “core,”
which neither use nor provide communicated data, is updated.

...

while(!converged(A)){

update_boundary(A);

MPI_Win_fence((MPI_MODE_NOPUT | MPI_MODE_NOPRECEDE), win);

for(i=0; i < fromneighbors; i++)

MPI_Get(&tobuf[i], 1, totype[i], fromneighbor[i],
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MPI_MODE_NOCHECK — no other process holds, or will attempt to acquire a con-
flicting lock, while the caller holds the window lock. This is useful when mutual
exclusion is achieved by other means, but the coherence operations that may be
attached to the lock and unlock calls are still required.

Advice to users. Note that the nostore and noprecede flags provide information on
what happened before the call; the noput and nosucceed flags provide information on
what will happen after the call. (End of advice to users.)

11.4.5 Miscellaneous Clarifications

Once an RMA routine completes, it is safe to free any opaque objects passed as argument
to that routine. For example, the datatype argument of a MPI_PUT call can be freed as
soon as the call returns, even though the communication may not be complete.

As in message-passing, datatypes must be committed before they can be used in RMA
communication.

11.5 Examples

Example 11.6 The following example shows a generic loosely synchronous, iterative code,
using fence synchronization. The window at each process consists of array A, which contains
the origin and target buffers of the put calls.

...

while(!converged(A)){

update(A);

MPI_Win_fence(MPI_MODE_NOPRECEDE, win);

for(i=0; i < toneighbors; i++)

MPI_Put(&frombuf[i], 1, fromtype[i], toneighbor[i],

todisp[i], 1, totype[i], win);

MPI_Win_fence((MPI_MODE_NOSTORE | MPI_MODE_NOSUCCEED), win);

}

The same code could be written with get, rather than put. Note that, during the commu-
nication phase, each window is concurrently read (as origin buffer of puts) and written (as
target buffer of puts). This is OK, provided that there is no overlap between the target
buffer of a put and another communication buffer.

Example 11.7 Same generic example, with more computation/communication overlap.
We assume that the update phase is broken in two subphases: the first, where the “bound-
ary,” which is involved in communication, is updated, and the second, where the “core,”
which neither use nor provide communicated data, is updated.

...

while(!converged(A)){

update_boundary(A);

MPI_Win_fence((MPI_MODE_NOPUT | MPI_MODE_NOPRECEDE), win);

for(i=0; i < fromneighbors; i++)

MPI_Get(&tobuf[i], 1, totype[i], fromneighbor[i],
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fromdisp[i], 1, fromtype[i], win);

update_core(A);

MPI_Win_fence(MPI_MODE_NOSUCCEED, win);

}

The get communication can be concurrent with the core update, since they do not access the
same locations, and the local update of the origin buffer by the get call can be concurrent
with the local update of the core by the update_core call. In order to get similar overlap
with put communication we would need to use separate windows for the core and for the
boundary. This is required because we do not allow local stores to be concurrent with puts
on the same, or on overlapping, windows.

Example 11.8 Same code as in Example 11.6, rewritten using post-start-complete-wait.

...

while(!converged(A)){

update(A);

MPI_Win_post(fromgroup, 0, win);

MPI_Win_start(togroup, 0, win);

for(i=0; i < toneighbors; i++)

MPI_Put(&frombuf[i], 1, fromtype[i], toneighbor[i],

todisp[i], 1, totype[i], win);

MPI_Win_complete(win);

MPI_Win_wait(win);

}

Example 11.9 Same example, with split phases, as in Example 11.7.

...

while(!converged(A)){

update_boundary(A);

MPI_Win_post(togroup, MPI_MODE_NOPUT, win);

MPI_Win_start(fromgroup, 0, win);

for(i=0; i < fromneighbors; i++)

MPI_Get(&tobuf[i], 1, totype[i], fromneighbor[i],

fromdisp[i], 1, fromtype[i], win);

update_core(A);

MPI_Win_complete(win);

MPI_Win_wait(win);

}

Example 11.10 A checkerboard, or double buffer communication pattern, that allows
more computation/communication overlap. Array A0 is updated using values of array A1,
and vice versa. We assume that communication is symmetric: if process A gets data from
process B, then process B gets data from process A. Window wini consists of array Ai.

...

if (!converged(A0,A1))

MPI_Win_post(neighbors, (MPI_MODE_NOCHECK | MPI_MODE_NOPUT), win0);

MPI_Barrier(comm0);
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fromdisp[i], 1, fromtype[i], win);

update_core(A);

MPI_Win_fence(MPI_MODE_NOSUCCEED, win);

}

The get communication can be concurrent with the core update, since they do not access the
same locations, and the local update of the origin buffer by the get call can be concurrent
with the local update of the core by the update_core call. In order to get similar overlap
with put communication we would need to use separate windows for the core and for the
boundary. This is required because we do not allow local stores to be concurrent with puts
on the same, or on overlapping, windows.

Example 11.8 Same code as in Example 11.6, rewritten using post-start-complete-wait.

...

while(!converged(A)){

update(A);

MPI_Win_post(fromgroup, 0, win);

MPI_Win_start(togroup, 0, win);

for(i=0; i < toneighbors; i++)

MPI_Put(&frombuf[i], 1, fromtype[i], toneighbor[i],

todisp[i], 1, totype[i], win);

MPI_Win_complete(win);

MPI_Win_wait(win);

}

Example 11.9 Same example, with split phases, as in Example 11.7.

...

while(!converged(A)){

update_boundary(A);

MPI_Win_post(togroup, MPI_MODE_NOPUT, win);

MPI_Win_start(fromgroup, 0, win);

for(i=0; i < fromneighbors; i++)

MPI_Get(&tobuf[i], 1, totype[i], fromneighbor[i],

fromdisp[i], 1, fromtype[i], win);

update_core(A);

MPI_Win_complete(win);

MPI_Win_wait(win);

}

Example 11.10 A checkerboard, or double buffer communication pattern, that allows
more computation/communication overlap. Array A0 is updated using values of array A1,
and vice versa. We assume that communication is symmetric: if process A gets data from
process B, then process B gets data from process A. Window wini consists of array Ai.

...

if (!converged(A0,A1))

MPI_Win_post(neighbors, (MPI_MODE_NOCHECK | MPI_MODE_NOPUT), win0);

MPI_Barrier(comm0);
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/* the barrier is needed because the start call inside the

loop uses the nocheck option */

while(!converged(A0, A1)){

/* communication on A0 and computation on A1 */

update2(A1, A0); /* local update of A1 that depends on A0 (and A1) */

MPI_Win_start(neighbors, MPI_MODE_NOCHECK, win0);

for(i=0; i < neighbors; i++)

MPI_Get(&tobuf0[i], 1, totype0[i], neighbor[i],

fromdisp0[i], 1, fromtype0[i], win0);

update1(A1); /* local update of A1 that is

concurrent with communication that updates A0 */

MPI_Win_post(neighbors, (MPI_MODE_NOCHECK | MPI_MODE_NOPUT), win1);

MPI_Win_complete(win0);

MPI_Win_wait(win0);

/* communication on A1 and computation on A0 */

update2(A0, A1); /* local update of A0 that depends on A1 (and A0)*/

MPI_Win_start(neighbors, MPI_MODE_NOCHECK, win1);

for(i=0; i < neighbors; i++)

MPI_Get(&tobuf1[i], 1, totype1[i], neighbor[i],

fromdisp1[i], 1, fromtype1[i], win1);

update1(A0); /* local update of A0 that depends on A0 only,

concurrent with communication that updates A1 */

if (!converged(A0,A1))

MPI_Win_post(neighbors, (MPI_MODE_NOCHECK | MPI_MODE_NOPUT), win0);

MPI_Win_complete(win1);

MPI_Win_wait(win1);

}

A process posts the local window associated with win0 before it completes RMA accesses
to the remote windows associated with win1. When the wait(win1) call returns, then all
neighbors of the calling process have posted the windows associated with win0. Conversely,
when the wait(win0) call returns, then all neighbors of the calling process have posted the
windows associated with win1. Therefore, the nocheck option can be used with the calls to
MPI_WIN_START.

Put calls can be used, instead of get calls, if the area of array A0 (resp. A1) used by
the update(A1, A0) (resp. update(A0, A1)) call is disjoint from the area modified by the
RMA communication. On some systems, a put call may be more efficient than a get call,
as it requires information exchange only in one direction.

11.6 Error Handling

11.6.1 Error Handlers

Errors occurring during calls to MPI_WIN_CREATE(...,comm,...) cause the error handler
currently associated with comm to be invoked. All other RMA calls have an input win
argument. When an error occurs during such a call, the error handler currently associated
with win is invoked.
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/* the barrier is needed because the start call inside the

loop uses the nocheck option */

while(!converged(A0, A1)){

/* communication on A0 and computation on A1 */

update2(A1, A0); /* local update of A1 that depends on A0 (and A1) */

MPI_Win_start(neighbors, MPI_MODE_NOCHECK, win0);

for(i=0; i < neighbors; i++)

MPI_Get(&tobuf0[i], 1, totype0[i], neighbor[i],

fromdisp0[i], 1, fromtype0[i], win0);

update1(A1); /* local update of A1 that is

concurrent with communication that updates A0 */

MPI_Win_post(neighbors, (MPI_MODE_NOCHECK | MPI_MODE_NOPUT), win1);

MPI_Win_complete(win0);

MPI_Win_wait(win0);

/* communication on A1 and computation on A0 */

update2(A0, A1); /* local update of A0 that depends on A1 (and A0)*/

MPI_Win_start(neighbors, MPI_MODE_NOCHECK, win1);

for(i=0; i < neighbors; i++)

MPI_Get(&tobuf1[i], 1, totype1[i], neighbor[i],

fromdisp1[i], 1, fromtype1[i], win1);

update1(A0); /* local update of A0 that depends on A0 only,

concurrent with communication that updates A1 */

if (!converged(A0,A1))

MPI_Win_post(neighbors, (MPI_MODE_NOCHECK | MPI_MODE_NOPUT), win0);

MPI_Win_complete(win1);

MPI_Win_wait(win1);

}

A process posts the local window associated with win0 before it completes RMA accesses
to the remote windows associated with win1. When the wait(win1) call returns, then all
neighbors of the calling process have posted the windows associated with win0. Conversely,
when the wait(win0) call returns, then all neighbors of the calling process have posted the
windows associated with win1. Therefore, the nocheck option can be used with the calls to
MPI_WIN_START.

Put calls can be used, instead of get calls, if the area of array A0 (resp. A1) used by
the update(A1, A0) (resp. update(A0, A1)) call is disjoint from the area modified by the
RMA communication. On some systems, a put call may be more efficient than a get call,
as it requires information exchange only in one direction.

11.6 Error Handling

11.6.1 Error Handlers

Errors occurring during calls to MPI_WIN_CREATE(...,comm,...) cause the error handler
currently associated with comm to be invoked. All other RMA calls have an input win
argument. When an error occurs during such a call, the error handler currently associated
with win is invoked.
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The default error handler associated with win is MPI_ERRORS_ARE_FATAL. Users may
change this default by explicitly associating a new error handler with win (see Section 8.3,
page 264).

11.6.2 Error Classes

The following error classes for one-sided communication are defined

MPI_ERR_WIN invalid win argument
MPI_ERR_BASE invalid base argument
MPI_ERR_SIZE invalid size argument
MPI_ERR_DISP invalid disp argument
MPI_ERR_LOCKTYPE invalid locktype argument
MPI_ERR_ASSERT invalid assert argument
MPI_ERR_RMA_CONFLICT conflicting accesses to window
MPI_ERR_RMA_SYNC wrong synchronization of RMA calls

Table 11.1: Error classes in one-sided communication routines

11.7 Semantics and Correctness

The semantics of RMA operations is best understood by assuming that the system maintains
a separate public copy of each window, in addition to the original location in process memory
(the private window copy). There is only one instance of each variable in process memory,
but a distinct public copy of the variable for each window that contains it. A load accesses
the instance in process memory (this includes MPI sends). A store accesses and updates
the instance in process memory (this includes MPI receives), but the update may affect
other public copies of the same locations. A get on a window accesses the public copy of
that window. A put or accumulate on a window accesses and updates the public copy of
that window, but the update may affect the private copy of the same locations in process
memory, and public copies of other overlapping windows. This is illustrated in Figure 11.5.

The following rules specify the latest time at which an operation must complete at the
origin or the target. The update performed by a get call in the origin process memory is
visible when the get operation is complete at the origin (or earlier); the update performed
by a put or accumulate call in the public copy of the target window is visible when the put
or accumulate has completed at the target (or earlier). The rules also specify the latest
time at which an update of one window copy becomes visible in another overlapping copy.

1. An RMA operation is completed at the origin by the ensuing call to
MPI_WIN_COMPLETE, MPI_WIN_FENCE or MPI_WIN_UNLOCK that synchronizes
this access at the origin.

2. If an RMA operation is completed at the origin by a call to MPI_WIN_FENCE then
the operation is completed at the target by the matching call to MPI_WIN_FENCE by
the target process.
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The default error handler associated with win is MPI_ERRORS_ARE_FATAL. Users may
change this default by explicitly associating a new error handler with win (see Section 8.3,
page 264).

11.6.2 Error Classes

The following error classes for one-sided communication are defined

MPI_ERR_WIN invalid win argument
MPI_ERR_BASE invalid base argument
MPI_ERR_SIZE invalid size argument
MPI_ERR_DISP invalid disp argument
MPI_ERR_LOCKTYPE invalid locktype argument
MPI_ERR_ASSERT invalid assert argument
MPI_ERR_RMA_CONFLICT conflicting accesses to window
MPI_ERR_RMA_SYNC wrong synchronization of RMA calls

Table 11.1: Error classes in one-sided communication routines

11.7 Semantics and Correctness

The semantics of RMA operations is best understood by assuming that the system maintains
a separate public copy of each window, in addition to the original location in process memory
(the private window copy). There is only one instance of each variable in process memory,
but a distinct public copy of the variable for each window that contains it. A load accesses
the instance in process memory (this includes MPI sends). A store accesses and updates
the instance in process memory (this includes MPI receives), but the update may affect
other public copies of the same locations. A get on a window accesses the public copy of
that window. A put or accumulate on a window accesses and updates the public copy of
that window, but the update may affect the private copy of the same locations in process
memory, and public copies of other overlapping windows. This is illustrated in Figure 11.5.

The following rules specify the latest time at which an operation must complete at the
origin or the target. The update performed by a get call in the origin process memory is
visible when the get operation is complete at the origin (or earlier); the update performed
by a put or accumulate call in the public copy of the target window is visible when the put
or accumulate has completed at the target (or earlier). The rules also specify the latest
time at which an update of one window copy becomes visible in another overlapping copy.

1. An RMA operation is completed at the origin by the ensuing call to
MPI_WIN_COMPLETE, MPI_WIN_FENCE or MPI_WIN_UNLOCK that synchronizes
this access at the origin.

2. If an RMA operation is completed at the origin by a call to MPI_WIN_FENCE then
the operation is completed at the target by the matching call to MPI_WIN_FENCE by
the target process.
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Figure 11.5: Schematic description of window

3. If an RMA operation is completed at the origin by a call to MPI_WIN_COMPLETE
then the operation is completed at the target by the matching call to MPI_WIN_WAIT
by the target process.

4. If an RMA operation is completed at the origin by a call to MPI_WIN_UNLOCK then
the operation is completed at the target by that same call to MPI_WIN_UNLOCK.

5. An update of a location in a private window copy in process memory becomes vis-
ible in the public window copy at latest when an ensuing call to MPI_WIN_POST,
MPI_WIN_FENCE, or MPI_WIN_UNLOCK is executed on that window by the window
owner.

6. An update by a put or accumulate call to a public window copy becomes visible in the
private copy in process memory at latest when an ensuing call to MPI_WIN_WAIT,
MPI_WIN_FENCE, or MPI_WIN_LOCK is executed on that window by the window
owner.

The MPI_WIN_FENCE or MPI_WIN_WAIT call that completes the transfer from public
copy to private copy (6) is the same call that completes the put or accumulate operation in
the window copy (2, 3). If a put or accumulate access was synchronized with a lock, then
the update of the public window copy is complete as soon as the updating process executed
MPI_WIN_UNLOCK. On the other hand, the update of private copy in the process memory
may be delayed until the target process executes a synchronization call on that window
(6). Thus, updates to process memory can always be delayed until the process executes a
suitable synchronization call. Updates to a public window copy can also be delayed until
the window owner executes a synchronization call, if fences or post-start-complete-wait
synchronization is used. Only when lock synchronization is used does it becomes necessary
to update the public window copy, even if the window owner does not execute any related
synchronization call.
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Figure 11.5: Schematic description of window

3. If an RMA operation is completed at the origin by a call to MPI_WIN_COMPLETE
then the operation is completed at the target by the matching call to MPI_WIN_WAIT
by the target process.

4. If an RMA operation is completed at the origin by a call to MPI_WIN_UNLOCK then
the operation is completed at the target by that same call to MPI_WIN_UNLOCK.

5. An update of a location in a private window copy in process memory becomes vis-
ible in the public window copy at latest when an ensuing call to MPI_WIN_POST,
MPI_WIN_FENCE, or MPI_WIN_UNLOCK is executed on that window by the window
owner.

6. An update by a put or accumulate call to a public window copy becomes visible in the
private copy in process memory at latest when an ensuing call to MPI_WIN_WAIT,
MPI_WIN_FENCE, or MPI_WIN_LOCK is executed on that window by the window
owner.

The MPI_WIN_FENCE or MPI_WIN_WAIT call that completes the transfer from public
copy to private copy (6) is the same call that completes the put or accumulate operation in
the window copy (2, 3). If a put or accumulate access was synchronized with a lock, then
the update of the public window copy is complete as soon as the updating process executed
MPI_WIN_UNLOCK. On the other hand, the update of private copy in the process memory
may be delayed until the target process executes a synchronization call on that window
(6). Thus, updates to process memory can always be delayed until the process executes a
suitable synchronization call. Updates to a public window copy can also be delayed until
the window owner executes a synchronization call, if fences or post-start-complete-wait
synchronization is used. Only when lock synchronization is used does it becomes necessary
to update the public window copy, even if the window owner does not execute any related
synchronization call.
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The rules above also define, by implication, when an update to a public window copy
becomes visible in another overlapping public window copy. Consider, for example, two
overlapping windows, win1 and win2. A call to MPI_WIN_FENCE(0, win1) by the window
owner makes visible in the process memory previous updates to window win1 by remote
processes. A subsequent call to MPI_WIN_FENCE(0, win2) makes these updates visible in
the public copy of win2.

A correct program must obey the following rules.

1. A location in a window must not be accessed locally once an update to that location
has started, until the update becomes visible in the private window copy in process
memory.

2. A location in a window must not be accessed as a target of an RMA operation once
an update to that location has started, until the update becomes visible in the public
window copy. There is one exception to this rule, in the case where the same variable
is updated by two concurrent accumulates that use the same operation, with the same
predefined datatype, on the same window.

3. A put or accumulate must not access a target window once a local update or a put or
accumulate update to another (overlapping) target window have started on a location
in the target window, until the update becomes visible in the public copy of the
window. Conversely, a local update in process memory to a location in a window
must not start once a put or accumulate update to that target window has started,
until the put or accumulate update becomes visible in process memory. In both
cases, the restriction applies to operations even if they access disjoint locations in the
window.

A program is erroneous if it violates these rules.

Rationale. The last constraint on correct RMA accesses may seem unduly restric-
tive, as it forbids concurrent accesses to nonoverlapping locations in a window. The
reason for this constraint is that, on some architectures, explicit coherence restoring
operations may be needed at synchronization points. A different operation may be
needed for locations that were locally updated by stores and for locations that were
remotely updated by put or accumulate operations. Without this constraint, the MPI
library will have to track precisely which locations in a window were updated by a
put or accumulate call. The additional overhead of maintaining such information is
considered prohibitive. (End of rationale.)

Advice to users. A user can write correct programs by following the following rules:

fence: During each period between fence calls, each window is either updated by put
or accumulate calls, or updated by local stores, but not both. Locations updated
by put or accumulate calls should not be accessed during the same period (with
the exception of concurrent updates to the same location by accumulate calls).
Locations accessed by get calls should not be updated during the same period.

post-start-complete-wait: A window should not be updated locally while being
posted, if it is being updated by put or accumulate calls. Locations updated
by put or accumulate calls should not be accessed while the window is posted
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The rules above also define, by implication, when an update to a public window copy
becomes visible in another overlapping public window copy. Consider, for example, two
overlapping windows, win1 and win2. A call to MPI_WIN_FENCE(0, win1) by the window
owner makes visible in the process memory previous updates to window win1 by remote
processes. A subsequent call to MPI_WIN_FENCE(0, win2) makes these updates visible in
the public copy of win2.

A correct program must obey the following rules.

1. A location in a window must not be accessed locally once an update to that location
has started, until the update becomes visible in the private window copy in process
memory.

2. A location in a window must not be accessed as a target of an RMA operation once
an update to that location has started, until the update becomes visible in the public
window copy. There is one exception to this rule, in the case where the same variable
is updated by two concurrent accumulates that use the same operation, with the same
predefined datatype, on the same window.

3. A put or accumulate must not access a target window once a local update or a put or
accumulate update to another (overlapping) target window have started on a location
in the target window, until the update becomes visible in the public copy of the
window. Conversely, a local update in process memory to a location in a window
must not start once a put or accumulate update to that target window has started,
until the put or accumulate update becomes visible in process memory. In both
cases, the restriction applies to operations even if they access disjoint locations in the
window.

A program is erroneous if it violates these rules.

Rationale. The last constraint on correct RMA accesses may seem unduly restric-
tive, as it forbids concurrent accesses to nonoverlapping locations in a window. The
reason for this constraint is that, on some architectures, explicit coherence restoring
operations may be needed at synchronization points. A different operation may be
needed for locations that were locally updated by stores and for locations that were
remotely updated by put or accumulate operations. Without this constraint, the MPI
library will have to track precisely which locations in a window were updated by a
put or accumulate call. The additional overhead of maintaining such information is
considered prohibitive. (End of rationale.)

Advice to users. A user can write correct programs by following the following rules:

fence: During each period between fence calls, each window is either updated by put
or accumulate calls, or updated by local stores, but not both. Locations updated
by put or accumulate calls should not be accessed during the same period (with
the exception of concurrent updates to the same location by accumulate calls).
Locations accessed by get calls should not be updated during the same period.

post-start-complete-wait: A window should not be updated locally while being
posted, if it is being updated by put or accumulate calls. Locations updated
by put or accumulate calls should not be accessed while the window is posted
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(with the exception of concurrent updates to the same location by accumulate
calls). Locations accessed by get calls should not be updated while the window
is posted.

With the post-start synchronization, the target process can tell the origin process
that its window is now ready for RMA access; with the complete-wait synchro-
nization, the origin process can tell the target process that it has finished its
RMA accesses to the window.

lock: Updates to the window are protected by exclusive locks if they may conflict.
Nonconflicting accesses (such as read-only accesses or accumulate accesses) are
protected by shared locks, both for local accesses and for RMA accesses.

changing window or synchronization mode: One can change synchronization
mode, or change the window used to access a location that belongs to two over-
lapping windows, when the process memory and the window copy are guaranteed
to have the same values. This is true after a local call to MPI_WIN_FENCE, if
RMA accesses to the window are synchronized with fences; after a local call to
MPI_WIN_WAIT, if the accesses are synchronized with post-start-complete-wait;
after the call at the origin (local or remote) to MPI_WIN_UNLOCK if the accesses
are synchronized with locks.

In addition, a process should not access the local buffer of a get operation until the
operation is complete, and should not update the local buffer of a put or accumulate
operation until that operation is complete. (End of advice to users.)

11.7.1 Atomicity

The outcome of concurrent accumulates to the same location, with the same operation and
predefined datatype, is as if the accumulates where done at that location in some serial
order. On the other hand, if two locations are both updated by two accumulate calls, then
the updates may occur in reverse order at the two locations. Thus, there is no guarantee
that the entire call to MPI_ACCUMULATE is executed atomically. The effect of this lack
of atomicity is limited: The previous correctness conditions imply that a location updated
by a call to MPI_ACCUMULATE, cannot be accessed by load or an RMA call other than
accumulate, until the MPI_ACCUMULATE call has completed (at the target). Different
interleavings can lead to different results only to the extent that computer arithmetics are
not truly associative or commutative.

11.7.2 Progress

One-sided communication has the same progress requirements as point-to-point communi-
cation: once a communication is enabled, then it is guaranteed to complete. RMA calls
must have local semantics, except when required for synchronization with other RMA calls.

There is some fuzziness in the definition of the time when a RMA communication
becomes enabled. This fuzziness provides to the implementor more flexibility than with
point-to-point communication. Access to a target window becomes enabled once the corre-
sponding synchronization (such as MPI_WIN_FENCE or MPI_WIN_POST) has executed. On
the origin process, an RMA communication may become enabled as soon as the correspond-
ing put, get or accumulate call has executed, or as late as when the ensuing synchronization
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Figure 11.6: Symmetric communication
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Figure 11.7: Deadlock situation

call is issued. Once the communication is enabled both at the origin and at the target, the
communication must complete.

Consider the code fragment in Example 11.4, on page 339. Some of the calls may block
if the target window is not posted. However, if the target window is posted, then the code
fragment must complete. The data transfer may start as soon as the put call occur, but
may be delayed until the ensuing complete call occurs.

Consider the code fragment in Example 11.5, on page 344. Some of the calls may block
if another process holds a conflicting lock. However, if no conflicting lock is held, then the
code fragment must complete.

Consider the code illustrated in Figure 11.6. Each process updates the window of
the other process using a put operation, then accesses its own window. The post calls are
nonblocking, and should complete. Once the post calls occur, RMA access to the windows is
enabled, so that each process should complete the sequence of calls start-put-complete. Once
these are done, the wait calls should complete at both processes. Thus, this communication
should not deadlock, irrespective of the amount of data transferred.

Assume, in the last example, that the order of the post and start calls is reversed, at
each process. Then, the code may deadlock, as each process may block on the start call,
waiting for the matching post to occur. Similarly, the program will deadlock, if the order
of the complete and wait calls is reversed, at each process.

The following two examples illustrate the fact that the synchronization between com-
plete and wait is not symmetric: the wait call blocks until the complete executes, but not
vice-versa. Consider the code illustrated in Figure 11.7. This code will deadlock: the wait
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Consider the code fragment in Example 11.4, on page 339. Some of the calls may block
if the target window is not posted. However, if the target window is posted, then the code
fragment must complete. The data transfer may start as soon as the put call occur, but
may be delayed until the ensuing complete call occurs.

Consider the code fragment in Example 11.5, on page 344. Some of the calls may block
if another process holds a conflicting lock. However, if no conflicting lock is held, then the
code fragment must complete.

Consider the code illustrated in Figure 11.6. Each process updates the window of
the other process using a put operation, then accesses its own window. The post calls are
nonblocking, and should complete. Once the post calls occur, RMA access to the windows is
enabled, so that each process should complete the sequence of calls start-put-complete. Once
these are done, the wait calls should complete at both processes. Thus, this communication
should not deadlock, irrespective of the amount of data transferred.

Assume, in the last example, that the order of the post and start calls is reversed, at
each process. Then, the code may deadlock, as each process may block on the start call,
waiting for the matching post to occur. Similarly, the program will deadlock, if the order
of the complete and wait calls is reversed, at each process.
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Figure 11.8: No deadlock

of process 1 blocks until process 0 calls complete, and the receive of process 0 blocks until
process 1 calls send. Consider, on the other hand, the code illustrated in Figure 11.8. This
code will not deadlock. Once process 1 calls post, then the sequence start, put, complete
on process 0 can proceed to completion. Process 0 will reach the send call, allowing the
receive call of process 1 to complete.

Rationale. MPI implementations must guarantee that a process makes progress on all
enabled communications it participates in, while blocked on an MPI call. This is true
for send-receive communication and applies to RMA communication as well. Thus, in
the example in Figure 11.8, the put and complete calls of process 0 should complete
while process 1 is blocked on the receive call. This may require the involvement of
process 1, e.g., to transfer the data put, while it is blocked on the receive call.

A similar issue is whether such progress must occur while a process is busy comput-
ing, or blocked in a non-MPI call. Suppose that in the last example the send-receive
pair is replaced by a write-to-socket/read-from-socket pair. Then MPI does not spec-
ify whether deadlock is avoided. Suppose that the blocking receive of process 1 is
replaced by a very long compute loop. Then, according to one interpretation of the
MPI standard, process 0 must return from the complete call after a bounded delay,
even if process 1 does not reach any MPI call in this period of time. According to
another interpretation, the complete call may block until process 1 reaches the wait
call, or reaches another MPI call. The qualitative behavior is the same, under both
interpretations, unless a process is caught in an infinite compute loop, in which case
the difference may not matter. However, the quantitative expectations are different.
Different MPI implementations reflect these different interpretations. While this am-
biguity is unfortunate, it does not seem to affect many real codes. The MPI forum
decided not to decide which interpretation of the standard is the correct one, since the
issue is very contentious, and a decision would have much impact on implementors
but less impact on users. (End of rationale.)

11.7.3 Registers and Compiler Optimizations

Advice to users. All the material in this section is an advice to users. (End of advice
to users.)

A coherence problem exists between variables kept in registers and the memory value
of these variables. An RMA call may access a variable in memory (or cache), while the
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of process 1 blocks until process 0 calls complete, and the receive of process 0 blocks until
process 1 calls send. Consider, on the other hand, the code illustrated in Figure 11.8. This
code will not deadlock. Once process 1 calls post, then the sequence start, put, complete
on process 0 can proceed to completion. Process 0 will reach the send call, allowing the
receive call of process 1 to complete.

Rationale. MPI implementations must guarantee that a process makes progress on all
enabled communications it participates in, while blocked on an MPI call. This is true
for send-receive communication and applies to RMA communication as well. Thus, in
the example in Figure 11.8, the put and complete calls of process 0 should complete
while process 1 is blocked on the receive call. This may require the involvement of
process 1, e.g., to transfer the data put, while it is blocked on the receive call.

A similar issue is whether such progress must occur while a process is busy comput-
ing, or blocked in a non-MPI call. Suppose that in the last example the send-receive
pair is replaced by a write-to-socket/read-from-socket pair. Then MPI does not spec-
ify whether deadlock is avoided. Suppose that the blocking receive of process 1 is
replaced by a very long compute loop. Then, according to one interpretation of the
MPI standard, process 0 must return from the complete call after a bounded delay,
even if process 1 does not reach any MPI call in this period of time. According to
another interpretation, the complete call may block until process 1 reaches the wait
call, or reaches another MPI call. The qualitative behavior is the same, under both
interpretations, unless a process is caught in an infinite compute loop, in which case
the difference may not matter. However, the quantitative expectations are different.
Different MPI implementations reflect these different interpretations. While this am-
biguity is unfortunate, it does not seem to affect many real codes. The MPI forum
decided not to decide which interpretation of the standard is the correct one, since the
issue is very contentious, and a decision would have much impact on implementors
but less impact on users. (End of rationale.)

11.7.3 Registers and Compiler Optimizations
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up-to-date value of this variable is in register. A get will not return the latest variable
value, and a put may be overwritten when the register is stored back in memory.

The problem is illustrated by the following code:

Source of Process 1 Source of Process 2 Executed in Process 2

bbbb = 777 buff = 999 reg_A:=999

call MPI_WIN_FENCE call MPI_WIN_FENCE

call MPI_PUT(bbbb stop appl. thread

into buff of process 2) buff:=777 in PUT handler

continue appl. thread

call MPI_WIN_FENCE call MPI_WIN_FENCE

ccc = buff ccc:=reg_A

In this example, variable buff is allocated in the register reg_A and therefore ccc will
have the old value of buff and not the new value 777.

This problem, which also afflicts in some cases send/receive communication, is discussed
more at length in Section 16.2.2.

MPI implementations will avoid this problem for standard conforming C programs.
Many Fortran compilers will avoid this problem, without disabling compiler optimizations.
However, in order to avoid register coherence problems in a completely portable manner,
users should restrict their use of RMA windows to variables stored in COMMON blocks, or to
variables that were declared VOLATILE (while VOLATILE is not a standard Fortran declara-
tion, it is supported by many Fortran compilers). Details and an additional solution are
discussed in Section 16.2.2, “A Problem with Register Optimization,” on page 466. See also,
“Problems Due to Data Copying and Sequence Association,” on page 463, for additional
Fortran problems.
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In this example, variable buff is allocated in the register reg_A and therefore ccc will
have the old value of buff and not the new value 777.

This problem, which also afflicts in some cases send/receive communication, is discussed
more at length in Section 16.2.2.

MPI implementations will avoid this problem for standard conforming C programs.
Many Fortran compilers will avoid this problem, without disabling compiler optimizations.
However, in order to avoid register coherence problems in a completely portable manner,
users should restrict their use of RMA windows to variables stored in COMMON blocks, or to
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Chapter 12

External Interfaces

12.1 Introduction

This chapter begins with calls used to create generalized requests, which allow users to
create new nonblocking operations with an interface similar to what is present in MPI. This
can be used to layer new functionality on top of MPI. Next, Section 12.3 deals with setting
the information found in status. This is needed for generalized requests.

The chapter continues, in Section 12.4, with a discussion of how threads are to be
handled in MPI. Although thread compliance is not required, the standard specifies how
threads are to work if they are provided.

12.2 Generalized Requests

The goal of generalized requests is to allow users to define new nonblocking operations.
Such an outstanding nonblocking operation is represented by a (generalized) request. A
fundamental property of nonblocking operations is that progress toward the completion of
this operation occurs asynchronously, i.e., concurrently with normal program execution.
Typically, this requires execution of code concurrently with the execution of the user code,
e.g., in a separate thread or in a signal handler. Operating systems provide a variety of
mechanisms in support of concurrent execution. MPI does not attempt to standardize or
replace these mechanisms: it is assumed programmers who wish to define new asynchronous
operations will use the mechanisms provided by the underlying operating system. Thus,
the calls in this section only provide a means for defining the effect of MPI calls such as
MPI_WAIT or MPI_CANCEL when they apply to generalized requests, and for signaling to
MPI the completion of a generalized operation.

Rationale. It is tempting to also define an MPI standard mechanism for achieving
concurrent execution of user-defined nonblocking operations. However, it is very dif-
ficult to define such a mechanism without consideration of the specific mechanisms
used in the operating system. The Forum feels that concurrency mechanisms are a
proper part of the underlying operating system and should not be standardized by
MPI; the MPI standard should only deal with the interaction of such mechanisms with
MPI. (End of rationale.)

For a regular request, the operation associated with the request is performed by the
MPI implementation, and the operation completes without intervention by the application.
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For a generalized request, the operation associated with the request is performed by the
application; therefore, the application must notify MPI when the operation completes. This
is done by making a call to MPI_GREQUEST_COMPLETE. MPI maintains the “completion”
status of generalized requests. Any other request state has to be maintained by the user.

A new generalized request is started with

MPI_GREQUEST_START(query_fn, free_fn, cancel_fn, extra_state, request)

IN query_fn callback function invoked when request status is queried

(function)

IN free_fn callback function invoked when request is freed (func-

tion)

IN cancel_fn callback function invoked when request is cancelled

(function)

IN extra_state extra state

OUT request generalized request (handle)

int MPI_Grequest_start(MPI_Grequest_query_function *query_fn,

MPI_Grequest_free_function *free_fn,

MPI_Grequest_cancel_function *cancel_fn, void *extra_state,

MPI_Request *request)

MPI_GREQUEST_START(QUERY_FN, FREE_FN, CANCEL_FN, EXTRA_STATE, REQUEST,

IERROR)

INTEGER REQUEST, IERROR

EXTERNAL QUERY_FN, FREE_FN, CANCEL_FN

INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_STATE

static MPI::Grequest

MPI::Grequest::Start(const MPI::Grequest::Query_function

query_fn, const MPI::Grequest::Free_function free_fn,

const MPI::Grequest::Cancel_function cancel_fn,

void *extra_state)

Advice to users. Note that a generalized request belongs, in C++, to the class
MPI::Grequest, which is a derived class of MPI::Request. It is of the same type as
regular requests, in C and Fortran. (End of advice to users.)

The call starts a generalized request and returns a handle to it in request.
The syntax and meaning of the callback functions are listed below. All callback func-

tions are passed the extra_state argument that was associated with the request by the
starting call MPI_GREQUEST_START. This can be used to maintain user-defined state for
the request.

In C, the query function is

typedef int MPI_Grequest_query_function(void *extra_state,

MPI_Status *status);
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is done by making a call to MPI_GREQUEST_COMPLETE. MPI maintains the “completion”
status of generalized requests. Any other request state has to be maintained by the user.

A new generalized request is started with

MPI_GREQUEST_START(query_fn, free_fn, cancel_fn, extra_state, request)

IN query_fn callback function invoked when request status is queried

(function)

IN free_fn callback function invoked when request is freed (func-

tion)

IN cancel_fn callback function invoked when request is cancelled

(function)

IN extra_state extra state

OUT request generalized request (handle)

int MPI_Grequest_start(MPI_Grequest_query_function *query_fn,

MPI_Grequest_free_function *free_fn,

MPI_Grequest_cancel_function *cancel_fn, void *extra_state,

MPI_Request *request)

MPI_GREQUEST_START(QUERY_FN, FREE_FN, CANCEL_FN, EXTRA_STATE, REQUEST,

IERROR)

INTEGER REQUEST, IERROR

EXTERNAL QUERY_FN, FREE_FN, CANCEL_FN

INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_STATE

static MPI::Grequest

MPI::Grequest::Start(const MPI::Grequest::Query_function

query_fn, const MPI::Grequest::Free_function free_fn,

const MPI::Grequest::Cancel_function cancel_fn,

void *extra_state)

Advice to users. Note that a generalized request belongs, in C++, to the class
MPI::Grequest, which is a derived class of MPI::Request. It is of the same type as
regular requests, in C and Fortran. (End of advice to users.)

The call starts a generalized request and returns a handle to it in request.
The syntax and meaning of the callback functions are listed below. All callback func-

tions are passed the extra_state argument that was associated with the request by the
starting call MPI_GREQUEST_START. This can be used to maintain user-defined state for
the request.

In C, the query function is

typedef int MPI_Grequest_query_function(void *extra_state,

MPI_Status *status);
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in Fortran

SUBROUTINE GREQUEST_QUERY_FUNCTION(EXTRA_STATE, STATUS, IERROR)

INTEGER STATUS(MPI_STATUS_SIZE), IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

and in C++

typedef int MPI::Grequest::Query_function(void* extra_state,

MPI::Status& status);

query_fn function computes the status that should be returned for the generalized
request. The status also includes information about successful/unsuccessful cancellation of
the request (result to be returned by MPI_TEST_CANCELLED).

query_fn callback is invoked by the MPI_{WAIT|TEST}{ANY|SOME|ALL} call that
completed the generalized request associated with this callback. The callback function is
also invoked by calls to MPI_REQUEST_GET_STATUS, if the request is complete when
the call occurs. In both cases, the callback is passed a reference to the corresponding
status variable passed by the user to the MPI call; the status set by the callback function
is returned by the MPI call. If the user provided MPI_STATUS_IGNORE or
MPI_STATUSES_IGNORE to the MPI function that causes query_fn to be called, then MPI
will pass a valid status object to query_fn, and this status will be ignored upon return of the
callback function. Note that query_fn is invoked only after MPI_GREQUEST_COMPLETE
is called on the request; it may be invoked several times for the same generalized request,
e.g., if the user calls MPI_REQUEST_GET_STATUS several times for this request. Note also
that a call to MPI_{WAIT|TEST}{SOME|ALL} may cause multiple invocations of query_fn
callback functions, one for each generalized request that is completed by the MPI call. The
order of these invocations is not specified by MPI.

In C, the free function is

typedef int MPI_Grequest_free_function(void *extra_state);

and in Fortran

SUBROUTINE GREQUEST_FREE_FUNCTION(EXTRA_STATE, IERROR)

INTEGER IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

and in C++

typedef int MPI::Grequest::Free_function(void* extra_state);

free_fn function is invoked to clean up user-allocated resources when the generalized
request is freed.

free_fn callback is invoked by the MPI_{WAIT|TEST}{ANY|SOME|ALL} call that com-
pleted the generalized request associated with this callback. free_fn is invoked after the call
to query_fn for the same request. However, if the MPI call completed multiple generalized
requests, the order in which free_fn callback functions are invoked is not specified by MPI.

free_fn callback is also invoked for generalized requests that are freed by a call to
MPI_REQUEST_FREE (no call to WAIT_{WAIT|TEST}{ANY|SOME|ALL} will occur for
such a request). In this case, the callback function will be called either in the MPI call
MPI_REQUEST_FREE(request), or in the MPI call MPI_GREQUEST_COMPLETE(request),
whichever happens last, i.e., in this case the actual freeing code is executed as soon as both

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

12.2. GENERALIZED REQUESTS 359

in Fortran
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INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

and in C++

typedef int MPI::Grequest::Query_function(void* extra_state,

MPI::Status& status);

query_fn function computes the status that should be returned for the generalized
request. The status also includes information about successful/unsuccessful cancellation of
the request (result to be returned by MPI_TEST_CANCELLED).

query_fn callback is invoked by the MPI_{WAIT|TEST}{ANY|SOME|ALL} call that
completed the generalized request associated with this callback. The callback function is
also invoked by calls to MPI_REQUEST_GET_STATUS, if the request is complete when
the call occurs. In both cases, the callback is passed a reference to the corresponding
status variable passed by the user to the MPI call; the status set by the callback function
is returned by the MPI call. If the user provided MPI_STATUS_IGNORE or
MPI_STATUSES_IGNORE to the MPI function that causes query_fn to be called, then MPI
will pass a valid status object to query_fn, and this status will be ignored upon return of the
callback function. Note that query_fn is invoked only after MPI_GREQUEST_COMPLETE
is called on the request; it may be invoked several times for the same generalized request,
e.g., if the user calls MPI_REQUEST_GET_STATUS several times for this request. Note also
that a call to MPI_{WAIT|TEST}{SOME|ALL} may cause multiple invocations of query_fn
callback functions, one for each generalized request that is completed by the MPI call. The
order of these invocations is not specified by MPI.

In C, the free function is

typedef int MPI_Grequest_free_function(void *extra_state);

and in Fortran

SUBROUTINE GREQUEST_FREE_FUNCTION(EXTRA_STATE, IERROR)

INTEGER IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

and in C++

typedef int MPI::Grequest::Free_function(void* extra_state);

free_fn function is invoked to clean up user-allocated resources when the generalized
request is freed.

free_fn callback is invoked by the MPI_{WAIT|TEST}{ANY|SOME|ALL} call that com-
pleted the generalized request associated with this callback. free_fn is invoked after the call
to query_fn for the same request. However, if the MPI call completed multiple generalized
requests, the order in which free_fn callback functions are invoked is not specified by MPI.

free_fn callback is also invoked for generalized requests that are freed by a call to
MPI_REQUEST_FREE (no call to WAIT_{WAIT|TEST}{ANY|SOME|ALL} will occur for
such a request). In this case, the callback function will be called either in the MPI call
MPI_REQUEST_FREE(request), or in the MPI call MPI_GREQUEST_COMPLETE(request),
whichever happens last, i.e., in this case the actual freeing code is executed as soon as both
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calls MPI_REQUEST_FREE and MPI_GREQUEST_COMPLETE have occurred. The request
is not deallocated until after free_fn completes. Note that free_fn will be invoked only once
per request by a correct program.

Advice to users. Calling MPI_REQUEST_FREE(request) will cause the request handle
to be set to MPI_REQUEST_NULL. This handle to the generalized request is no longer
valid. However, user copies of this handle are valid until after free_fn completes since
MPI does not deallocate the object until then. Since free_fn is not called until after
MPI_GREQUEST_COMPLETE, the user copy of the handle can be used to make this
call. Users should note that MPI will deallocate the object after free_fn executes. At
this point, user copies of the request handle no longer point to a valid request. MPI
will not set user copies to MPI_REQUEST_NULL in this case, so it is up to the user to
avoid accessing this stale handle. This is a special case where MPI defers deallocating
the object until a later time that is known by the user. (End of advice to users.)

In C, the cancel function is
typedef int MPI_Grequest_cancel_function(void *extra_state, int complete);

in Fortran

SUBROUTINE GREQUEST_CANCEL_FUNCTION(EXTRA_STATE, COMPLETE, IERROR)

INTEGER IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

LOGICAL COMPLETE

and in C++

typedef int MPI::Grequest::Cancel_function(void* extra_state,

bool complete);

cancel_fn function is invoked to start the cancelation of a generalized request. It is
called by MPI_CANCEL(request). MPI passes to the callback function complete=true if
MPI_GREQUEST_COMPLETE was already called on the request, and
complete=false otherwise.

All callback functions return an error code. The code is passed back and dealt with as
appropriate for the error code by the MPI function that invoked the callback function. For
example, if error codes are returned then the error code returned by the callback function
will be returned by the MPI function that invoked the callback function. In the case of
an MPI_{WAIT|TEST}{ANY} call that invokes both query_fn and free_fn, the MPI call will
return the error code returned by the last callback, namely free_fn. If one or more of the
requests in a call to MPI_{WAIT|TEST}{SOME|ALL} failed, then the MPI call will return
MPI_ERR_IN_STATUS. In such a case, if the MPI call was passed an array of statuses, then
MPI will return in each of the statuses that correspond to a completed generalized request
the error code returned by the corresponding invocation of its free_fn callback function.
However, if the MPI function was passed MPI_STATUSES_IGNORE, then the individual error
codes returned by each callback functions will be lost.

Advice to users. query_fn must not set the error field of status since query_fn may
be called by MPI_WAIT or MPI_TEST, in which case the error field of status should
not change. The MPI library knows the “context” in which query_fn is invoked and
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calls MPI_REQUEST_FREE and MPI_GREQUEST_COMPLETE have occurred. The request
is not deallocated until after free_fn completes. Note that free_fn will be invoked only once
per request by a correct program.

Advice to users. Calling MPI_REQUEST_FREE(request) will cause the request handle
to be set to MPI_REQUEST_NULL. This handle to the generalized request is no longer
valid. However, user copies of this handle are valid until after free_fn completes since
MPI does not deallocate the object until then. Since free_fn is not called until after
MPI_GREQUEST_COMPLETE, the user copy of the handle can be used to make this
call. Users should note that MPI will deallocate the object after free_fn executes. At
this point, user copies of the request handle no longer point to a valid request. MPI
will not set user copies to MPI_REQUEST_NULL in this case, so it is up to the user to
avoid accessing this stale handle. This is a special case where MPI defers deallocating
the object until a later time that is known by the user. (End of advice to users.)

In C, the cancel function is
typedef int MPI_Grequest_cancel_function(void *extra_state, int complete);

in Fortran

SUBROUTINE GREQUEST_CANCEL_FUNCTION(EXTRA_STATE, COMPLETE, IERROR)

INTEGER IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

LOGICAL COMPLETE

and in C++

typedef int MPI::Grequest::Cancel_function(void* extra_state,

bool complete);

cancel_fn function is invoked to start the cancelation of a generalized request. It is
called by MPI_CANCEL(request). MPI passes to the callback function complete=true if
MPI_GREQUEST_COMPLETE was already called on the request, and
complete=false otherwise.

All callback functions return an error code. The code is passed back and dealt with as
appropriate for the error code by the MPI function that invoked the callback function. For
example, if error codes are returned then the error code returned by the callback function
will be returned by the MPI function that invoked the callback function. In the case of
an MPI_{WAIT|TEST}{ANY} call that invokes both query_fn and free_fn, the MPI call will
return the error code returned by the last callback, namely free_fn. If one or more of the
requests in a call to MPI_{WAIT|TEST}{SOME|ALL} failed, then the MPI call will return
MPI_ERR_IN_STATUS. In such a case, if the MPI call was passed an array of statuses, then
MPI will return in each of the statuses that correspond to a completed generalized request
the error code returned by the corresponding invocation of its free_fn callback function.
However, if the MPI function was passed MPI_STATUSES_IGNORE, then the individual error
codes returned by each callback functions will be lost.

Advice to users. query_fn must not set the error field of status since query_fn may
be called by MPI_WAIT or MPI_TEST, in which case the error field of status should
not change. The MPI library knows the “context” in which query_fn is invoked and
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can decide correctly when to put in the error field of status the returned error code.
(End of advice to users.)

MPI_GREQUEST_COMPLETE(request)

INOUT request generalized request (handle)

int MPI_Grequest_complete(MPI_Request request)

MPI_GREQUEST_COMPLETE(REQUEST, IERROR)

INTEGER REQUEST, IERROR

void MPI::Grequest::Complete()

The call informs MPI that the operations represented by the generalized request request
are complete (see definitions in Section 2.4). A call to MPI_WAIT(request, status) will
return and a call to MPI_TEST(request, flag, status) will return flag=true only after a call
to MPI_GREQUEST_COMPLETE has declared that these operations are complete.

MPI imposes no restrictions on the code executed by the callback functions. However,
new nonblocking operations should be defined so that the general semantic rules about MPI
calls such as MPI_TEST, MPI_REQUEST_FREE, or MPI_CANCEL still hold. For example,
all these calls are supposed to be local and nonblocking. Therefore, the callback functions
query_fn, free_fn, or cancel_fn should invoke blocking MPI communication calls only if the
context is such that these calls are guaranteed to return in finite time. Once MPI_CANCEL
is invoked, the cancelled operation should complete in finite time, irrespective of the state of
other processes (the operation has acquired “local” semantics). It should either succeed, or
fail without side-effects. The user should guarantee these same properties for newly defined
operations.

Advice to implementors. A call to MPI_GREQUEST_COMPLETE may unblock a
blocked user process/thread. The MPI library should ensure that the blocked user
computation will resume. (End of advice to implementors.)

12.2.1 Examples

Example 12.1 This example shows the code for a user-defined reduce operation on an int

using a binary tree: each non-root node receives two messages, sums them, and sends them
up. We assume that no status is returned and that the operation cannot be cancelled.

typedef struct {

MPI_Comm comm;

int tag;

int root;

int valin;

int *valout;

MPI_Request request;

} ARGS;
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can decide correctly when to put in the error field of status the returned error code.
(End of advice to users.)

MPI_GREQUEST_COMPLETE(request)

INOUT request generalized request (handle)

int MPI_Grequest_complete(MPI_Request request)

MPI_GREQUEST_COMPLETE(REQUEST, IERROR)

INTEGER REQUEST, IERROR

void MPI::Grequest::Complete()

The call informs MPI that the operations represented by the generalized request request
are complete (see definitions in Section 2.4). A call to MPI_WAIT(request, status) will
return and a call to MPI_TEST(request, flag, status) will return flag=true only after a call
to MPI_GREQUEST_COMPLETE has declared that these operations are complete.

MPI imposes no restrictions on the code executed by the callback functions. However,
new nonblocking operations should be defined so that the general semantic rules about MPI
calls such as MPI_TEST, MPI_REQUEST_FREE, or MPI_CANCEL still hold. For example,
all these calls are supposed to be local and nonblocking. Therefore, the callback functions
query_fn, free_fn, or cancel_fn should invoke blocking MPI communication calls only if the
context is such that these calls are guaranteed to return in finite time. Once MPI_CANCEL
is invoked, the cancelled operation should complete in finite time, irrespective of the state of
other processes (the operation has acquired “local” semantics). It should either succeed, or
fail without side-effects. The user should guarantee these same properties for newly defined
operations.

Advice to implementors. A call to MPI_GREQUEST_COMPLETE may unblock a
blocked user process/thread. The MPI library should ensure that the blocked user
computation will resume. (End of advice to implementors.)

12.2.1 Examples

Example 12.1 This example shows the code for a user-defined reduce operation on an int

using a binary tree: each non-root node receives two messages, sums them, and sends them
up. We assume that no status is returned and that the operation cannot be cancelled.

typedef struct {

MPI_Comm comm;

int tag;

int root;

int valin;

int *valout;

MPI_Request request;

} ARGS;
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int myreduce(MPI_Comm comm, int tag, int root,

int valin, int *valout, MPI_Request *request)

{

ARGS *args;

pthread_t thread;

/* start request */

MPI_Grequest_start(query_fn, free_fn, cancel_fn, NULL, request);

args = (ARGS*)malloc(sizeof(ARGS));

args->comm = comm;

args->tag = tag;

args->root = root;

args->valin = valin;

args->valout = valout;

args->request = *request;

/* spawn thread to handle request */

/* The availability of the pthread_create call is system dependent */

pthread_create(&thread, NULL, reduce_thread, args);

return MPI_SUCCESS;

}

/* thread code */

void* reduce_thread(void *ptr)

{

int lchild, rchild, parent, lval, rval, val;

MPI_Request req[2];

ARGS *args;

args = (ARGS*)ptr;

/* compute left,right child and parent in tree; set

to MPI_PROC_NULL if does not exist */

/* code not shown */

...

MPI_Irecv(&lval, 1, MPI_INT, lchild, args->tag, args->comm, &req[0]);

MPI_Irecv(&rval, 1, MPI_INT, rchild, args->tag, args->comm, &req[1]);

MPI_Waitall(2, req, MPI_STATUSES_IGNORE);

val = lval + args->valin + rval;

MPI_Send( &val, 1, MPI_INT, parent, args->tag, args->comm );

if (parent == MPI_PROC_NULL) *(args->valout) = val;

MPI_Grequest_complete((args->request));

free(ptr);

return(NULL);

}
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int myreduce(MPI_Comm comm, int tag, int root,

int valin, int *valout, MPI_Request *request)

{

ARGS *args;

pthread_t thread;

/* start request */

MPI_Grequest_start(query_fn, free_fn, cancel_fn, NULL, request);

args = (ARGS*)malloc(sizeof(ARGS));

args->comm = comm;

args->tag = tag;

args->root = root;

args->valin = valin;

args->valout = valout;

args->request = *request;

/* spawn thread to handle request */

/* The availability of the pthread_create call is system dependent */

pthread_create(&thread, NULL, reduce_thread, args);

return MPI_SUCCESS;

}

/* thread code */

void* reduce_thread(void *ptr)

{

int lchild, rchild, parent, lval, rval, val;

MPI_Request req[2];

ARGS *args;

args = (ARGS*)ptr;

/* compute left,right child and parent in tree; set

to MPI_PROC_NULL if does not exist */

/* code not shown */

...

MPI_Irecv(&lval, 1, MPI_INT, lchild, args->tag, args->comm, &req[0]);

MPI_Irecv(&rval, 1, MPI_INT, rchild, args->tag, args->comm, &req[1]);

MPI_Waitall(2, req, MPI_STATUSES_IGNORE);

val = lval + args->valin + rval;

MPI_Send( &val, 1, MPI_INT, parent, args->tag, args->comm );

if (parent == MPI_PROC_NULL) *(args->valout) = val;

MPI_Grequest_complete((args->request));

free(ptr);

return(NULL);

}
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int query_fn(void *extra_state, MPI_Status *status)

{

/* always send just one int */

MPI_Status_set_elements(status, MPI_INT, 1);

/* can never cancel so always true */

MPI_Status_set_cancelled(status, 0);

/* choose not to return a value for this */

status->MPI_SOURCE = MPI_UNDEFINED;

/* tag has no meaning for this generalized request */

status->MPI_TAG = MPI_UNDEFINED;

/* this generalized request never fails */

return MPI_SUCCESS;

}

int free_fn(void *extra_state)

{

/* this generalized request does not need to do any freeing */

/* as a result it never fails here */

return MPI_SUCCESS;

}

int cancel_fn(void *extra_state, int complete)

{

/* This generalized request does not support cancelling.

Abort if not already done. If done then treat as if cancel failed.*/

if (!complete) {

fprintf(stderr,

"Cannot cancel generalized request - aborting program\n");

MPI_Abort(MPI_COMM_WORLD, 99);

}

return MPI_SUCCESS;

}

12.3 Associating Information with Status

MPI supports several different types of requests besides those for point-to-point operations.
These range from MPI calls for I/O to generalized requests. It is desirable to allow these
calls use the same request mechanism. This allows one to wait or test on different types of
requests. However, MPI_{TEST|WAIT}{ANY|SOME|ALL} returns a status with information
about the request. With the generalization of requests, one needs to define what information
will be returned in the status object.

Each MPI call fills in the appropriate fields in the status object. Any unused fields will
have undefined values. A call to MPI_{TEST|WAIT}{ANY|SOME|ALL} can modify any of
the fields in the status object. Specifically, it can modify fields that are undefined. The
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int query_fn(void *extra_state, MPI_Status *status)

{

/* always send just one int */

MPI_Status_set_elements(status, MPI_INT, 1);

/* can never cancel so always true */

MPI_Status_set_cancelled(status, 0);

/* choose not to return a value for this */

status->MPI_SOURCE = MPI_UNDEFINED;

/* tag has no meaning for this generalized request */

status->MPI_TAG = MPI_UNDEFINED;

/* this generalized request never fails */

return MPI_SUCCESS;

}

int free_fn(void *extra_state)

{

/* this generalized request does not need to do any freeing */

/* as a result it never fails here */

return MPI_SUCCESS;

}

int cancel_fn(void *extra_state, int complete)

{

/* This generalized request does not support cancelling.

Abort if not already done. If done then treat as if cancel failed.*/

if (!complete) {

fprintf(stderr,

"Cannot cancel generalized request - aborting program\n");

MPI_Abort(MPI_COMM_WORLD, 99);

}

return MPI_SUCCESS;

}

12.3 Associating Information with Status

MPI supports several different types of requests besides those for point-to-point operations.
These range from MPI calls for I/O to generalized requests. It is desirable to allow these
calls use the same request mechanism. This allows one to wait or test on different types of
requests. However, MPI_{TEST|WAIT}{ANY|SOME|ALL} returns a status with information
about the request. With the generalization of requests, one needs to define what information
will be returned in the status object.

Each MPI call fills in the appropriate fields in the status object. Any unused fields will
have undefined values. A call to MPI_{TEST|WAIT}{ANY|SOME|ALL} can modify any of
the fields in the status object. Specifically, it can modify fields that are undefined. The
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fields with meaningful value for a given request are defined in the sections with the new
request.

Generalized requests raise additional considerations. Here, the user provides the func-
tions to deal with the request. Unlike other MPI calls, the user needs to provide the infor-
mation to be returned in status. The status argument is provided directly to the callback
function where the status needs to be set. Users can directly set the values in 3 of the 5
status values. The count and cancel fields are opaque. To overcome this, these calls are
provided:

MPI_STATUS_SET_ELEMENTS(status, datatype, count)

INOUT status status with which to associate count (Status)

IN datatype datatype associated with count (handle)

IN count number of elements to associate with status (integer)

int MPI_Status_set_elements(MPI_Status *status, MPI_Datatype datatype,

int count)

MPI_STATUS_SET_ELEMENTS(STATUS, DATATYPE, COUNT, IERROR)

INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR

void MPI::Status::Set_elements(const MPI::Datatype& datatype, int count)

This call modifies the opaque part of status so that a call to MPI_GET_ELEMENTS
will return count. MPI_GET_COUNT will return a compatible value.

Rationale. The number of elements is set instead of the count because the former
can deal with a nonintegral number of datatypes. (End of rationale.)

A subsequent call to MPI_GET_COUNT(status, datatype, count) or to
MPI_GET_ELEMENTS(status, datatype, count) must use a datatype argument that has the
same type signature as the datatype argument that was used in the call to
MPI_STATUS_SET_ELEMENTS.

Rationale. This is similar to the restriction that holds when count is set by a receive
operation: in that case, the calls to MPI_GET_COUNT and MPI_GET_ELEMENTS
must use a datatype with the same signature as the datatype used in the receive call.
(End of rationale.)

MPI_STATUS_SET_CANCELLED(status, flag)

INOUT status status with which to associate cancel flag (Status)

IN flag if true indicates request was cancelled (logical)

int MPI_Status_set_cancelled(MPI_Status *status, int flag)

MPI_STATUS_SET_CANCELLED(STATUS, FLAG, IERROR)

INTEGER STATUS(MPI_STATUS_SIZE), IERROR
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fields with meaningful value for a given request are defined in the sections with the new
request.

Generalized requests raise additional considerations. Here, the user provides the func-
tions to deal with the request. Unlike other MPI calls, the user needs to provide the infor-
mation to be returned in status. The status argument is provided directly to the callback
function where the status needs to be set. Users can directly set the values in 3 of the 5
status values. The count and cancel fields are opaque. To overcome this, these calls are
provided:

MPI_STATUS_SET_ELEMENTS(status, datatype, count)

INOUT status status with which to associate count (Status)

IN datatype datatype associated with count (handle)

IN count number of elements to associate with status (integer)

int MPI_Status_set_elements(MPI_Status *status, MPI_Datatype datatype,

int count)

MPI_STATUS_SET_ELEMENTS(STATUS, DATATYPE, COUNT, IERROR)

INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR

void MPI::Status::Set_elements(const MPI::Datatype& datatype, int count)

This call modifies the opaque part of status so that a call to MPI_GET_ELEMENTS
will return count. MPI_GET_COUNT will return a compatible value.

Rationale. The number of elements is set instead of the count because the former
can deal with a nonintegral number of datatypes. (End of rationale.)

A subsequent call to MPI_GET_COUNT(status, datatype, count) or to
MPI_GET_ELEMENTS(status, datatype, count) must use a datatype argument that has the
same type signature as the datatype argument that was used in the call to
MPI_STATUS_SET_ELEMENTS.

Rationale. This is similar to the restriction that holds when count is set by a receive
operation: in that case, the calls to MPI_GET_COUNT and MPI_GET_ELEMENTS
must use a datatype with the same signature as the datatype used in the receive call.
(End of rationale.)

MPI_STATUS_SET_CANCELLED(status, flag)

INOUT status status with which to associate cancel flag (Status)

IN flag if true indicates request was cancelled (logical)

int MPI_Status_set_cancelled(MPI_Status *status, int flag)

MPI_STATUS_SET_CANCELLED(STATUS, FLAG, IERROR)

INTEGER STATUS(MPI_STATUS_SIZE), IERROR
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LOGICAL FLAG

void MPI::Status::Set_cancelled(bool flag)

If flag is set to true then a subsequent call to MPI_TEST_CANCELLED(status, flag) will
also return flag = true, otherwise it will return false.

Advice to users. Users are advised not to reuse the status fields for values other
than those for which they were intended. Doing so may lead to unexpected results
when using the status object. For example, calling MPI_GET_ELEMENTS may cause
an error if the value is out of range or it may be impossible to detect such an error.
The extra_state argument provided with a generalized request can be used to return
information that does not logically belong in status. Furthermore, modifying the
values in a status set internally by MPI, e.g., MPI_RECV, may lead to unpredictable
results and is strongly discouraged. (End of advice to users.)

12.4 MPI and Threads

This section specifies the interaction between MPI calls and threads. The section lists
minimal requirements for thread compliant MPI implementations and defines functions
that can be used for initializing the thread environment. MPI may be implemented in
environments where threads are not supported or perform poorly. Therefore, it is not
required that all MPI implementations fulfill all the requirements specified in this section.

This section generally assumes a thread package similar to POSIX threads [29], but the
syntax and semantics of thread calls are not specified here — these are beyond the scope
of this document.

12.4.1 General

In a thread-compliant implementation, an MPI process is a process that may be multi-
threaded. Each thread can issue MPI calls; however, threads are not separately addressable:
a rank in a send or receive call identifies a process, not a thread. A message sent to a process
can be received by any thread in this process.

Rationale. This model corresponds to the POSIX model of interprocess communica-
tion: the fact that a process is multi-threaded, rather than single-threaded, does not
affect the external interface of this process. MPI implementations where MPI ‘pro-
cesses’ are POSIX threads inside a single POSIX process are not thread-compliant by
this definition (indeed, their “processes” are single-threaded). (End of rationale.)

Advice to users. It is the user’s responsibility to prevent races when threads within
the same application post conflicting communication calls. The user can make sure
that two threads in the same process will not issue conflicting communication calls by
using distinct communicators at each thread. (End of advice to users.)

The two main requirements for a thread-compliant implementation are listed below.

1. All MPI calls are thread-safe, i.e., two concurrently running threads may make MPI
calls and the outcome will be as if the calls executed in some order, even if their
execution is interleaved.
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LOGICAL FLAG

void MPI::Status::Set_cancelled(bool flag)

If flag is set to true then a subsequent call to MPI_TEST_CANCELLED(status, flag) will
also return flag = true, otherwise it will return false.

Advice to users. Users are advised not to reuse the status fields for values other
than those for which they were intended. Doing so may lead to unexpected results
when using the status object. For example, calling MPI_GET_ELEMENTS may cause
an error if the value is out of range or it may be impossible to detect such an error.
The extra_state argument provided with a generalized request can be used to return
information that does not logically belong in status. Furthermore, modifying the
values in a status set internally by MPI, e.g., MPI_RECV, may lead to unpredictable
results and is strongly discouraged. (End of advice to users.)

12.4 MPI and Threads

This section specifies the interaction between MPI calls and threads. The section lists
minimal requirements for thread compliant MPI implementations and defines functions
that can be used for initializing the thread environment. MPI may be implemented in
environments where threads are not supported or perform poorly. Therefore, it is not
required that all MPI implementations fulfill all the requirements specified in this section.

This section generally assumes a thread package similar to POSIX threads [29], but the
syntax and semantics of thread calls are not specified here — these are beyond the scope
of this document.

12.4.1 General

In a thread-compliant implementation, an MPI process is a process that may be multi-
threaded. Each thread can issue MPI calls; however, threads are not separately addressable:
a rank in a send or receive call identifies a process, not a thread. A message sent to a process
can be received by any thread in this process.

Rationale. This model corresponds to the POSIX model of interprocess communica-
tion: the fact that a process is multi-threaded, rather than single-threaded, does not
affect the external interface of this process. MPI implementations where MPI ‘pro-
cesses’ are POSIX threads inside a single POSIX process are not thread-compliant by
this definition (indeed, their “processes” are single-threaded). (End of rationale.)

Advice to users. It is the user’s responsibility to prevent races when threads within
the same application post conflicting communication calls. The user can make sure
that two threads in the same process will not issue conflicting communication calls by
using distinct communicators at each thread. (End of advice to users.)

The two main requirements for a thread-compliant implementation are listed below.

1. All MPI calls are thread-safe, i.e., two concurrently running threads may make MPI
calls and the outcome will be as if the calls executed in some order, even if their
execution is interleaved.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



366 CHAPTER 12. EXTERNAL INTERFACES

2. Blocking MPI calls will block the calling thread only, allowing another thread to
execute, if available. The calling thread will be blocked until the event on which it
is waiting occurs. Once the blocked communication is enabled and can proceed, then
the call will complete and the thread will be marked runnable, within a finite time.
A blocked thread will not prevent progress of other runnable threads on the same
process, and will not prevent them from executing MPI calls.

Example 12.2 Process 0 consists of two threads. The first thread executes a blocking send
call MPI_Send(buff1, count, type, 0, 0, comm), whereas the second thread executes a blocking
receive call MPI_Recv(buff2, count, type, 0, 0, comm, &status), i.e., the first thread sends a
message that is received by the second thread. This communication should always succeed.
According to the first requirement, the execution will correspond to some interleaving of
the two calls. According to the second requirement, a call can only block the calling thread
and cannot prevent progress of the other thread. If the send call went ahead of the receive
call, then the sending thread may block, but this will not prevent the receiving thread from
executing. Thus, the receive call will occur. Once both calls occur, the communication is
enabled and both calls will complete. On the other hand, a single-threaded process that
posts a send, followed by a matching receive, may deadlock. The progress requirement for
multithreaded implementations is stronger, as a blocked call cannot prevent progress in
other threads.

Advice to implementors. MPI calls can be made thread-safe by executing only one at
a time, e.g., by protecting MPI code with one process-global lock. However, blocked
operations cannot hold the lock, as this would prevent progress of other threads in
the process. The lock is held only for the duration of an atomic, locally-completing
suboperation such as posting a send or completing a send, and is released in between.
Finer locks can provide more concurrency, at the expense of higher locking overheads.
Concurrency can also be achieved by having some of the MPI protocol executed by
separate server threads. (End of advice to implementors.)

12.4.2 Clarifications

Initialization and Completion The call to MPI_FINALIZE should occur on the same thread
that initialized MPI. We call this thread the main thread. The call should occur only after
all the process threads have completed their MPI calls, and have no pending communications
or I/O operations.

Rationale. This constraint simplifies implementation. (End of rationale.)

Multiple threads completing the same request. A program where two threads block, waiting
on the same request, is erroneous. Similarly, the same request cannot appear in the array of
requests of two concurrent MPI_{WAIT|TEST}{ANY|SOME|ALL} calls. In MPI, a request
can only be completed once. Any combination of wait or test which violates this rule is
erroneous.

Rationale. This is consistent with the view that a multithreaded execution cor-
responds to an interleaving of the MPI calls. In a single threaded implementa-
tion, once a wait is posted on a request the request handle will be nullified be-
fore it is possible to post a second wait on the same handle. With threads, an
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2. Blocking MPI calls will block the calling thread only, allowing another thread to
execute, if available. The calling thread will be blocked until the event on which it
is waiting occurs. Once the blocked communication is enabled and can proceed, then
the call will complete and the thread will be marked runnable, within a finite time.
A blocked thread will not prevent progress of other runnable threads on the same
process, and will not prevent them from executing MPI calls.

Example 12.2 Process 0 consists of two threads. The first thread executes a blocking send
call MPI_Send(buff1, count, type, 0, 0, comm), whereas the second thread executes a blocking
receive call MPI_Recv(buff2, count, type, 0, 0, comm, &status), i.e., the first thread sends a
message that is received by the second thread. This communication should always succeed.
According to the first requirement, the execution will correspond to some interleaving of
the two calls. According to the second requirement, a call can only block the calling thread
and cannot prevent progress of the other thread. If the send call went ahead of the receive
call, then the sending thread may block, but this will not prevent the receiving thread from
executing. Thus, the receive call will occur. Once both calls occur, the communication is
enabled and both calls will complete. On the other hand, a single-threaded process that
posts a send, followed by a matching receive, may deadlock. The progress requirement for
multithreaded implementations is stronger, as a blocked call cannot prevent progress in
other threads.

Advice to implementors. MPI calls can be made thread-safe by executing only one at
a time, e.g., by protecting MPI code with one process-global lock. However, blocked
operations cannot hold the lock, as this would prevent progress of other threads in
the process. The lock is held only for the duration of an atomic, locally-completing
suboperation such as posting a send or completing a send, and is released in between.
Finer locks can provide more concurrency, at the expense of higher locking overheads.
Concurrency can also be achieved by having some of the MPI protocol executed by
separate server threads. (End of advice to implementors.)

12.4.2 Clarifications

Initialization and Completion The call to MPI_FINALIZE should occur on the same thread
that initialized MPI. We call this thread the main thread. The call should occur only after
all the process threads have completed their MPI calls, and have no pending communications
or I/O operations.

Rationale. This constraint simplifies implementation. (End of rationale.)

Multiple threads completing the same request. A program where two threads block, waiting
on the same request, is erroneous. Similarly, the same request cannot appear in the array of
requests of two concurrent MPI_{WAIT|TEST}{ANY|SOME|ALL} calls. In MPI, a request
can only be completed once. Any combination of wait or test which violates this rule is
erroneous.

Rationale. This is consistent with the view that a multithreaded execution cor-
responds to an interleaving of the MPI calls. In a single threaded implementa-
tion, once a wait is posted on a request the request handle will be nullified be-
fore it is possible to post a second wait on the same handle. With threads, an
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MPI_WAIT{ANY|SOME|ALL} may be blocked without having nullified its request(s)
so it becomes the user’s responsibility to avoid using the same request in an MPI_WAIT
on another thread. This constraint also simplifies implementation, as only one thread
will be blocked on any communication or I/O event. (End of rationale.)

Probe A receive call that uses source and tag values returned by a preceding call to
MPI_PROBE or MPI_IPROBE will receive the message matched by the probe call only
if there was no other matching receive after the probe and before that receive. In a multi-
threaded environment, it is up to the user to enforce this condition using suitable mutual
exclusion logic. This can be enforced by making sure that each communicator is used by
only one thread on each process.

Collective calls Matching of collective calls on a communicator, window, or file handle is
done according to the order in which the calls are issued at each process. If concurrent
threads issue such calls on the same communicator, window or file handle, it is up to the
user to make sure the calls are correctly ordered, using interthread synchronization.

Advice to users. With three concurrent threads in each MPI process of a communica-
tor comm, it is allowed that thread A in each MPI process calls a collective operation
on comm, thread B calls a file operation on an existing filehandle that was formerly
opened on comm, and thread C invokes one-sided operations on an existing window
handle that was also formerly created on comm. (End of advice to users.)

Rationale. As already specified in MPI_FILE_OPEN and MPI_WIN_CREATE, a file
handle and a window handle inherit only the group of processes of the underlying
communicator, but not the communicator itself. Accesses to communicators, window
handles and file handles cannot affect one another. (End of rationale.)

Advice to implementors. Advice to implementors. If the implementation of file or
window operations internally uses MPI communication then a duplicated communi-
cator may be cached on the file or window object. (End of advice to implementors.)

Exception handlers An exception handler does not necessarily execute in the context of the
thread that made the exception-raising MPI call; the exception handler may be executed
by a thread that is distinct from the thread that will return the error code.

Rationale. The MPI implementation may be multithreaded, so that part of the
communication protocol may execute on a thread that is distinct from the thread
that made the MPI call. The design allows the exception handler to be executed on
the thread where the exception occurred. (End of rationale.)

Interaction with signals and cancellations The outcome is undefined if a thread that executes
an MPI call is cancelled (by another thread), or if a thread catches a signal while executing
an MPI call. However, a thread of an MPI process may terminate, and may catch signals or
be cancelled by another thread when not executing MPI calls.
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MPI_WAIT{ANY|SOME|ALL} may be blocked without having nullified its request(s)
so it becomes the user’s responsibility to avoid using the same request in an MPI_WAIT
on another thread. This constraint also simplifies implementation, as only one thread
will be blocked on any communication or I/O event. (End of rationale.)

Probe A receive call that uses source and tag values returned by a preceding call to
MPI_PROBE or MPI_IPROBE will receive the message matched by the probe call only
if there was no other matching receive after the probe and before that receive. In a multi-
threaded environment, it is up to the user to enforce this condition using suitable mutual
exclusion logic. This can be enforced by making sure that each communicator is used by
only one thread on each process.

Collective calls Matching of collective calls on a communicator, window, or file handle is
done according to the order in which the calls are issued at each process. If concurrent
threads issue such calls on the same communicator, window or file handle, it is up to the
user to make sure the calls are correctly ordered, using interthread synchronization.

Advice to users. With three concurrent threads in each MPI process of a communica-
tor comm, it is allowed that thread A in each MPI process calls a collective operation
on comm, thread B calls a file operation on an existing filehandle that was formerly
opened on comm, and thread C invokes one-sided operations on an existing window
handle that was also formerly created on comm. (End of advice to users.)

Rationale. As already specified in MPI_FILE_OPEN and MPI_WIN_CREATE, a file
handle and a window handle inherit only the group of processes of the underlying
communicator, but not the communicator itself. Accesses to communicators, window
handles and file handles cannot affect one another. (End of rationale.)

Advice to implementors. Advice to implementors. If the implementation of file or
window operations internally uses MPI communication then a duplicated communi-
cator may be cached on the file or window object. (End of advice to implementors.)

Exception handlers An exception handler does not necessarily execute in the context of the
thread that made the exception-raising MPI call; the exception handler may be executed
by a thread that is distinct from the thread that will return the error code.

Rationale. The MPI implementation may be multithreaded, so that part of the
communication protocol may execute on a thread that is distinct from the thread
that made the MPI call. The design allows the exception handler to be executed on
the thread where the exception occurred. (End of rationale.)

Interaction with signals and cancellations The outcome is undefined if a thread that executes
an MPI call is cancelled (by another thread), or if a thread catches a signal while executing
an MPI call. However, a thread of an MPI process may terminate, and may catch signals or
be cancelled by another thread when not executing MPI calls.
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Rationale. Few C library functions are signal safe, and many have cancellation points
— points where the thread executing them may be cancelled. The above restriction
simplifies implementation (no need for the MPI library to be “async-cancel-safe” or
“async-signal-safe.” (End of rationale.)

Advice to users. Users can catch signals in separate, non-MPI threads (e.g., by
masking signals on MPI calling threads, and unmasking them in one or more non-MPI
threads). A good programming practice is to have a distinct thread blocked in a
call to sigwait for each user expected signal that may occur. Users must not catch
signals used by the MPI implementation; as each MPI implementation is required to
document the signals used internally, users can avoid these signals. (End of advice to
users.)

Advice to implementors. The MPI library should not invoke library calls that are
not thread safe, if multiple threads execute. (End of advice to implementors.)

12.4.3 Initialization

The following function may be used to initialize MPI, and initialize the MPI thread envi-
ronment, instead of MPI_INIT.

MPI_INIT_THREAD(required, provided)

IN required desired level of thread support (integer)

OUT provided provided level of thread support (integer)

int MPI_Init_thread(int *argc, char *((*argv)[]), int required,

int *provided)

MPI_INIT_THREAD(REQUIRED, PROVIDED, IERROR)

INTEGER REQUIRED, PROVIDED, IERROR

int MPI::Init_thread(int& argc, char**& argv, int required)

int MPI::Init_thread(int required)

Advice to users. In C and C++, the passing of argc and argv is optional. In C, this is
accomplished by passing the appropriate null pointer. In C++, this is accomplished
with two separate bindings to cover these two cases. This is as with MPI_INIT as
discussed in Section 8.7. (End of advice to users.)

This call initializes MPI in the same way that a call to MPI_INIT would. In addition,
it initializes the thread environment. The argument required is used to specify the desired
level of thread support. The possible values are listed in increasing order of thread support.

MPI_THREAD_SINGLE Only one thread will execute.

MPI_THREAD_FUNNELED The process may be multi-threaded, but the application must
ensure that only the main thread makes MPI calls (for the definition of main thread,
see MPI_IS_THREAD_MAIN on page 370).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

368 CHAPTER 12. EXTERNAL INTERFACES

Rationale. Few C library functions are signal safe, and many have cancellation points
— points where the thread executing them may be cancelled. The above restriction
simplifies implementation (no need for the MPI library to be “async-cancel-safe” or
“async-signal-safe.” (End of rationale.)

Advice to users. Users can catch signals in separate, non-MPI threads (e.g., by
masking signals on MPI calling threads, and unmasking them in one or more non-MPI
threads). A good programming practice is to have a distinct thread blocked in a
call to sigwait for each user expected signal that may occur. Users must not catch
signals used by the MPI implementation; as each MPI implementation is required to
document the signals used internally, users can avoid these signals. (End of advice to
users.)

Advice to implementors. The MPI library should not invoke library calls that are
not thread safe, if multiple threads execute. (End of advice to implementors.)

12.4.3 Initialization

The following function may be used to initialize MPI, and initialize the MPI thread envi-
ronment, instead of MPI_INIT.

MPI_INIT_THREAD(required, provided)

IN required desired level of thread support (integer)

OUT provided provided level of thread support (integer)

int MPI_Init_thread(int *argc, char *((*argv)[]), int required,

int *provided)

MPI_INIT_THREAD(REQUIRED, PROVIDED, IERROR)

INTEGER REQUIRED, PROVIDED, IERROR

int MPI::Init_thread(int& argc, char**& argv, int required)

int MPI::Init_thread(int required)

Advice to users. In C and C++, the passing of argc and argv is optional. In C, this is
accomplished by passing the appropriate null pointer. In C++, this is accomplished
with two separate bindings to cover these two cases. This is as with MPI_INIT as
discussed in Section 8.7. (End of advice to users.)

This call initializes MPI in the same way that a call to MPI_INIT would. In addition,
it initializes the thread environment. The argument required is used to specify the desired
level of thread support. The possible values are listed in increasing order of thread support.

MPI_THREAD_SINGLE Only one thread will execute.

MPI_THREAD_FUNNELED The process may be multi-threaded, but the application must
ensure that only the main thread makes MPI calls (for the definition of main thread,
see MPI_IS_THREAD_MAIN on page 370).
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MPI_THREAD_SERIALIZED The process may be multi-threaded, and multiple threads may
make MPI calls, but only one at a time: MPI calls are not made concurrently from
two distinct threads (all MPI calls are “serialized”).

MPI_THREAD_MULTIPLE Multiple threads may call MPI, with no restrictions.

These values are monotonic; i.e., MPI_THREAD_SINGLE < MPI_THREAD_FUNNELED <

MPI_THREAD_SERIALIZED < MPI_THREAD_MULTIPLE.
Different processes in MPI_COMM_WORLD may require different levels of thread sup-

port.
The call returns in provided information about the actual level of thread support that

will be provided by MPI. It can be one of the four values listed above.
The level(s) of thread support that can be provided by MPI_INIT_THREAD will depend

on the implementation, and may depend on information provided by the user before the
program started to execute (e.g., with arguments to mpiexec). If possible, the call will
return provided = required. Failing this, the call will return the least supported level such
that provided > required (thus providing a stronger level of support than required by the
user). Finally, if the user requirement cannot be satisfied, then the call will return in
provided the highest supported level.

A thread compliant MPI implementation will be able to return provided
= MPI_THREAD_MULTIPLE. Such an implementation may always return provided
= MPI_THREAD_MULTIPLE, irrespective of the value of required. At the other extreme,
an MPI library that is not thread compliant may always return
provided = MPI_THREAD_SINGLE, irrespective of the value of required.

A call to MPI_INIT has the same effect as a call to MPI_INIT_THREAD with a required
= MPI_THREAD_SINGLE.

Vendors may provide (implementation dependent) means to specify the level(s) of
thread support available when the MPI program is started, e.g., with arguments to mpiexec.
This will affect the outcome of calls to MPI_INIT and MPI_INIT_THREAD. Suppose, for
example, that an MPI program has been started so that only MPI_THREAD_MULTIPLE is
available. Then MPI_INIT_THREAD will return provided = MPI_THREAD_MULTIPLE, ir-
respective of the value of required; a call to MPI_INIT will also initialize the MPI thread
support level to MPI_THREAD_MULTIPLE. Suppose, on the other hand, that an MPI pro-
gram has been started so that all four levels of thread support are available. Then, a call to
MPI_INIT_THREAD will return provided = required; on the other hand, a call to MPI_INIT
will initialize the MPI thread support level to MPI_THREAD_SINGLE.

Rationale. Various optimizations are possible when MPI code is executed single-
threaded, or is executed on multiple threads, but not concurrently: mutual exclusion
code may be omitted. Furthermore, if only one thread executes, then the MPI library
can use library functions that are not thread safe, without risking conflicts with user
threads. Also, the model of one communication thread, multiple computation threads
fits many applications well, e.g., if the process code is a sequential Fortran/C/C++
program with MPI calls that has been parallelized by a compiler for execution on an
SMP node, in a cluster of SMPs, then the process computation is multi-threaded, but
MPI calls will likely execute on a single thread.

The design accommodates a static specification of the thread support level, for en-
vironments that require static binding of libraries, and for compatibility for current
multi-threaded MPI codes. (End of rationale.)
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MPI_THREAD_SERIALIZED The process may be multi-threaded, and multiple threads may
make MPI calls, but only one at a time: MPI calls are not made concurrently from
two distinct threads (all MPI calls are “serialized”).

MPI_THREAD_MULTIPLE Multiple threads may call MPI, with no restrictions.

These values are monotonic; i.e., MPI_THREAD_SINGLE < MPI_THREAD_FUNNELED <

MPI_THREAD_SERIALIZED < MPI_THREAD_MULTIPLE.
Different processes in MPI_COMM_WORLD may require different levels of thread sup-

port.
The call returns in provided information about the actual level of thread support that

will be provided by MPI. It can be one of the four values listed above.
The level(s) of thread support that can be provided by MPI_INIT_THREAD will depend

on the implementation, and may depend on information provided by the user before the
program started to execute (e.g., with arguments to mpiexec). If possible, the call will
return provided = required. Failing this, the call will return the least supported level such
that provided > required (thus providing a stronger level of support than required by the
user). Finally, if the user requirement cannot be satisfied, then the call will return in
provided the highest supported level.

A thread compliant MPI implementation will be able to return provided
= MPI_THREAD_MULTIPLE. Such an implementation may always return provided
= MPI_THREAD_MULTIPLE, irrespective of the value of required. At the other extreme,
an MPI library that is not thread compliant may always return
provided = MPI_THREAD_SINGLE, irrespective of the value of required.

A call to MPI_INIT has the same effect as a call to MPI_INIT_THREAD with a required
= MPI_THREAD_SINGLE.

Vendors may provide (implementation dependent) means to specify the level(s) of
thread support available when the MPI program is started, e.g., with arguments to mpiexec.
This will affect the outcome of calls to MPI_INIT and MPI_INIT_THREAD. Suppose, for
example, that an MPI program has been started so that only MPI_THREAD_MULTIPLE is
available. Then MPI_INIT_THREAD will return provided = MPI_THREAD_MULTIPLE, ir-
respective of the value of required; a call to MPI_INIT will also initialize the MPI thread
support level to MPI_THREAD_MULTIPLE. Suppose, on the other hand, that an MPI pro-
gram has been started so that all four levels of thread support are available. Then, a call to
MPI_INIT_THREAD will return provided = required; on the other hand, a call to MPI_INIT
will initialize the MPI thread support level to MPI_THREAD_SINGLE.

Rationale. Various optimizations are possible when MPI code is executed single-
threaded, or is executed on multiple threads, but not concurrently: mutual exclusion
code may be omitted. Furthermore, if only one thread executes, then the MPI library
can use library functions that are not thread safe, without risking conflicts with user
threads. Also, the model of one communication thread, multiple computation threads
fits many applications well, e.g., if the process code is a sequential Fortran/C/C++
program with MPI calls that has been parallelized by a compiler for execution on an
SMP node, in a cluster of SMPs, then the process computation is multi-threaded, but
MPI calls will likely execute on a single thread.

The design accommodates a static specification of the thread support level, for en-
vironments that require static binding of libraries, and for compatibility for current
multi-threaded MPI codes. (End of rationale.)
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Advice to implementors. If provided is not MPI_THREAD_SINGLE then the MPI library
should not invoke C/ C++/Fortran library calls that are not thread safe, e.g., in an
environment where malloc is not thread safe, then malloc should not be used by the
MPI library.

Some implementors may want to use different MPI libraries for different levels of thread
support. They can do so using dynamic linking and selecting which library will be
linked when MPI_INIT_THREAD is invoked. If this is not possible, then optimizations
for lower levels of thread support will occur only when the level of thread support
required is specified at link time. (End of advice to implementors.)

The following function can be used to query the current level of thread support.

MPI_QUERY_THREAD(provided)

OUT provided provided level of thread support (integer)

int MPI_Query_thread(int *provided)

MPI_QUERY_THREAD(PROVIDED, IERROR)

INTEGER PROVIDED, IERROR

int MPI::Query_thread()

The call returns in provided the current level of thread support. This will be the value
returned in provided by MPI_INIT_THREAD, if MPI was initialized by a call to
MPI_INIT_THREAD().

MPI_IS_THREAD_MAIN(flag)

OUT flag true if calling thread is main thread, false otherwise

(logical)

int MPI_Is_thread_main(int *flag)

MPI_IS_THREAD_MAIN(FLAG, IERROR)

LOGICAL FLAG

INTEGER IERROR

bool MPI::Is_thread_main()

This function can be called by a thread to find out whether it is the main thread (the
thread that called MPI_INIT or MPI_INIT_THREAD).

All routines listed in this section must be supported by all MPI implementations.

Rationale. MPI libraries are required to provide these calls even if they do not support
threads, so that portable code that contains invocations to these functions be able to
link correctly. MPI_INIT continues to be supported so as to provide compatibility
with current MPI codes. (End of rationale.)

Advice to users. It is possible to spawn threads before MPI is initialized, but no
MPI call other than MPI_INITIALIZED should be executed by these threads, until

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

370 CHAPTER 12. EXTERNAL INTERFACES

Advice to implementors. If provided is not MPI_THREAD_SINGLE then the MPI library
should not invoke C/ C++/Fortran library calls that are not thread safe, e.g., in an
environment where malloc is not thread safe, then malloc should not be used by the
MPI library.

Some implementors may want to use different MPI libraries for different levels of thread
support. They can do so using dynamic linking and selecting which library will be
linked when MPI_INIT_THREAD is invoked. If this is not possible, then optimizations
for lower levels of thread support will occur only when the level of thread support
required is specified at link time. (End of advice to implementors.)

The following function can be used to query the current level of thread support.

MPI_QUERY_THREAD(provided)

OUT provided provided level of thread support (integer)

int MPI_Query_thread(int *provided)

MPI_QUERY_THREAD(PROVIDED, IERROR)

INTEGER PROVIDED, IERROR

int MPI::Query_thread()

The call returns in provided the current level of thread support. This will be the value
returned in provided by MPI_INIT_THREAD, if MPI was initialized by a call to
MPI_INIT_THREAD().

MPI_IS_THREAD_MAIN(flag)

OUT flag true if calling thread is main thread, false otherwise

(logical)

int MPI_Is_thread_main(int *flag)

MPI_IS_THREAD_MAIN(FLAG, IERROR)

LOGICAL FLAG

INTEGER IERROR

bool MPI::Is_thread_main()

This function can be called by a thread to find out whether it is the main thread (the
thread that called MPI_INIT or MPI_INIT_THREAD).

All routines listed in this section must be supported by all MPI implementations.

Rationale. MPI libraries are required to provide these calls even if they do not support
threads, so that portable code that contains invocations to these functions be able to
link correctly. MPI_INIT continues to be supported so as to provide compatibility
with current MPI codes. (End of rationale.)

Advice to users. It is possible to spawn threads before MPI is initialized, but no
MPI call other than MPI_INITIALIZED should be executed by these threads, until
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12.4. MPI AND THREADS 371

MPI_INIT_THREAD is invoked by one thread (which, thereby, becomes the main
thread). In particular, it is possible to enter the MPI execution with a multi-threaded
process.

The level of thread support provided is a global property of the MPI process that can
be specified only once, when MPI is initialized on that process (or before). Portable
third party libraries have to be written so as to accommodate any provided level of
thread support. Otherwise, their usage will be restricted to specific level(s) of thread
support. If such a library can run only with specific level(s) of thread support, e.g.,
only with MPI_THREAD_MULTIPLE, then MPI_QUERY_THREAD can be used to check
whether the user initialized MPI to the correct level of thread support and, if not,
raise an exception. (End of advice to users.)
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MPI_INIT_THREAD is invoked by one thread (which, thereby, becomes the main
thread). In particular, it is possible to enter the MPI execution with a multi-threaded
process.

The level of thread support provided is a global property of the MPI process that can
be specified only once, when MPI is initialized on that process (or before). Portable
third party libraries have to be written so as to accommodate any provided level of
thread support. Otherwise, their usage will be restricted to specific level(s) of thread
support. If such a library can run only with specific level(s) of thread support, e.g.,
only with MPI_THREAD_MULTIPLE, then MPI_QUERY_THREAD can be used to check
whether the user initialized MPI to the correct level of thread support and, if not,
raise an exception. (End of advice to users.)
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Chapter 13

I/O

13.1 Introduction

POSIX provides a model of a widely portable file system, but the portability and optimiza-
tion needed for parallel I/O cannot be achieved with the POSIX interface.

The significant optimizations required for efficiency (e.g., grouping [35], collective
buffering [6, 13, 36, 39, 46], and disk-directed I/O [31]) can only be implemented if the par-
allel I/O system provides a high-level interface supporting partitioning of file data among
processes and a collective interface supporting complete transfers of global data structures
between process memories and files. In addition, further efficiencies can be gained via sup-
port for asynchronous I/O, strided accesses, and control over physical file layout on storage
devices (disks). The I/O environment described in this chapter provides these facilities.

Instead of defining I/O access modes to express the common patterns for accessing a
shared file (broadcast, reduction, scatter, gather), we chose another approach in which data
partitioning is expressed using derived datatypes. Compared to a limited set of predefined
access patterns, this approach has the advantage of added flexibility and expressiveness.

13.1.1 Definitions

file An MPI file is an ordered collection of typed data items. MPI supports random or
sequential access to any integral set of these items. A file is opened collectively by a
group of processes. All collective I/O calls on a file are collective over this group.

displacement A file displacement is an absolute byte position relative to the beginning of
a file. The displacement defines the location where a view begins. Note that a “file
displacement” is distinct from a “typemap displacement.”

etype An etype (elementary datatype) is the unit of data access and positioning. It can be
any MPI predefined or derived datatype. Derived etypes can be constructed using any
of the MPI datatype constructor routines, provided all resulting typemap displace-
ments are nonnegative and monotonically nondecreasing. Data access is performed in
etype units, reading or writing whole data items of type etype. Offsets are expressed
as a count of etypes; file pointers point to the beginning of etypes. Depending on
context, the term “etype” is used to describe one of three aspects of an elementary
datatype: a particular MPI type, a data item of that type, or the extent of that type.
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I/O

13.1 Introduction

POSIX provides a model of a widely portable file system, but the portability and optimiza-
tion needed for parallel I/O cannot be achieved with the POSIX interface.

The significant optimizations required for efficiency (e.g., grouping [35], collective
buffering [6, 13, 36, 39, 46], and disk-directed I/O [31]) can only be implemented if the par-
allel I/O system provides a high-level interface supporting partitioning of file data among
processes and a collective interface supporting complete transfers of global data structures
between process memories and files. In addition, further efficiencies can be gained via sup-
port for asynchronous I/O, strided accesses, and control over physical file layout on storage
devices (disks). The I/O environment described in this chapter provides these facilities.

Instead of defining I/O access modes to express the common patterns for accessing a
shared file (broadcast, reduction, scatter, gather), we chose another approach in which data
partitioning is expressed using derived datatypes. Compared to a limited set of predefined
access patterns, this approach has the advantage of added flexibility and expressiveness.

13.1.1 Definitions

file An MPI file is an ordered collection of typed data items. MPI supports random or
sequential access to any integral set of these items. A file is opened collectively by a
group of processes. All collective I/O calls on a file are collective over this group.

displacement A file displacement is an absolute byte position relative to the beginning of
a file. The displacement defines the location where a view begins. Note that a “file
displacement” is distinct from a “typemap displacement.”

etype An etype (elementary datatype) is the unit of data access and positioning. It can be
any MPI predefined or derived datatype. Derived etypes can be constructed using any
of the MPI datatype constructor routines, provided all resulting typemap displace-
ments are nonnegative and monotonically nondecreasing. Data access is performed in
etype units, reading or writing whole data items of type etype. Offsets are expressed
as a count of etypes; file pointers point to the beginning of etypes. Depending on
context, the term “etype” is used to describe one of three aspects of an elementary
datatype: a particular MPI type, a data item of that type, or the extent of that type.
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374 CHAPTER 13. I/O

filetype A filetype is the basis for partitioning a file among processes and defines a template
for accessing the file. A filetype is either a single etype or a derived MPI datatype
constructed from multiple instances of the same etype. In addition, the extent of any
hole in the filetype must be a multiple of the etype’s extent. The displacements in the
typemap of the filetype are not required to be distinct, but they must be nonnegative
and monotonically nondecreasing.

view A view defines the current set of data visible and accessible from an open file as an
ordered set of etypes. Each process has its own view of the file, defined by three
quantities: a displacement, an etype, and a filetype. The pattern described by a
filetype is repeated, beginning at the displacement, to define the view. The pattern
of repetition is defined to be the same pattern that MPI_TYPE_CONTIGUOUS would
produce if it were passed the filetype and an arbitrarily large count. Figure 13.1 shows
how the tiling works; note that the filetype in this example must have explicit lower
and upper bounds set in order for the initial and final holes to be repeated in the
view. Views can be changed by the user during program execution. The default view
is a linear byte stream (displacement is zero, etype and filetype equal to MPI_BYTE).

...

etype

filetype

displacement

holes

tiling a file with the filetype:

accessible data

Figure 13.1: Etypes and filetypes

A group of processes can use complementary views to achieve a global data distribution
such as a scatter/gather pattern (see Figure 13.2).

process 0 filetype

...

etype

process 1 filetype

process 2 filetype

displacement

tiling a file with the filetypes:

Figure 13.2: Partitioning a file among parallel processes

offset An offset is a position in the file relative to the current view, expressed as a count of
etypes. Holes in the view’s filetype are skipped when calculating this position. Offset 0
is the location of the first etype visible in the view (after skipping the displacement and
any initial holes in the view). For example, an offset of 2 for process 1 in Figure 13.2
is the position of the 8th etype in the file after the displacement. An “explicit offset”
is an offset that is used as a formal parameter in explicit data access routines.
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filetype A filetype is the basis for partitioning a file among processes and defines a template
for accessing the file. A filetype is either a single etype or a derived MPI datatype
constructed from multiple instances of the same etype. In addition, the extent of any
hole in the filetype must be a multiple of the etype’s extent. The displacements in the
typemap of the filetype are not required to be distinct, but they must be nonnegative
and monotonically nondecreasing.

view A view defines the current set of data visible and accessible from an open file as an
ordered set of etypes. Each process has its own view of the file, defined by three
quantities: a displacement, an etype, and a filetype. The pattern described by a
filetype is repeated, beginning at the displacement, to define the view. The pattern
of repetition is defined to be the same pattern that MPI_TYPE_CONTIGUOUS would
produce if it were passed the filetype and an arbitrarily large count. Figure 13.1 shows
how the tiling works; note that the filetype in this example must have explicit lower
and upper bounds set in order for the initial and final holes to be repeated in the
view. Views can be changed by the user during program execution. The default view
is a linear byte stream (displacement is zero, etype and filetype equal to MPI_BYTE).

...

etype

filetype

displacement

holes

tiling a file with the filetype:

accessible data

Figure 13.1: Etypes and filetypes

A group of processes can use complementary views to achieve a global data distribution
such as a scatter/gather pattern (see Figure 13.2).

process 0 filetype

...

etype

process 1 filetype

process 2 filetype

displacement

tiling a file with the filetypes:

Figure 13.2: Partitioning a file among parallel processes

offset An offset is a position in the file relative to the current view, expressed as a count of
etypes. Holes in the view’s filetype are skipped when calculating this position. Offset 0
is the location of the first etype visible in the view (after skipping the displacement and
any initial holes in the view). For example, an offset of 2 for process 1 in Figure 13.2
is the position of the 8th etype in the file after the displacement. An “explicit offset”
is an offset that is used as a formal parameter in explicit data access routines.
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file size and end of file The size of an MPI file is measured in bytes from the beginning
of the file. A newly created file has a size of zero bytes. Using the size as an absolute
displacement gives the position of the byte immediately following the last byte in the
file. For any given view, the end of file is the offset of the first etype accessible in the
current view starting after the last byte in the file.

file pointer A file pointer is an implicit offset maintained by MPI. “Individual file pointers”
are file pointers that are local to each process that opened the file. A “shared file
pointer” is a file pointer that is shared by the group of processes that opened the file.

file handle A file handle is an opaque object created by MPI_FILE_OPEN and freed by
MPI_FILE_CLOSE. All operations on an open file reference the file through the file
handle.

13.2 File Manipulation

13.2.1 Opening a File

MPI_FILE_OPEN(comm, filename, amode, info, fh)

IN comm communicator (handle)

IN filename name of file to open (string)

IN amode file access mode (integer)

IN info info object (handle)

OUT fh new file handle (handle)

int MPI_File_open(MPI_Comm comm, char *filename, int amode, MPI_Info info,

MPI_File *fh)

MPI_FILE_OPEN(COMM, FILENAME, AMODE, INFO, FH, IERROR)

CHARACTER*(*) FILENAME

INTEGER COMM, AMODE, INFO, FH, IERROR

static MPI::File MPI::File::Open(const MPI::Intracomm& comm,

const char* filename, int amode, const MPI::Info& info)

MPI_FILE_OPEN opens the file identified by the file name filename on all processes in
the comm communicator group. MPI_FILE_OPEN is a collective routine: all processes must
provide the same value for amode, and all processes must provide filenames that reference
the same file. (Values for info may vary.) comm must be an intracommunicator; it is
erroneous to pass an intercommunicator to MPI_FILE_OPEN. Errors in MPI_FILE_OPEN
are raised using the default file error handler (see Section 13.7, page 429). A process can
open a file independently of other processes by using the MPI_COMM_SELF communicator.
The file handle returned, fh, can be subsequently used to access the file until the file is
closed using MPI_FILE_CLOSE. Before calling MPI_FINALIZE, the user is required to close
(via MPI_FILE_CLOSE) all files that were opened with MPI_FILE_OPEN. Note that the
communicator comm is unaffected by MPI_FILE_OPEN and continues to be usable in all
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are raised using the default file error handler (see Section 13.7, page 429). A process can
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MPI routines (e.g., MPI_SEND). Furthermore, the use of comm will not interfere with I/O
behavior.

The format for specifying the file name in the filename argument is implementation
dependent and must be documented by the implementation.

Advice to implementors. An implementation may require that filename include a
string or strings specifying additional information about the file. Examples include
the type of filesystem (e.g., a prefix of ufs:), a remote hostname (e.g., a prefix of
machine.univ.edu:), or a file password (e.g., a suffix of /PASSWORD=SECRET).
(End of advice to implementors.)

Advice to users. On some implementations of MPI, the file namespace may not be
identical from all processes of all applications. For example, “/tmp/foo” may denote
different files on different processes, or a single file may have many names, dependent
on process location. The user is responsible for ensuring that a single file is referenced
by the filename argument, as it may be impossible for an implementation to detect
this type of namespace error. (End of advice to users.)

Initially, all processes view the file as a linear byte stream, and each process views data
in its own native representation (no data representation conversion is performed). (POSIX
files are linear byte streams in the native representation.) The file view can be changed via
the MPI_FILE_SET_VIEW routine.

The following access modes are supported (specified in amode, a bit vector OR of the
following integer constants):

• MPI_MODE_RDONLY — read only,

• MPI_MODE_RDWR — reading and writing,

• MPI_MODE_WRONLY — write only,

• MPI_MODE_CREATE — create the file if it does not exist,

• MPI_MODE_EXCL — error if creating file that already exists,

• MPI_MODE_DELETE_ON_CLOSE — delete file on close,

• MPI_MODE_UNIQUE_OPEN — file will not be concurrently opened elsewhere,

• MPI_MODE_SEQUENTIAL — file will only be accessed sequentially,

• MPI_MODE_APPEND — set initial position of all file pointers to end of file.

Advice to users. C/C++ users can use bit vector OR (|) to combine these constants;
Fortran 90 users can use the bit vector IOR intrinsic. Fortran 77 users can use (non-
portably) bit vector IOR on systems that support it. Alternatively, Fortran users can
portably use integer addition to OR the constants (each constant should appear at
most once in the addition.). (End of advice to users.)

Advice to implementors. The values of these constants must be defined such that
the bitwise OR and the sum of any distinct set of these constants is equivalent. (End
of advice to implementors.)
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string or strings specifying additional information about the file. Examples include
the type of filesystem (e.g., a prefix of ufs:), a remote hostname (e.g., a prefix of
machine.univ.edu:), or a file password (e.g., a suffix of /PASSWORD=SECRET).
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Advice to users. On some implementations of MPI, the file namespace may not be
identical from all processes of all applications. For example, “/tmp/foo” may denote
different files on different processes, or a single file may have many names, dependent
on process location. The user is responsible for ensuring that a single file is referenced
by the filename argument, as it may be impossible for an implementation to detect
this type of namespace error. (End of advice to users.)

Initially, all processes view the file as a linear byte stream, and each process views data
in its own native representation (no data representation conversion is performed). (POSIX
files are linear byte streams in the native representation.) The file view can be changed via
the MPI_FILE_SET_VIEW routine.

The following access modes are supported (specified in amode, a bit vector OR of the
following integer constants):

• MPI_MODE_RDONLY — read only,

• MPI_MODE_RDWR — reading and writing,

• MPI_MODE_WRONLY — write only,

• MPI_MODE_CREATE — create the file if it does not exist,

• MPI_MODE_EXCL — error if creating file that already exists,

• MPI_MODE_DELETE_ON_CLOSE — delete file on close,

• MPI_MODE_UNIQUE_OPEN — file will not be concurrently opened elsewhere,

• MPI_MODE_SEQUENTIAL — file will only be accessed sequentially,

• MPI_MODE_APPEND — set initial position of all file pointers to end of file.

Advice to users. C/C++ users can use bit vector OR (|) to combine these constants;
Fortran 90 users can use the bit vector IOR intrinsic. Fortran 77 users can use (non-
portably) bit vector IOR on systems that support it. Alternatively, Fortran users can
portably use integer addition to OR the constants (each constant should appear at
most once in the addition.). (End of advice to users.)

Advice to implementors. The values of these constants must be defined such that
the bitwise OR and the sum of any distinct set of these constants is equivalent. (End
of advice to implementors.)
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The modes MPI_MODE_RDONLY, MPI_MODE_RDWR, MPI_MODE_WRONLY,
MPI_MODE_CREATE, and MPI_MODE_EXCL have identical semantics to their POSIX counter-
parts [29]. Exactly one of MPI_MODE_RDONLY, MPI_MODE_RDWR, or MPI_MODE_WRONLY,
must be specified. It is erroneous to specify MPI_MODE_CREATE or MPI_MODE_EXCL in
conjunction with MPI_MODE_RDONLY; it is erroneous to specify MPI_MODE_SEQUENTIAL

together with MPI_MODE_RDWR.
The MPI_MODE_DELETE_ON_CLOSE mode causes the file to be deleted (equivalent to

performing an MPI_FILE_DELETE) when the file is closed.
The MPI_MODE_UNIQUE_OPEN mode allows an implementation to optimize access by

eliminating the overhead of file locking. It is erroneous to open a file in this mode unless
the file will not be concurrently opened elsewhere.

Advice to users. For MPI_MODE_UNIQUE_OPEN, not opened elsewhere includes both
inside and outside the MPI environment. In particular, one needs to be aware of
potential external events which may open files (e.g., automated backup facilities).
When MPI_MODE_UNIQUE_OPEN is specified, the user is responsible for ensuring that
no such external events take place. (End of advice to users.)

The MPI_MODE_SEQUENTIAL mode allows an implementation to optimize access to
some sequential devices (tapes and network streams). It is erroneous to attempt nonse-
quential access to a file that has been opened in this mode.

Specifying MPI_MODE_APPEND only guarantees that all shared and individual file
pointers are positioned at the initial end of file when MPI_FILE_OPEN returns. Subsequent
positioning of file pointers is application dependent. In particular, the implementation does
not ensure that all writes are appended.

Errors related to the access mode are raised in the class MPI_ERR_AMODE.
The info argument is used to provide information regarding file access patterns and file

system specifics (see Section 13.2.8, page 382). The constant MPI_INFO_NULL can be used
when no info needs to be specified.

Advice to users. Some file attributes are inherently implementation dependent (e.g.,
file permissions). These attributes must be set using either the info argument or
facilities outside the scope of MPI. (End of advice to users.)

Files are opened by default using nonatomic mode file consistency semantics (see Sec-
tion 13.6.1, page 420). The more stringent atomic mode consistency semantics, required for
atomicity of conflicting accesses, can be set using MPI_FILE_SET_ATOMICITY.

13.2.2 Closing a File

MPI_FILE_CLOSE(fh)

INOUT fh file handle (handle)

int MPI_File_close(MPI_File *fh)

MPI_FILE_CLOSE(FH, IERROR)

INTEGER FH, IERROR
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void MPI::File::Close()

MPI_FILE_CLOSE first synchronizes file state (equivalent to performing an
MPI_FILE_SYNC), then closes the file associated with fh. The file is deleted if it was
opened with access mode MPI_MODE_DELETE_ON_CLOSE (equivalent to performing an
MPI_FILE_DELETE). MPI_FILE_CLOSE is a collective routine.

Advice to users. If the file is deleted on close, and there are other processes currently
accessing the file, the status of the file and the behavior of future accesses by these
processes are implementation dependent. (End of advice to users.)

The user is responsible for ensuring that all outstanding nonblocking requests and
split collective operations associated with fh made by a process have completed before that
process calls MPI_FILE_CLOSE.

The MPI_FILE_CLOSE routine deallocates the file handle object and sets fh to
MPI_FILE_NULL.

13.2.3 Deleting a File

MPI_FILE_DELETE(filename, info)

IN filename name of file to delete (string)

IN info info object (handle)

int MPI_File_delete(char *filename, MPI_Info info)

MPI_FILE_DELETE(FILENAME, INFO, IERROR)

CHARACTER*(*) FILENAME

INTEGER INFO, IERROR

static void MPI::File::Delete(const char* filename, const MPI::Info& info)

MPI_FILE_DELETE deletes the file identified by the file name filename. If the file does
not exist, MPI_FILE_DELETE raises an error in the class MPI_ERR_NO_SUCH_FILE.

The info argument can be used to provide information regarding file system specifics
(see Section 13.2.8, page 382). The constant MPI_INFO_NULL refers to the null info, and
can be used when no info needs to be specified.

If a process currently has the file open, the behavior of any access to the file (as well
as the behavior of any outstanding accesses) is implementation dependent. In addition,
whether an open file is deleted or not is also implementation dependent. If the file is not
deleted, an error in the class MPI_ERR_FILE_IN_USE or MPI_ERR_ACCESS will be raised.
Errors are raised using the default error handler (see Section 13.7, page 429).
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void MPI::File::Close()
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opened with access mode MPI_MODE_DELETE_ON_CLOSE (equivalent to performing an
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can be used when no info needs to be specified.
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whether an open file is deleted or not is also implementation dependent. If the file is not
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Errors are raised using the default error handler (see Section 13.7, page 429).
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13.2.4 Resizing a File

MPI_FILE_SET_SIZE(fh, size)

INOUT fh file handle (handle)

IN size size to truncate or expand file (integer)

int MPI_File_set_size(MPI_File fh, MPI_Offset size)

MPI_FILE_SET_SIZE(FH, SIZE, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) SIZE

void MPI::File::Set_size(MPI::Offset size)

MPI_FILE_SET_SIZE resizes the file associated with the file handle fh. size is measured
in bytes from the beginning of the file. MPI_FILE_SET_SIZE is collective; all processes in
the group must pass identical values for size.

If size is smaller than the current file size, the file is truncated at the position defined
by size. The implementation is free to deallocate file blocks located beyond this position.

If size is larger than the current file size, the file size becomes size. Regions of the file
that have been previously written are unaffected. The values of data in the new regions in
the file (those locations with displacements between old file size and size) are undefined. It is
implementation dependent whether the MPI_FILE_SET_SIZE routine allocates file space—
use MPI_FILE_PREALLOCATE to force file space to be reserved.

MPI_FILE_SET_SIZE does not affect the individual file pointers or the shared file
pointer. If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, it is
erroneous to call this routine.

Advice to users. It is possible for the file pointers to point beyond the end of file
after a MPI_FILE_SET_SIZE operation truncates a file. This is legal, and equivalent
to seeking beyond the current end of file. (End of advice to users.)

All nonblocking requests and split collective operations on fh must be completed before
calling MPI_FILE_SET_SIZE. Otherwise, calling MPI_FILE_SET_SIZE is erroneous. As far
as consistency semantics are concerned, MPI_FILE_SET_SIZE is a write operation that
conflicts with operations that access bytes at displacements between the old and new file
sizes (see Section 13.6.1, page 420).

13.2.5 Preallocating Space for a File

MPI_FILE_PREALLOCATE(fh, size)

INOUT fh file handle (handle)

IN size size to preallocate file (integer)

int MPI_File_preallocate(MPI_File fh, MPI_Offset size)
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to seeking beyond the current end of file. (End of advice to users.)
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as consistency semantics are concerned, MPI_FILE_SET_SIZE is a write operation that
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MPI_FILE_PREALLOCATE(FH, SIZE, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) SIZE

void MPI::File::Preallocate(MPI::Offset size)

MPI_FILE_PREALLOCATE ensures that storage space is allocated for the first size bytes
of the file associated with fh. MPI_FILE_PREALLOCATE is collective; all processes in the
group must pass identical values for size. Regions of the file that have previously been
written are unaffected. For newly allocated regions of the file, MPI_FILE_PREALLOCATE
has the same effect as writing undefined data. If size is larger than the current file size, the
file size increases to size. If size is less than or equal to the current file size, the file size is
unchanged.

The treatment of file pointers, pending nonblocking accesses, and file consistency is the
same as with MPI_FILE_SET_SIZE. If MPI_MODE_SEQUENTIAL mode was specified when
the file was opened, it is erroneous to call this routine.

Advice to users. In some implementations, file preallocation may be expensive. (End
of advice to users.)

13.2.6 Querying the Size of a File

MPI_FILE_GET_SIZE(fh, size)

IN fh file handle (handle)

OUT size size of the file in bytes (integer)

int MPI_File_get_size(MPI_File fh, MPI_Offset *size)

MPI_FILE_GET_SIZE(FH, SIZE, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) SIZE

MPI::Offset MPI::File::Get_size() const

MPI_FILE_GET_SIZE returns, in size, the current size in bytes of the file associated with
the file handle fh. As far as consistency semantics are concerned, MPI_FILE_GET_SIZE is a
data access operation (see Section 13.6.1, page 420).

13.2.7 Querying File Parameters

MPI_FILE_GET_GROUP(fh, group)

IN fh file handle (handle)

OUT group group which opened the file (handle)

int MPI_File_get_group(MPI_File fh, MPI_Group *group)
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MPI_FILE_PREALLOCATE(FH, SIZE, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) SIZE

void MPI::File::Preallocate(MPI::Offset size)

MPI_FILE_PREALLOCATE ensures that storage space is allocated for the first size bytes
of the file associated with fh. MPI_FILE_PREALLOCATE is collective; all processes in the
group must pass identical values for size. Regions of the file that have previously been
written are unaffected. For newly allocated regions of the file, MPI_FILE_PREALLOCATE
has the same effect as writing undefined data. If size is larger than the current file size, the
file size increases to size. If size is less than or equal to the current file size, the file size is
unchanged.

The treatment of file pointers, pending nonblocking accesses, and file consistency is the
same as with MPI_FILE_SET_SIZE. If MPI_MODE_SEQUENTIAL mode was specified when
the file was opened, it is erroneous to call this routine.

Advice to users. In some implementations, file preallocation may be expensive. (End
of advice to users.)

13.2.6 Querying the Size of a File

MPI_FILE_GET_SIZE(fh, size)

IN fh file handle (handle)

OUT size size of the file in bytes (integer)

int MPI_File_get_size(MPI_File fh, MPI_Offset *size)

MPI_FILE_GET_SIZE(FH, SIZE, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) SIZE

MPI::Offset MPI::File::Get_size() const

MPI_FILE_GET_SIZE returns, in size, the current size in bytes of the file associated with
the file handle fh. As far as consistency semantics are concerned, MPI_FILE_GET_SIZE is a
data access operation (see Section 13.6.1, page 420).

13.2.7 Querying File Parameters

MPI_FILE_GET_GROUP(fh, group)

IN fh file handle (handle)

OUT group group which opened the file (handle)

int MPI_File_get_group(MPI_File fh, MPI_Group *group)
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MPI_FILE_GET_GROUP(FH, GROUP, IERROR)

INTEGER FH, GROUP, IERROR

MPI::Group MPI::File::Get_group() const

MPI_FILE_GET_GROUP returns a duplicate of the group of the communicator used to
open the file associated with fh. The group is returned in group. The user is responsible for
freeing group.

MPI_FILE_GET_AMODE(fh, amode)

IN fh file handle (handle)

OUT amode file access mode used to open the file (integer)

int MPI_File_get_amode(MPI_File fh, int *amode)

MPI_FILE_GET_AMODE(FH, AMODE, IERROR)

INTEGER FH, AMODE, IERROR

int MPI::File::Get_amode() const

MPI_FILE_GET_AMODE returns, in amode, the access mode of the file associated with
fh.

Example 13.1 In Fortran 77, decoding an amode bit vector will require a routine such as
the following:

SUBROUTINE BIT_QUERY(TEST_BIT, MAX_BIT, AMODE, BIT_FOUND)

!

! TEST IF THE INPUT TEST_BIT IS SET IN THE INPUT AMODE

! IF SET, RETURN 1 IN BIT_FOUND, 0 OTHERWISE

!

INTEGER TEST_BIT, AMODE, BIT_FOUND, CP_AMODE, HIFOUND

BIT_FOUND = 0

CP_AMODE = AMODE

100 CONTINUE

LBIT = 0

HIFOUND = 0

DO 20 L = MAX_BIT, 0, -1

MATCHER = 2**L

IF (CP_AMODE .GE. MATCHER .AND. HIFOUND .EQ. 0) THEN

HIFOUND = 1

LBIT = MATCHER

CP_AMODE = CP_AMODE - MATCHER

END IF

20 CONTINUE

IF (HIFOUND .EQ. 1 .AND. LBIT .EQ. TEST_BIT) BIT_FOUND = 1

IF (BIT_FOUND .EQ. 0 .AND. HIFOUND .EQ. 1 .AND. &

CP_AMODE .GT. 0) GO TO 100

END
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MPI_FILE_GET_GROUP(FH, GROUP, IERROR)

INTEGER FH, GROUP, IERROR

MPI::Group MPI::File::Get_group() const

MPI_FILE_GET_GROUP returns a duplicate of the group of the communicator used to
open the file associated with fh. The group is returned in group. The user is responsible for
freeing group.

MPI_FILE_GET_AMODE(fh, amode)

IN fh file handle (handle)

OUT amode file access mode used to open the file (integer)

int MPI_File_get_amode(MPI_File fh, int *amode)

MPI_FILE_GET_AMODE(FH, AMODE, IERROR)

INTEGER FH, AMODE, IERROR

int MPI::File::Get_amode() const

MPI_FILE_GET_AMODE returns, in amode, the access mode of the file associated with
fh.

Example 13.1 In Fortran 77, decoding an amode bit vector will require a routine such as
the following:

SUBROUTINE BIT_QUERY(TEST_BIT, MAX_BIT, AMODE, BIT_FOUND)

!

! TEST IF THE INPUT TEST_BIT IS SET IN THE INPUT AMODE

! IF SET, RETURN 1 IN BIT_FOUND, 0 OTHERWISE

!

INTEGER TEST_BIT, AMODE, BIT_FOUND, CP_AMODE, HIFOUND

BIT_FOUND = 0

CP_AMODE = AMODE

100 CONTINUE

LBIT = 0

HIFOUND = 0

DO 20 L = MAX_BIT, 0, -1

MATCHER = 2**L

IF (CP_AMODE .GE. MATCHER .AND. HIFOUND .EQ. 0) THEN

HIFOUND = 1

LBIT = MATCHER

CP_AMODE = CP_AMODE - MATCHER

END IF

20 CONTINUE

IF (HIFOUND .EQ. 1 .AND. LBIT .EQ. TEST_BIT) BIT_FOUND = 1

IF (BIT_FOUND .EQ. 0 .AND. HIFOUND .EQ. 1 .AND. &

CP_AMODE .GT. 0) GO TO 100

END
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This routine could be called successively to decode amode, one bit at a time. For
example, the following code fragment would check for MPI_MODE_RDONLY.

CALL BIT_QUERY(MPI_MODE_RDONLY, 30, AMODE, BIT_FOUND)

IF (BIT_FOUND .EQ. 1) THEN

PRINT *, ’ FOUND READ-ONLY BIT IN AMODE=’, AMODE

ELSE

PRINT *, ’ READ-ONLY BIT NOT FOUND IN AMODE=’, AMODE

END IF

13.2.8 File Info

Hints specified via info (see Section 9, page 287) allow a user to provide information such
as file access patterns and file system specifics to direct optimization. Providing hints may
enable an implementation to deliver increased I/O performance or minimize the use of
system resources. However, hints do not change the semantics of any of the I/O interfaces.
In other words, an implementation is free to ignore all hints. Hints are specified on a per
file basis, in MPI_FILE_OPEN, MPI_FILE_DELETE, MPI_FILE_SET_VIEW, and
MPI_FILE_SET_INFO, via the opaque info object. When an info object that specifies a
subset of valid hints is passed to MPI_FILE_SET_VIEW or MPI_FILE_SET_INFO, there will
be no effect on previously set or defaulted hints that the info does not specify.

Advice to implementors. It may happen that a program is coded with hints for one
system, and later executes on another system that does not support these hints. In
general, unsupported hints should simply be ignored. Needless to say, no hint can be
mandatory. However, for each hint used by a specific implementation, a default value
must be provided when the user does not specify a value for this hint. (End of advice
to implementors.)

MPI_FILE_SET_INFO(fh, info)

INOUT fh file handle (handle)

IN info info object (handle)

int MPI_File_set_info(MPI_File fh, MPI_Info info)

MPI_FILE_SET_INFO(FH, INFO, IERROR)

INTEGER FH, INFO, IERROR

void MPI::File::Set_info(const MPI::Info& info)

MPI_FILE_SET_INFO sets new values for the hints of the file associated with
fh. MPI_FILE_SET_INFO is a collective routine. The info object may be different on each
process, but any info entries that an implementation requires to be the same on all processes
must appear with the same value in each process’s info object.

Advice to users. Many info items that an implementation can use when it creates or
opens a file cannot easily be changed once the file has been created or opened. Thus,
an implementation may ignore hints issued in this call that it would have accepted in
an open call. (End of advice to users.)
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This routine could be called successively to decode amode, one bit at a time. For
example, the following code fragment would check for MPI_MODE_RDONLY.

CALL BIT_QUERY(MPI_MODE_RDONLY, 30, AMODE, BIT_FOUND)

IF (BIT_FOUND .EQ. 1) THEN

PRINT *, ’ FOUND READ-ONLY BIT IN AMODE=’, AMODE

ELSE

PRINT *, ’ READ-ONLY BIT NOT FOUND IN AMODE=’, AMODE

END IF

13.2.8 File Info

Hints specified via info (see Section 9, page 287) allow a user to provide information such
as file access patterns and file system specifics to direct optimization. Providing hints may
enable an implementation to deliver increased I/O performance or minimize the use of
system resources. However, hints do not change the semantics of any of the I/O interfaces.
In other words, an implementation is free to ignore all hints. Hints are specified on a per
file basis, in MPI_FILE_OPEN, MPI_FILE_DELETE, MPI_FILE_SET_VIEW, and
MPI_FILE_SET_INFO, via the opaque info object. When an info object that specifies a
subset of valid hints is passed to MPI_FILE_SET_VIEW or MPI_FILE_SET_INFO, there will
be no effect on previously set or defaulted hints that the info does not specify.

Advice to implementors. It may happen that a program is coded with hints for one
system, and later executes on another system that does not support these hints. In
general, unsupported hints should simply be ignored. Needless to say, no hint can be
mandatory. However, for each hint used by a specific implementation, a default value
must be provided when the user does not specify a value for this hint. (End of advice
to implementors.)

MPI_FILE_SET_INFO(fh, info)

INOUT fh file handle (handle)

IN info info object (handle)

int MPI_File_set_info(MPI_File fh, MPI_Info info)

MPI_FILE_SET_INFO(FH, INFO, IERROR)

INTEGER FH, INFO, IERROR

void MPI::File::Set_info(const MPI::Info& info)

MPI_FILE_SET_INFO sets new values for the hints of the file associated with
fh. MPI_FILE_SET_INFO is a collective routine. The info object may be different on each
process, but any info entries that an implementation requires to be the same on all processes
must appear with the same value in each process’s info object.

Advice to users. Many info items that an implementation can use when it creates or
opens a file cannot easily be changed once the file has been created or opened. Thus,
an implementation may ignore hints issued in this call that it would have accepted in
an open call. (End of advice to users.)
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MPI_FILE_GET_INFO(fh, info_used)

IN fh file handle (handle)

OUT info_used new info object (handle)

int MPI_File_get_info(MPI_File fh, MPI_Info *info_used)

MPI_FILE_GET_INFO(FH, INFO_USED, IERROR)

INTEGER FH, INFO_USED, IERROR

MPI::Info MPI::File::Get_info() const

MPI_FILE_GET_INFO returns a new info object containing the hints of the file associ-
ated with fh. The current setting of all hints actually used by the system related to this open
file is returned in info_used. If no such hints exist, a handle to a newly created info object
is returned that contains no key/value pair. The user is responsible for freeing info_used
via MPI_INFO_FREE.

Advice to users. The info object returned in info_used will contain all hints currently
active for this file. This set of hints may be greater or smaller than the set of hints
passed in to MPI_FILE_OPEN, MPI_FILE_SET_VIEW, and MPI_FILE_SET_INFO, as
the system may not recognize some hints set by the user, and may recognize other
hints that the user has not set. (End of advice to users.)

Reserved File Hints

Some potentially useful hints (info key values) are outlined below. The following key values
are reserved. An implementation is not required to interpret these key values, but if it does
interpret the key value, it must provide the functionality described. (For more details on
“info,” see Section 9, page 287.)

These hints mainly affect access patterns and the layout of data on parallel I/O devices.
For each hint name introduced, we describe the purpose of the hint, and the type of the hint
value. The “[SAME]” annotation specifies that the hint values provided by all participating
processes must be identical; otherwise the program is erroneous. In addition, some hints are
context dependent, and are only used by an implementation at specific times (e.g., file_perm

is only useful during file creation).

access_style (comma separated list of strings): This hint specifies the manner in which
the file will be accessed until the file is closed or until the access_style key value is
altered. The hint value is a comma separated list of the following: read_once, write_once,
read_mostly, write_mostly, sequential, reverse_sequential, and random.

collective_buffering (boolean) [SAME]: This hint specifies whether the application may
benefit from collective buffering. Collective buffering is an optimization performed
on collective accesses. Accesses to the file are performed on behalf of all processes in
the group by a number of target nodes. These target nodes coalesce small requests
into large disk accesses. Legal values for this key are true and false. Collective buffering
parameters are further directed via additional hints: cb_block_size, cb_buffer_size, and
cb_nodes.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13.2. FILE MANIPULATION 383

MPI_FILE_GET_INFO(fh, info_used)

IN fh file handle (handle)

OUT info_used new info object (handle)

int MPI_File_get_info(MPI_File fh, MPI_Info *info_used)

MPI_FILE_GET_INFO(FH, INFO_USED, IERROR)

INTEGER FH, INFO_USED, IERROR

MPI::Info MPI::File::Get_info() const

MPI_FILE_GET_INFO returns a new info object containing the hints of the file associ-
ated with fh. The current setting of all hints actually used by the system related to this open
file is returned in info_used. If no such hints exist, a handle to a newly created info object
is returned that contains no key/value pair. The user is responsible for freeing info_used
via MPI_INFO_FREE.

Advice to users. The info object returned in info_used will contain all hints currently
active for this file. This set of hints may be greater or smaller than the set of hints
passed in to MPI_FILE_OPEN, MPI_FILE_SET_VIEW, and MPI_FILE_SET_INFO, as
the system may not recognize some hints set by the user, and may recognize other
hints that the user has not set. (End of advice to users.)

Reserved File Hints

Some potentially useful hints (info key values) are outlined below. The following key values
are reserved. An implementation is not required to interpret these key values, but if it does
interpret the key value, it must provide the functionality described. (For more details on
“info,” see Section 9, page 287.)

These hints mainly affect access patterns and the layout of data on parallel I/O devices.
For each hint name introduced, we describe the purpose of the hint, and the type of the hint
value. The “[SAME]” annotation specifies that the hint values provided by all participating
processes must be identical; otherwise the program is erroneous. In addition, some hints are
context dependent, and are only used by an implementation at specific times (e.g., file_perm

is only useful during file creation).

access_style (comma separated list of strings): This hint specifies the manner in which
the file will be accessed until the file is closed or until the access_style key value is
altered. The hint value is a comma separated list of the following: read_once, write_once,
read_mostly, write_mostly, sequential, reverse_sequential, and random.

collective_buffering (boolean) [SAME]: This hint specifies whether the application may
benefit from collective buffering. Collective buffering is an optimization performed
on collective accesses. Accesses to the file are performed on behalf of all processes in
the group by a number of target nodes. These target nodes coalesce small requests
into large disk accesses. Legal values for this key are true and false. Collective buffering
parameters are further directed via additional hints: cb_block_size, cb_buffer_size, and
cb_nodes.
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cb_block_size (integer) [SAME]: This hint specifies the block size to be used for collective
buffering file access. Target nodes access data in chunks of this size. The chunks are
distributed among target nodes in a round-robin (CYCLIC) pattern.

cb_buffer_size (integer) [SAME]: This hint specifies the total buffer space that can be used
for collective buffering on each target node, usually a multiple of cb_block_size.

cb_nodes (integer) [SAME]: This hint specifies the number of target nodes to be used for
collective buffering.

chunked (comma separated list of integers) [SAME]: This hint specifies that the file
consists of a multidimentional array that is often accessed by subarrays. The value
for this hint is a comma separated list of array dimensions, starting from the most
significant one (for an array stored in row-major order, as in C, the most significant
dimension is the first one; for an array stored in column-major order, as in Fortran, the
most significant dimension is the last one, and array dimensions should be reversed).

chunked_item (comma separated list of integers) [SAME]: This hint specifies the size
of each array entry, in bytes.

chunked_size (comma separated list of integers) [SAME]: This hint specifies the di-
mensions of the subarrays. This is a comma separated list of array dimensions, starting
from the most significant one.

filename (string): This hint specifies the file name used when the file was opened. If the
implementation is capable of returning the file name of an open file, it will be returned
using this key by MPI_FILE_GET_INFO. This key is ignored when passed to
MPI_FILE_OPEN, MPI_FILE_SET_VIEW, MPI_FILE_SET_INFO, and
MPI_FILE_DELETE.

file_perm (string) [SAME]: This hint specifies the file permissions to use for file creation.
Setting this hint is only useful when passed to MPI_FILE_OPEN with an amode that
includes MPI_MODE_CREATE. The set of legal values for this key is implementation
dependent.

io_node_list (comma separated list of strings) [SAME]: This hint specifies the list of
I/O devices that should be used to store the file. This hint is most relevant when the
file is created.

nb_proc (integer) [SAME]: This hint specifies the number of parallel processes that will
typically be assigned to run programs that access this file. This hint is most relevant
when the file is created.

num_io_nodes (integer) [SAME]: This hint specifies the number of I/O devices in the
system. This hint is most relevant when the file is created.

striping_factor (integer) [SAME]: This hint specifies the number of I/O devices that the
file should be striped across, and is relevant only when the file is created.

striping_unit (integer) [SAME]: This hint specifies the suggested striping unit to be used
for this file. The striping unit is the amount of consecutive data assigned to one I/O
device before progressing to the next device, when striping across a number of devices.
It is expressed in bytes. This hint is relevant only when the file is created.
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cb_block_size (integer) [SAME]: This hint specifies the block size to be used for collective
buffering file access. Target nodes access data in chunks of this size. The chunks are
distributed among target nodes in a round-robin (CYCLIC) pattern.

cb_buffer_size (integer) [SAME]: This hint specifies the total buffer space that can be used
for collective buffering on each target node, usually a multiple of cb_block_size.

cb_nodes (integer) [SAME]: This hint specifies the number of target nodes to be used for
collective buffering.

chunked (comma separated list of integers) [SAME]: This hint specifies that the file
consists of a multidimentional array that is often accessed by subarrays. The value
for this hint is a comma separated list of array dimensions, starting from the most
significant one (for an array stored in row-major order, as in C, the most significant
dimension is the first one; for an array stored in column-major order, as in Fortran, the
most significant dimension is the last one, and array dimensions should be reversed).

chunked_item (comma separated list of integers) [SAME]: This hint specifies the size
of each array entry, in bytes.

chunked_size (comma separated list of integers) [SAME]: This hint specifies the di-
mensions of the subarrays. This is a comma separated list of array dimensions, starting
from the most significant one.

filename (string): This hint specifies the file name used when the file was opened. If the
implementation is capable of returning the file name of an open file, it will be returned
using this key by MPI_FILE_GET_INFO. This key is ignored when passed to
MPI_FILE_OPEN, MPI_FILE_SET_VIEW, MPI_FILE_SET_INFO, and
MPI_FILE_DELETE.

file_perm (string) [SAME]: This hint specifies the file permissions to use for file creation.
Setting this hint is only useful when passed to MPI_FILE_OPEN with an amode that
includes MPI_MODE_CREATE. The set of legal values for this key is implementation
dependent.

io_node_list (comma separated list of strings) [SAME]: This hint specifies the list of
I/O devices that should be used to store the file. This hint is most relevant when the
file is created.

nb_proc (integer) [SAME]: This hint specifies the number of parallel processes that will
typically be assigned to run programs that access this file. This hint is most relevant
when the file is created.

num_io_nodes (integer) [SAME]: This hint specifies the number of I/O devices in the
system. This hint is most relevant when the file is created.

striping_factor (integer) [SAME]: This hint specifies the number of I/O devices that the
file should be striped across, and is relevant only when the file is created.

striping_unit (integer) [SAME]: This hint specifies the suggested striping unit to be used
for this file. The striping unit is the amount of consecutive data assigned to one I/O
device before progressing to the next device, when striping across a number of devices.
It is expressed in bytes. This hint is relevant only when the file is created.
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13.3 File Views

MPI_FILE_SET_VIEW(fh, disp, etype, filetype, datarep, info)

INOUT fh file handle (handle)

IN disp displacement (integer)

IN etype elementary datatype (handle)

IN filetype filetype (handle)

IN datarep data representation (string)

IN info info object (handle)

int MPI_File_set_view(MPI_File fh, MPI_Offset disp, MPI_Datatype etype,

MPI_Datatype filetype, char *datarep, MPI_Info info)

MPI_FILE_SET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, INFO, IERROR)

INTEGER FH, ETYPE, FILETYPE, INFO, IERROR

CHARACTER*(*) DATAREP

INTEGER(KIND=MPI_OFFSET_KIND) DISP

void MPI::File::Set_view(MPI::Offset disp, const MPI::Datatype& etype,

const MPI::Datatype& filetype, const char* datarep,

const MPI::Info& info)

The MPI_FILE_SET_VIEW routine changes the process’s view of the data in the file.
The start of the view is set to disp; the type of data is set to etype; the distribution of data
to processes is set to filetype; and the representation of data in the file is set to datarep. In
addition, MPI_FILE_SET_VIEW resets the individual file pointers and the shared file pointer
to zero. MPI_FILE_SET_VIEW is collective; the values for datarep and the extents of etype
in the file data representation must be identical on all processes in the group; values for disp,
filetype, and info may vary. The datatypes passed in etype and filetype must be committed.

The etype always specifies the data layout in the file. If etype is a portable datatype
(see Section 2.4, page 11), the extent of etype is computed by scaling any displacements in
the datatype to match the file data representation. If etype is not a portable datatype, no
scaling is done when computing the extent of etype. The user must be careful when using
nonportable etypes in heterogeneous environments; see Section 13.5.1, page 412 for further
details.

If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, the special
displacement MPI_DISPLACEMENT_CURRENT must be passed in disp. This sets the displace-
ment to the current position of the shared file pointer. MPI_DISPLACEMENT_CURRENT is
invalid unless the amode for the file has MPI_MODE_SEQUENTIAL set.

Rationale. For some sequential files, such as those corresponding to magnetic tapes
or streaming network connections, the displacement may not be meaningful.
MPI_DISPLACEMENT_CURRENT allows the view to be changed for these types of files.
(End of rationale.)
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13.3 File Views

MPI_FILE_SET_VIEW(fh, disp, etype, filetype, datarep, info)

INOUT fh file handle (handle)
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IN filetype filetype (handle)

IN datarep data representation (string)
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void MPI::File::Set_view(MPI::Offset disp, const MPI::Datatype& etype,

const MPI::Datatype& filetype, const char* datarep,

const MPI::Info& info)

The MPI_FILE_SET_VIEW routine changes the process’s view of the data in the file.
The start of the view is set to disp; the type of data is set to etype; the distribution of data
to processes is set to filetype; and the representation of data in the file is set to datarep. In
addition, MPI_FILE_SET_VIEW resets the individual file pointers and the shared file pointer
to zero. MPI_FILE_SET_VIEW is collective; the values for datarep and the extents of etype
in the file data representation must be identical on all processes in the group; values for disp,
filetype, and info may vary. The datatypes passed in etype and filetype must be committed.

The etype always specifies the data layout in the file. If etype is a portable datatype
(see Section 2.4, page 11), the extent of etype is computed by scaling any displacements in
the datatype to match the file data representation. If etype is not a portable datatype, no
scaling is done when computing the extent of etype. The user must be careful when using
nonportable etypes in heterogeneous environments; see Section 13.5.1, page 412 for further
details.

If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, the special
displacement MPI_DISPLACEMENT_CURRENT must be passed in disp. This sets the displace-
ment to the current position of the shared file pointer. MPI_DISPLACEMENT_CURRENT is
invalid unless the amode for the file has MPI_MODE_SEQUENTIAL set.

Rationale. For some sequential files, such as those corresponding to magnetic tapes
or streaming network connections, the displacement may not be meaningful.
MPI_DISPLACEMENT_CURRENT allows the view to be changed for these types of files.
(End of rationale.)
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Advice to implementors. It is expected that a call to MPI_FILE_SET_VIEW will
immediately follow MPI_FILE_OPEN in numerous instances. A high-quality imple-
mentation will ensure that this behavior is efficient. (End of advice to implementors.)

The disp displacement argument specifies the position (absolute offset in bytes from
the beginning of the file) where the view begins.

Advice to users. disp can be used to skip headers or when the file includes a sequence
of data segments that are to be accessed in different patterns (see Figure 13.3). Sep-
arate views, each using a different displacement and filetype, can be used to access
each segment.

second view

first view

header ...
file structure:

first displacement second displacement

Figure 13.3: Displacements

(End of advice to users.)

An etype (elementary datatype) is the unit of data access and positioning. It can be
any MPI predefined or derived datatype. Derived etypes can be constructed by using any
of the MPI datatype constructor routines, provided all resulting typemap displacements are
nonnegative and monotonically nondecreasing. Data access is performed in etype units,
reading or writing whole data items of type etype. Offsets are expressed as a count of
etypes; file pointers point to the beginning of etypes.

Advice to users. In order to ensure interoperability in a heterogeneous environment,
additional restrictions must be observed when constructing the etype (see Section 13.5,
page 410). (End of advice to users.)

A filetype is either a single etype or a derived MPI datatype constructed from multiple
instances of the same etype. In addition, the extent of any hole in the filetype must be
a multiple of the etype’s extent. These displacements are not required to be distinct, but
they cannot be negative, and they must be monotonically nondecreasing.

If the file is opened for writing, neither the etype nor the filetype is permitted to contain
overlapping regions. This restriction is equivalent to the “datatype used in a receive cannot
specify overlapping regions” restriction for communication. Note that filetypes from different
processes may still overlap each other.

If filetype has holes in it, then the data in the holes is inaccessible to the calling process.
However, the disp, etype and filetype arguments can be changed via future calls to
MPI_FILE_SET_VIEW to access a different part of the file.

It is erroneous to use absolute addresses in the construction of the etype and filetype.
The info argument is used to provide information regarding file access patterns and

file system specifics to direct optimization (see Section 13.2.8, page 382). The constant
MPI_INFO_NULL refers to the null info and can be used when no info needs to be specified.
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mentation will ensure that this behavior is efficient. (End of advice to implementors.)

The disp displacement argument specifies the position (absolute offset in bytes from
the beginning of the file) where the view begins.

Advice to users. disp can be used to skip headers or when the file includes a sequence
of data segments that are to be accessed in different patterns (see Figure 13.3). Sep-
arate views, each using a different displacement and filetype, can be used to access
each segment.
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(End of advice to users.)

An etype (elementary datatype) is the unit of data access and positioning. It can be
any MPI predefined or derived datatype. Derived etypes can be constructed by using any
of the MPI datatype constructor routines, provided all resulting typemap displacements are
nonnegative and monotonically nondecreasing. Data access is performed in etype units,
reading or writing whole data items of type etype. Offsets are expressed as a count of
etypes; file pointers point to the beginning of etypes.

Advice to users. In order to ensure interoperability in a heterogeneous environment,
additional restrictions must be observed when constructing the etype (see Section 13.5,
page 410). (End of advice to users.)

A filetype is either a single etype or a derived MPI datatype constructed from multiple
instances of the same etype. In addition, the extent of any hole in the filetype must be
a multiple of the etype’s extent. These displacements are not required to be distinct, but
they cannot be negative, and they must be monotonically nondecreasing.

If the file is opened for writing, neither the etype nor the filetype is permitted to contain
overlapping regions. This restriction is equivalent to the “datatype used in a receive cannot
specify overlapping regions” restriction for communication. Note that filetypes from different
processes may still overlap each other.

If filetype has holes in it, then the data in the holes is inaccessible to the calling process.
However, the disp, etype and filetype arguments can be changed via future calls to
MPI_FILE_SET_VIEW to access a different part of the file.

It is erroneous to use absolute addresses in the construction of the etype and filetype.
The info argument is used to provide information regarding file access patterns and

file system specifics to direct optimization (see Section 13.2.8, page 382). The constant
MPI_INFO_NULL refers to the null info and can be used when no info needs to be specified.
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The datarep argument is a string that specifies the representation of data in the file.
See the file interoperability section (Section 13.5, page 410) for details and a discussion of
valid values.

The user is responsible for ensuring that all nonblocking requests and split collective
operations on fh have been completed before calling MPI_FILE_SET_VIEW—otherwise, the
call to MPI_FILE_SET_VIEW is erroneous.

MPI_FILE_GET_VIEW(fh, disp, etype, filetype, datarep)

IN fh file handle (handle)

OUT disp displacement (integer)

OUT etype elementary datatype (handle)

OUT filetype filetype (handle)

OUT datarep data representation (string)

int MPI_File_get_view(MPI_File fh, MPI_Offset *disp, MPI_Datatype *etype,

MPI_Datatype *filetype, char *datarep)

MPI_FILE_GET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, IERROR)

INTEGER FH, ETYPE, FILETYPE, IERROR

CHARACTER*(*) DATAREP

INTEGER(KIND=MPI_OFFSET_KIND) DISP

void MPI::File::Get_view(MPI::Offset& disp, MPI::Datatype& etype,

MPI::Datatype& filetype, char* datarep) const

MPI_FILE_GET_VIEW returns the process’s view of the data in the file. The current
value of the displacement is returned in disp. The etype and filetype are new datatypes with
typemaps equal to the typemaps of the current etype and filetype, respectively.

The data representation is returned in datarep. The user is responsible for ensuring
that datarep is large enough to hold the returned data representation string. The length of
a data representation string is limited to the value of MPI_MAX_DATAREP_STRING.

In addition, if a portable datatype was used to set the current view, then the corre-
sponding datatype returned by MPI_FILE_GET_VIEW is also a portable datatype. If etype
or filetype are derived datatypes, the user is responsible for freeing them. The etype and
filetype returned are both in a committed state.

13.4 Data Access

13.4.1 Data Access Routines

Data is moved between files and processes by issuing read and write calls. There are three
orthogonal aspects to data access: positioning (explicit offset vs. implicit file pointer),
synchronism (blocking vs. nonblocking and split collective), and coordination (noncollective
vs. collective). The following combinations of these data access routines, including two types
of file pointers (individual and shared) are provided in Table 13.1.
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The datarep argument is a string that specifies the representation of data in the file.
See the file interoperability section (Section 13.5, page 410) for details and a discussion of
valid values.

The user is responsible for ensuring that all nonblocking requests and split collective
operations on fh have been completed before calling MPI_FILE_SET_VIEW—otherwise, the
call to MPI_FILE_SET_VIEW is erroneous.

MPI_FILE_GET_VIEW(fh, disp, etype, filetype, datarep)

IN fh file handle (handle)

OUT disp displacement (integer)

OUT etype elementary datatype (handle)

OUT filetype filetype (handle)

OUT datarep data representation (string)

int MPI_File_get_view(MPI_File fh, MPI_Offset *disp, MPI_Datatype *etype,

MPI_Datatype *filetype, char *datarep)

MPI_FILE_GET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, IERROR)

INTEGER FH, ETYPE, FILETYPE, IERROR

CHARACTER*(*) DATAREP

INTEGER(KIND=MPI_OFFSET_KIND) DISP

void MPI::File::Get_view(MPI::Offset& disp, MPI::Datatype& etype,

MPI::Datatype& filetype, char* datarep) const

MPI_FILE_GET_VIEW returns the process’s view of the data in the file. The current
value of the displacement is returned in disp. The etype and filetype are new datatypes with
typemaps equal to the typemaps of the current etype and filetype, respectively.

The data representation is returned in datarep. The user is responsible for ensuring
that datarep is large enough to hold the returned data representation string. The length of
a data representation string is limited to the value of MPI_MAX_DATAREP_STRING.

In addition, if a portable datatype was used to set the current view, then the corre-
sponding datatype returned by MPI_FILE_GET_VIEW is also a portable datatype. If etype
or filetype are derived datatypes, the user is responsible for freeing them. The etype and
filetype returned are both in a committed state.

13.4 Data Access

13.4.1 Data Access Routines

Data is moved between files and processes by issuing read and write calls. There are three
orthogonal aspects to data access: positioning (explicit offset vs. implicit file pointer),
synchronism (blocking vs. nonblocking and split collective), and coordination (noncollective
vs. collective). The following combinations of these data access routines, including two types
of file pointers (individual and shared) are provided in Table 13.1.
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positioning synchronism coordination
noncollective collective

explicit blocking MPI_FILE_READ_AT MPI_FILE_READ_AT_ALL
offsets MPI_FILE_WRITE_AT MPI_FILE_WRITE_AT_ALL

nonblocking & MPI_FILE_IREAD_AT MPI_FILE_READ_AT_ALL_BEGIN
split collective MPI_FILE_READ_AT_ALL_END

MPI_FILE_IWRITE_AT MPI_FILE_WRITE_AT_ALL_BEGIN
MPI_FILE_WRITE_AT_ALL_END

individual blocking MPI_FILE_READ MPI_FILE_READ_ALL
file pointers MPI_FILE_WRITE MPI_FILE_WRITE_ALL

nonblocking & MPI_FILE_IREAD MPI_FILE_READ_ALL_BEGIN
split collective MPI_FILE_READ_ALL_END

MPI_FILE_IWRITE MPI_FILE_WRITE_ALL_BEGIN
MPI_FILE_WRITE_ALL_END

shared blocking MPI_FILE_READ_SHARED MPI_FILE_READ_ORDERED
file pointer MPI_FILE_WRITE_SHARED MPI_FILE_WRITE_ORDERED

nonblocking & MPI_FILE_IREAD_SHARED MPI_FILE_READ_ORDERED_BEGIN
split collective MPI_FILE_READ_ORDERED_END

MPI_FILE_IWRITE_SHARED MPI_FILE_WRITE_ORDERED_BEGIN
MPI_FILE_WRITE_ORDERED_END

Table 13.1: Data access routines

POSIX read()/fread() and write()/fwrite() are blocking, noncollective operations and
use individual file pointers. The MPI equivalents are MPI_FILE_READ and
MPI_FILE_WRITE.

Implementations of data access routines may buffer data to improve performance. This
does not affect reads, as the data is always available in the user’s buffer after a read operation
completes. For writes, however, the MPI_FILE_SYNC routine provides the only guarantee
that data has been transferred to the storage device.

Positioning

MPI provides three types of positioning for data access routines: explicit offsets, individual
file pointers, and shared file pointers. The different positioning methods may be mixed
within the same program and do not affect each other.

The data access routines that accept explicit offsets contain _AT in their name (e.g.,
MPI_FILE_WRITE_AT). Explicit offset operations perform data access at the file position
given directly as an argument—no file pointer is used nor updated. Note that this is not
equivalent to an atomic seek-and-read or seek-and-write operation, as no “seek” is issued.
Operations with explicit offsets are described in Section 13.4.2, page 390.

The names of the individual file pointer routines contain no positional qualifier (e.g.,
MPI_FILE_WRITE). Operations with individual file pointers are described in Section 13.4.3,
page 394. The data access routines that use shared file pointers contain _SHARED or
_ORDERED in their name (e.g., MPI_FILE_WRITE_SHARED). Operations with shared file
pointers are described in Section 13.4.4, page 399.

The main semantic issues with MPI-maintained file pointers are how and when they are
updated by I/O operations. In general, each I/O operation leaves the file pointer pointing to
the next data item after the last one that is accessed by the operation. In a nonblocking or
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Table 13.1: Data access routines

POSIX read()/fread() and write()/fwrite() are blocking, noncollective operations and
use individual file pointers. The MPI equivalents are MPI_FILE_READ and
MPI_FILE_WRITE.

Implementations of data access routines may buffer data to improve performance. This
does not affect reads, as the data is always available in the user’s buffer after a read operation
completes. For writes, however, the MPI_FILE_SYNC routine provides the only guarantee
that data has been transferred to the storage device.

Positioning

MPI provides three types of positioning for data access routines: explicit offsets, individual
file pointers, and shared file pointers. The different positioning methods may be mixed
within the same program and do not affect each other.

The data access routines that accept explicit offsets contain _AT in their name (e.g.,
MPI_FILE_WRITE_AT). Explicit offset operations perform data access at the file position
given directly as an argument—no file pointer is used nor updated. Note that this is not
equivalent to an atomic seek-and-read or seek-and-write operation, as no “seek” is issued.
Operations with explicit offsets are described in Section 13.4.2, page 390.

The names of the individual file pointer routines contain no positional qualifier (e.g.,
MPI_FILE_WRITE). Operations with individual file pointers are described in Section 13.4.3,
page 394. The data access routines that use shared file pointers contain _SHARED or
_ORDERED in their name (e.g., MPI_FILE_WRITE_SHARED). Operations with shared file
pointers are described in Section 13.4.4, page 399.

The main semantic issues with MPI-maintained file pointers are how and when they are
updated by I/O operations. In general, each I/O operation leaves the file pointer pointing to
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split collective operation, the pointer is updated by the call that initiates the I/O, possibly
before the access completes.

More formally,

new_file_offset = old_file_offset +
elements(datatype)

elements(etype)
× count

where count is the number of datatype items to be accessed, elements(X) is the number of
predefined datatypes in the typemap of X, and old_file_offset is the value of the implicit
offset before the call. The file position, new_file_offset , is in terms of a count of etypes
relative to the current view.

Synchronism

MPI supports blocking and nonblocking I/O routines.
A blocking I/O call will not return until the I/O request is completed.
A nonblocking I/O call initiates an I/O operation, but does not wait for it to complete.

Given suitable hardware, this allows the transfer of data out/in the user’s buffer to proceed
concurrently with computation. A separate request complete call (MPI_WAIT, MPI_TEST,
or any of their variants) is needed to complete the I/O request, i.e., to confirm that the data
has been read or written and that it is safe for the user to reuse the buffer. The nonblocking
versions of the routines are named MPI_FILE_IXXX, where the I stands for immediate.

It is erroneous to access the local buffer of a nonblocking data access operation, or to
use that buffer as the source or target of other communications, between the initiation and
completion of the operation.

The split collective routines support a restricted form of “nonblocking” operations for
collective data access (see Section 13.4.5, page 404).

Coordination

Every noncollective data access routine MPI_FILE_XXX has a collective counterpart. For
most routines, this counterpart is MPI_FILE_XXX_ALL or a pair of MPI_FILE_XXX_BEGIN
and MPI_FILE_XXX_END. The counterparts to the MPI_FILE_XXX_SHARED routines are
MPI_FILE_XXX_ORDERED.

The completion of a noncollective call only depends on the activity of the calling pro-
cess. However, the completion of a collective call (which must be called by all members of
the process group) may depend on the activity of the other processes participating in the
collective call. See Section 13.6.4, page 423, for rules on semantics of collective calls.

Collective operations may perform much better than their noncollective counterparts,
as global data accesses have significant potential for automatic optimization.

Data Access Conventions

Data is moved between files and processes by calling read and write routines. Read routines
move data from a file into memory. Write routines move data from memory into a file. The
file is designated by a file handle, fh. The location of the file data is specified by an offset
into the current view. The data in memory is specified by a triple: buf, count, and datatype.
Upon completion, the amount of data accessed by the calling process is returned in a status.

An offset designates the starting position in the file for an access. The offset is always in
etype units relative to the current view. Explicit offset routines pass offset as an argument
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split collective operation, the pointer is updated by the call that initiates the I/O, possibly
before the access completes.

More formally,

new_file_offset = old_file_offset +
elements(datatype)

elements(etype)
× count

where count is the number of datatype items to be accessed, elements(X) is the number of
predefined datatypes in the typemap of X, and old_file_offset is the value of the implicit
offset before the call. The file position, new_file_offset , is in terms of a count of etypes
relative to the current view.

Synchronism

MPI supports blocking and nonblocking I/O routines.
A blocking I/O call will not return until the I/O request is completed.
A nonblocking I/O call initiates an I/O operation, but does not wait for it to complete.

Given suitable hardware, this allows the transfer of data out/in the user’s buffer to proceed
concurrently with computation. A separate request complete call (MPI_WAIT, MPI_TEST,
or any of their variants) is needed to complete the I/O request, i.e., to confirm that the data
has been read or written and that it is safe for the user to reuse the buffer. The nonblocking
versions of the routines are named MPI_FILE_IXXX, where the I stands for immediate.

It is erroneous to access the local buffer of a nonblocking data access operation, or to
use that buffer as the source or target of other communications, between the initiation and
completion of the operation.

The split collective routines support a restricted form of “nonblocking” operations for
collective data access (see Section 13.4.5, page 404).

Coordination

Every noncollective data access routine MPI_FILE_XXX has a collective counterpart. For
most routines, this counterpart is MPI_FILE_XXX_ALL or a pair of MPI_FILE_XXX_BEGIN
and MPI_FILE_XXX_END. The counterparts to the MPI_FILE_XXX_SHARED routines are
MPI_FILE_XXX_ORDERED.

The completion of a noncollective call only depends on the activity of the calling pro-
cess. However, the completion of a collective call (which must be called by all members of
the process group) may depend on the activity of the other processes participating in the
collective call. See Section 13.6.4, page 423, for rules on semantics of collective calls.

Collective operations may perform much better than their noncollective counterparts,
as global data accesses have significant potential for automatic optimization.

Data Access Conventions

Data is moved between files and processes by calling read and write routines. Read routines
move data from a file into memory. Write routines move data from memory into a file. The
file is designated by a file handle, fh. The location of the file data is specified by an offset
into the current view. The data in memory is specified by a triple: buf, count, and datatype.
Upon completion, the amount of data accessed by the calling process is returned in a status.

An offset designates the starting position in the file for an access. The offset is always in
etype units relative to the current view. Explicit offset routines pass offset as an argument
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(negative values are erroneous). The file pointer routines use implicit offsets maintained by
MPI.

A data access routine attempts to transfer (read or write) count data items of type
datatype between the user’s buffer buf and the file. The datatype passed to the routine
must be a committed datatype. The layout of data in memory corresponding to buf, count,
datatype is interpreted the same way as in MPI communication functions; see Section 3.2.2
on page 27 and Section 4.1.11 on page 101. The data is accessed from those parts of the
file specified by the current view (Section 13.3, page 385). The type signature of datatype
must match the type signature of some number of contiguous copies of the etype of the
current view. As in a receive, it is erroneous to specify a datatype for reading that contains
overlapping regions (areas of memory which would be stored into more than once).

The nonblocking data access routines indicate that MPI can start a data access and
associate a request handle, request, with the I/O operation. Nonblocking operations are
completed via MPI_TEST, MPI_WAIT, or any of their variants.

Data access operations, when completed, return the amount of data accessed in status.

Advice to users. To prevent problems with the argument copying and register opti-
mization done by Fortran compilers, please note the hints in subsections “Problems
Due to Data Copying and Sequence Association,” and “A Problem with Register
Optimization” in Section 16.2.2, pages 463 and 466. (End of advice to users.)

For blocking routines, status is returned directly. For nonblocking routines and split
collective routines, status is returned when the operation is completed. The number of
datatype entries and predefined elements accessed by the calling process can be extracted
from status by using MPI_GET_COUNT and MPI_GET_ELEMENTS, respectively. The inter-
pretation of the MPI_ERROR field is the same as for other operations — normally undefined,
but meaningful if an MPI routine returns MPI_ERR_IN_STATUS. The user can pass (in C
and Fortran) MPI_STATUS_IGNORE in the status argument if the return value of this argu-
ment is not needed. In C++, the status argument is optional. The status can be passed
to MPI_TEST_CANCELLED to determine if the operation was cancelled. All other fields of
status are undefined.

When reading, a program can detect the end of file by noting that the amount of data
read is less than the amount requested. Writing past the end of file increases the file size.
The amount of data accessed will be the amount requested, unless an error is raised (or a
read reaches the end of file).

13.4.2 Data Access with Explicit Offsets

If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, it is erroneous to
call the routines in this section.
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(negative values are erroneous). The file pointer routines use implicit offsets maintained by
MPI.

A data access routine attempts to transfer (read or write) count data items of type
datatype between the user’s buffer buf and the file. The datatype passed to the routine
must be a committed datatype. The layout of data in memory corresponding to buf, count,
datatype is interpreted the same way as in MPI communication functions; see Section 3.2.2
on page 27 and Section 4.1.11 on page 101. The data is accessed from those parts of the
file specified by the current view (Section 13.3, page 385). The type signature of datatype
must match the type signature of some number of contiguous copies of the etype of the
current view. As in a receive, it is erroneous to specify a datatype for reading that contains
overlapping regions (areas of memory which would be stored into more than once).

The nonblocking data access routines indicate that MPI can start a data access and
associate a request handle, request, with the I/O operation. Nonblocking operations are
completed via MPI_TEST, MPI_WAIT, or any of their variants.

Data access operations, when completed, return the amount of data accessed in status.

Advice to users. To prevent problems with the argument copying and register opti-
mization done by Fortran compilers, please note the hints in subsections “Problems
Due to Data Copying and Sequence Association,” and “A Problem with Register
Optimization” in Section 16.2.2, pages 463 and 466. (End of advice to users.)

For blocking routines, status is returned directly. For nonblocking routines and split
collective routines, status is returned when the operation is completed. The number of
datatype entries and predefined elements accessed by the calling process can be extracted
from status by using MPI_GET_COUNT and MPI_GET_ELEMENTS, respectively. The inter-
pretation of the MPI_ERROR field is the same as for other operations — normally undefined,
but meaningful if an MPI routine returns MPI_ERR_IN_STATUS. The user can pass (in C
and Fortran) MPI_STATUS_IGNORE in the status argument if the return value of this argu-
ment is not needed. In C++, the status argument is optional. The status can be passed
to MPI_TEST_CANCELLED to determine if the operation was cancelled. All other fields of
status are undefined.

When reading, a program can detect the end of file by noting that the amount of data
read is less than the amount requested. Writing past the end of file increases the file size.
The amount of data accessed will be the amount requested, unless an error is raised (or a
read reaches the end of file).

13.4.2 Data Access with Explicit Offsets

If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, it is erroneous to
call the routines in this section.
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MPI_FILE_READ_AT(fh, offset, buf, count, datatype, status)

IN fh file handle (handle)

IN offset file offset (integer)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_read_at(MPI_File fh, MPI_Offset offset, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_READ_AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

void MPI::File::Read_at(MPI::Offset offset, void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Read_at(MPI::Offset offset, void* buf, int count,

const MPI::Datatype& datatype)

MPI_FILE_READ_AT reads a file beginning at the position specified by offset.

MPI_FILE_READ_AT_ALL(fh, offset, buf, count, datatype, status)

IN fh file handle (handle)

IN offset file offset (integer)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_read_at_all(MPI_File fh, MPI_Offset offset, void *buf,

int count, MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_READ_AT_ALL(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

void MPI::File::Read_at_all(MPI::Offset offset, void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Read_at_all(MPI::Offset offset, void* buf, int count,

const MPI::Datatype& datatype)
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MPI_FILE_READ_AT(fh, offset, buf, count, datatype, status)

IN fh file handle (handle)

IN offset file offset (integer)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_read_at(MPI_File fh, MPI_Offset offset, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_READ_AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

void MPI::File::Read_at(MPI::Offset offset, void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Read_at(MPI::Offset offset, void* buf, int count,

const MPI::Datatype& datatype)

MPI_FILE_READ_AT reads a file beginning at the position specified by offset.

MPI_FILE_READ_AT_ALL(fh, offset, buf, count, datatype, status)

IN fh file handle (handle)

IN offset file offset (integer)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_read_at_all(MPI_File fh, MPI_Offset offset, void *buf,

int count, MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_READ_AT_ALL(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

void MPI::File::Read_at_all(MPI::Offset offset, void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Read_at_all(MPI::Offset offset, void* buf, int count,

const MPI::Datatype& datatype)
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MPI_FILE_READ_AT_ALL is a collective version of the blocking MPI_FILE_READ_AT
interface.

MPI_FILE_WRITE_AT(fh, offset, buf, count, datatype, status)

INOUT fh file handle (handle)

IN offset file offset (integer)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_write_at(MPI_File fh, MPI_Offset offset, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_WRITE_AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

void MPI::File::Write_at(MPI::Offset offset, const void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Write_at(MPI::Offset offset, const void* buf, int count,

const MPI::Datatype& datatype)

MPI_FILE_WRITE_AT writes a file beginning at the position specified by offset.

MPI_FILE_WRITE_AT_ALL(fh, offset, buf, count, datatype, status)

INOUT fh file handle (handle)

IN offset file offset (integer)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_write_at_all(MPI_File fh, MPI_Offset offset, void *buf,

int count, MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_WRITE_AT_ALL(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

void MPI::File::Write_at_all(MPI::Offset offset, const void* buf,

int count, const MPI::Datatype& datatype, MPI::Status& status)
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MPI_FILE_READ_AT_ALL is a collective version of the blocking MPI_FILE_READ_AT
interface.

MPI_FILE_WRITE_AT(fh, offset, buf, count, datatype, status)

INOUT fh file handle (handle)

IN offset file offset (integer)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_write_at(MPI_File fh, MPI_Offset offset, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_WRITE_AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

void MPI::File::Write_at(MPI::Offset offset, const void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Write_at(MPI::Offset offset, const void* buf, int count,

const MPI::Datatype& datatype)

MPI_FILE_WRITE_AT writes a file beginning at the position specified by offset.

MPI_FILE_WRITE_AT_ALL(fh, offset, buf, count, datatype, status)

INOUT fh file handle (handle)

IN offset file offset (integer)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_write_at_all(MPI_File fh, MPI_Offset offset, void *buf,

int count, MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_WRITE_AT_ALL(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

void MPI::File::Write_at_all(MPI::Offset offset, const void* buf,

int count, const MPI::Datatype& datatype, MPI::Status& status)
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void MPI::File::Write_at_all(MPI::Offset offset, const void* buf,

int count, const MPI::Datatype& datatype)

MPI_FILE_WRITE_AT_ALL is a collective version of the blocking
MPI_FILE_WRITE_AT interface.

MPI_FILE_IREAD_AT(fh, offset, buf, count, datatype, request)

IN fh file handle (handle)

IN offset file offset (integer)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT request request object (handle)

int MPI_File_iread_at(MPI_File fh, MPI_Offset offset, void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

MPI_FILE_IREAD_AT(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI::Request MPI::File::Iread_at(MPI::Offset offset, void* buf, int count,

const MPI::Datatype& datatype)

MPI_FILE_IREAD_AT is a nonblocking version of the MPI_FILE_READ_AT interface.

MPI_FILE_IWRITE_AT(fh, offset, buf, count, datatype, request)

INOUT fh file handle (handle)

IN offset file offset (integer)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT request request object (handle)

int MPI_File_iwrite_at(MPI_File fh, MPI_Offset offset, void *buf,

int count, MPI_Datatype datatype, MPI_Request *request)

MPI_FILE_IWRITE_AT(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI::Request MPI::File::Iwrite_at(MPI::Offset offset, const void* buf,

int count, const MPI::Datatype& datatype)
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void MPI::File::Write_at_all(MPI::Offset offset, const void* buf,

int count, const MPI::Datatype& datatype)

MPI_FILE_WRITE_AT_ALL is a collective version of the blocking
MPI_FILE_WRITE_AT interface.

MPI_FILE_IREAD_AT(fh, offset, buf, count, datatype, request)

IN fh file handle (handle)

IN offset file offset (integer)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT request request object (handle)

int MPI_File_iread_at(MPI_File fh, MPI_Offset offset, void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

MPI_FILE_IREAD_AT(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI::Request MPI::File::Iread_at(MPI::Offset offset, void* buf, int count,

const MPI::Datatype& datatype)

MPI_FILE_IREAD_AT is a nonblocking version of the MPI_FILE_READ_AT interface.

MPI_FILE_IWRITE_AT(fh, offset, buf, count, datatype, request)

INOUT fh file handle (handle)

IN offset file offset (integer)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT request request object (handle)

int MPI_File_iwrite_at(MPI_File fh, MPI_Offset offset, void *buf,

int count, MPI_Datatype datatype, MPI_Request *request)

MPI_FILE_IWRITE_AT(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI::Request MPI::File::Iwrite_at(MPI::Offset offset, const void* buf,

int count, const MPI::Datatype& datatype)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



394 CHAPTER 13. I/O

MPI_FILE_IWRITE_AT is a nonblocking version of the MPI_FILE_WRITE_AT interface.

13.4.3 Data Access with Individual File Pointers

MPI maintains one individual file pointer per process per file handle. The current value
of this pointer implicitly specifies the offset in the data access routines described in this
section. These routines only use and update the individual file pointers maintained by MPI.
The shared file pointer is not used nor updated.

The individual file pointer routines have the same semantics as the data access with
explicit offset routines described in Section 13.4.2, page 390, with the following modification:

• the offset is defined to be the current value of the MPI-maintained individual file
pointer.

After an individual file pointer operation is initiated, the individual file pointer is updated
to point to the next etype after the last one that will be accessed. The file pointer is updated
relative to the current view of the file.

If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, it is erroneous
to call the routines in this section, with the exception of MPI_FILE_GET_BYTE_OFFSET.

MPI_FILE_READ(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_read(MPI_File fh, void *buf, int count, MPI_Datatype datatype,

MPI_Status *status)

MPI_FILE_READ(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

void MPI::File::Read(void* buf, int count, const MPI::Datatype& datatype,

MPI::Status& status)

void MPI::File::Read(void* buf, int count, const MPI::Datatype& datatype)

MPI_FILE_READ reads a file using the individual file pointer.

Example 13.2 The following Fortran code fragment is an example of reading a file until
the end of file is reached:

! Read a preexisting input file until all data has been read.

! Call routine "process_input" if all requested data is read.

! The Fortran 90 "exit" statement exits the loop.
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MPI_FILE_IWRITE_AT is a nonblocking version of the MPI_FILE_WRITE_AT interface.

13.4.3 Data Access with Individual File Pointers

MPI maintains one individual file pointer per process per file handle. The current value
of this pointer implicitly specifies the offset in the data access routines described in this
section. These routines only use and update the individual file pointers maintained by MPI.
The shared file pointer is not used nor updated.

The individual file pointer routines have the same semantics as the data access with
explicit offset routines described in Section 13.4.2, page 390, with the following modification:

• the offset is defined to be the current value of the MPI-maintained individual file
pointer.

After an individual file pointer operation is initiated, the individual file pointer is updated
to point to the next etype after the last one that will be accessed. The file pointer is updated
relative to the current view of the file.

If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, it is erroneous
to call the routines in this section, with the exception of MPI_FILE_GET_BYTE_OFFSET.

MPI_FILE_READ(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_read(MPI_File fh, void *buf, int count, MPI_Datatype datatype,

MPI_Status *status)

MPI_FILE_READ(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

void MPI::File::Read(void* buf, int count, const MPI::Datatype& datatype,

MPI::Status& status)

void MPI::File::Read(void* buf, int count, const MPI::Datatype& datatype)

MPI_FILE_READ reads a file using the individual file pointer.

Example 13.2 The following Fortran code fragment is an example of reading a file until
the end of file is reached:

! Read a preexisting input file until all data has been read.

! Call routine "process_input" if all requested data is read.

! The Fortran 90 "exit" statement exits the loop.
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integer bufsize, numread, totprocessed, status(MPI_STATUS_SIZE)

parameter (bufsize=100)

real localbuffer(bufsize)

call MPI_FILE_OPEN( MPI_COMM_WORLD, ’myoldfile’, &

MPI_MODE_RDONLY, MPI_INFO_NULL, myfh, ierr )

call MPI_FILE_SET_VIEW( myfh, 0, MPI_REAL, MPI_REAL, ’native’, &

MPI_INFO_NULL, ierr )

totprocessed = 0

do

call MPI_FILE_READ( myfh, localbuffer, bufsize, MPI_REAL, &

status, ierr )

call MPI_GET_COUNT( status, MPI_REAL, numread, ierr )

call process_input( localbuffer, numread )

totprocessed = totprocessed + numread

if ( numread < bufsize ) exit

enddo

write(6,1001) numread, bufsize, totprocessed

1001 format( "No more data: read", I3, "and expected", I3, &

"Processed total of", I6, "before terminating job." )

call MPI_FILE_CLOSE( myfh, ierr )

MPI_FILE_READ_ALL(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_read_all(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_READ_ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

void MPI::File::Read_all(void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Read_all(void* buf, int count,

const MPI::Datatype& datatype)

MPI_FILE_READ_ALL is a collective version of the blocking MPI_FILE_READ interface.
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integer bufsize, numread, totprocessed, status(MPI_STATUS_SIZE)

parameter (bufsize=100)

real localbuffer(bufsize)

call MPI_FILE_OPEN( MPI_COMM_WORLD, ’myoldfile’, &

MPI_MODE_RDONLY, MPI_INFO_NULL, myfh, ierr )

call MPI_FILE_SET_VIEW( myfh, 0, MPI_REAL, MPI_REAL, ’native’, &

MPI_INFO_NULL, ierr )

totprocessed = 0

do

call MPI_FILE_READ( myfh, localbuffer, bufsize, MPI_REAL, &

status, ierr )

call MPI_GET_COUNT( status, MPI_REAL, numread, ierr )

call process_input( localbuffer, numread )

totprocessed = totprocessed + numread

if ( numread < bufsize ) exit

enddo

write(6,1001) numread, bufsize, totprocessed

1001 format( "No more data: read", I3, "and expected", I3, &

"Processed total of", I6, "before terminating job." )

call MPI_FILE_CLOSE( myfh, ierr )

MPI_FILE_READ_ALL(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_read_all(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_READ_ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

void MPI::File::Read_all(void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Read_all(void* buf, int count,

const MPI::Datatype& datatype)

MPI_FILE_READ_ALL is a collective version of the blocking MPI_FILE_READ interface.
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MPI_FILE_WRITE(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_write(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_WRITE(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

void MPI::File::Write(const void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Write(const void* buf, int count,

const MPI::Datatype& datatype)

MPI_FILE_WRITE writes a file using the individual file pointer.

MPI_FILE_WRITE_ALL(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_write_all(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_WRITE_ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

void MPI::File::Write_all(const void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Write_all(const void* buf, int count,

const MPI::Datatype& datatype)

MPI_FILE_WRITE_ALL is a collective version of the blocking MPI_FILE_WRITE inter-
face.
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MPI_FILE_WRITE(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_write(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_WRITE(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

void MPI::File::Write(const void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Write(const void* buf, int count,

const MPI::Datatype& datatype)

MPI_FILE_WRITE writes a file using the individual file pointer.

MPI_FILE_WRITE_ALL(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_write_all(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_WRITE_ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

void MPI::File::Write_all(const void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Write_all(const void* buf, int count,

const MPI::Datatype& datatype)

MPI_FILE_WRITE_ALL is a collective version of the blocking MPI_FILE_WRITE inter-
face.
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MPI_FILE_IREAD(fh, buf, count, datatype, request)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT request request object (handle)

int MPI_File_iread(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

MPI_FILE_IREAD(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI::Request MPI::File::Iread(void* buf, int count,

const MPI::Datatype& datatype)

MPI_FILE_IREAD is a nonblocking version of the MPI_FILE_READ interface.

Example 13.3 The following Fortran code fragment illustrates file pointer update seman-
tics:

! Read the first twenty real words in a file into two local

! buffers. Note that when the first MPI_FILE_IREAD returns,

! the file pointer has been updated to point to the

! eleventh real word in the file.

integer bufsize, req1, req2

integer, dimension(MPI_STATUS_SIZE) :: status1, status2

parameter (bufsize=10)

real buf1(bufsize), buf2(bufsize)

call MPI_FILE_OPEN( MPI_COMM_WORLD, ’myoldfile’, &

MPI_MODE_RDONLY, MPI_INFO_NULL, myfh, ierr )

call MPI_FILE_SET_VIEW( myfh, 0, MPI_REAL, MPI_REAL, ’native’, &

MPI_INFO_NULL, ierr )

call MPI_FILE_IREAD( myfh, buf1, bufsize, MPI_REAL, &

req1, ierr )

call MPI_FILE_IREAD( myfh, buf2, bufsize, MPI_REAL, &

req2, ierr )

call MPI_WAIT( req1, status1, ierr )

call MPI_WAIT( req2, status2, ierr )

call MPI_FILE_CLOSE( myfh, ierr )
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MPI_FILE_IREAD(fh, buf, count, datatype, request)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT request request object (handle)

int MPI_File_iread(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

MPI_FILE_IREAD(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI::Request MPI::File::Iread(void* buf, int count,

const MPI::Datatype& datatype)

MPI_FILE_IREAD is a nonblocking version of the MPI_FILE_READ interface.

Example 13.3 The following Fortran code fragment illustrates file pointer update seman-
tics:

! Read the first twenty real words in a file into two local

! buffers. Note that when the first MPI_FILE_IREAD returns,

! the file pointer has been updated to point to the

! eleventh real word in the file.

integer bufsize, req1, req2

integer, dimension(MPI_STATUS_SIZE) :: status1, status2

parameter (bufsize=10)

real buf1(bufsize), buf2(bufsize)

call MPI_FILE_OPEN( MPI_COMM_WORLD, ’myoldfile’, &

MPI_MODE_RDONLY, MPI_INFO_NULL, myfh, ierr )

call MPI_FILE_SET_VIEW( myfh, 0, MPI_REAL, MPI_REAL, ’native’, &

MPI_INFO_NULL, ierr )

call MPI_FILE_IREAD( myfh, buf1, bufsize, MPI_REAL, &

req1, ierr )

call MPI_FILE_IREAD( myfh, buf2, bufsize, MPI_REAL, &

req2, ierr )

call MPI_WAIT( req1, status1, ierr )

call MPI_WAIT( req2, status2, ierr )

call MPI_FILE_CLOSE( myfh, ierr )
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MPI_FILE_IWRITE(fh, buf, count, datatype, request)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT request request object (handle)

int MPI_File_iwrite(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

MPI_FILE_IWRITE(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI::Request MPI::File::Iwrite(const void* buf, int count,

const MPI::Datatype& datatype)

MPI_FILE_IWRITE is a nonblocking version of the MPI_FILE_WRITE interface.

MPI_FILE_SEEK(fh, offset, whence)

INOUT fh file handle (handle)

IN offset file offset (integer)

IN whence update mode (state)

int MPI_File_seek(MPI_File fh, MPI_Offset offset, int whence)

MPI_FILE_SEEK(FH, OFFSET, WHENCE, IERROR)

INTEGER FH, WHENCE, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

void MPI::File::Seek(MPI::Offset offset, int whence)

MPI_FILE_SEEK updates the individual file pointer according to whence, which has the
following possible values:

• MPI_SEEK_SET: the pointer is set to offset

• MPI_SEEK_CUR: the pointer is set to the current pointer position plus offset

• MPI_SEEK_END: the pointer is set to the end of file plus offset

The offset can be negative, which allows seeking backwards. It is erroneous to seek to
a negative position in the view.

MPI_FILE_GET_POSITION(fh, offset)

IN fh file handle (handle)

OUT offset offset of individual pointer (integer)
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MPI_FILE_IWRITE(fh, buf, count, datatype, request)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT request request object (handle)

int MPI_File_iwrite(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

MPI_FILE_IWRITE(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI::Request MPI::File::Iwrite(const void* buf, int count,

const MPI::Datatype& datatype)

MPI_FILE_IWRITE is a nonblocking version of the MPI_FILE_WRITE interface.

MPI_FILE_SEEK(fh, offset, whence)

INOUT fh file handle (handle)

IN offset file offset (integer)

IN whence update mode (state)

int MPI_File_seek(MPI_File fh, MPI_Offset offset, int whence)

MPI_FILE_SEEK(FH, OFFSET, WHENCE, IERROR)

INTEGER FH, WHENCE, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

void MPI::File::Seek(MPI::Offset offset, int whence)

MPI_FILE_SEEK updates the individual file pointer according to whence, which has the
following possible values:

• MPI_SEEK_SET: the pointer is set to offset

• MPI_SEEK_CUR: the pointer is set to the current pointer position plus offset

• MPI_SEEK_END: the pointer is set to the end of file plus offset

The offset can be negative, which allows seeking backwards. It is erroneous to seek to
a negative position in the view.

MPI_FILE_GET_POSITION(fh, offset)

IN fh file handle (handle)

OUT offset offset of individual pointer (integer)
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int MPI_File_get_position(MPI_File fh, MPI_Offset *offset)

MPI_FILE_GET_POSITION(FH, OFFSET, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI::Offset MPI::File::Get_position() const

MPI_FILE_GET_POSITION returns, in offset, the current position of the individual file
pointer in etype units relative to the current view.

Advice to users. The offset can be used in a future call to MPI_FILE_SEEK using
whence = MPI_SEEK_SET to return to the current position. To set the displacement to
the current file pointer position, first convert offset into an absolute byte position using
MPI_FILE_GET_BYTE_OFFSET, then call MPI_FILE_SET_VIEW with the resulting
displacement. (End of advice to users.)

MPI_FILE_GET_BYTE_OFFSET(fh, offset, disp)

IN fh file handle (handle)

IN offset offset (integer)

OUT disp absolute byte position of offset (integer)

int MPI_File_get_byte_offset(MPI_File fh, MPI_Offset offset,

MPI_Offset *disp)

MPI_FILE_GET_BYTE_OFFSET(FH, OFFSET, DISP, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET, DISP

MPI::Offset MPI::File::Get_byte_offset(const MPI::Offset disp) const

MPI_FILE_GET_BYTE_OFFSET converts a view-relative offset into an absolute byte
position. The absolute byte position (from the beginning of the file) of offset relative to the
current view of fh is returned in disp.

13.4.4 Data Access with Shared File Pointers

MPI maintains exactly one shared file pointer per collective MPI_FILE_OPEN (shared among
processes in the communicator group). The current value of this pointer implicitly specifies
the offset in the data access routines described in this section. These routines only use and
update the shared file pointer maintained by MPI. The individual file pointers are not used
nor updated.

The shared file pointer routines have the same semantics as the data access with explicit
offset routines described in Section 13.4.2, page 390, with the following modifications:

• the offset is defined to be the current value of the MPI-maintained shared file pointer,

• the effect of multiple calls to shared file pointer routines is defined to behave as if the
calls were serialized, and
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int MPI_File_get_position(MPI_File fh, MPI_Offset *offset)

MPI_FILE_GET_POSITION(FH, OFFSET, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI::Offset MPI::File::Get_position() const

MPI_FILE_GET_POSITION returns, in offset, the current position of the individual file
pointer in etype units relative to the current view.

Advice to users. The offset can be used in a future call to MPI_FILE_SEEK using
whence = MPI_SEEK_SET to return to the current position. To set the displacement to
the current file pointer position, first convert offset into an absolute byte position using
MPI_FILE_GET_BYTE_OFFSET, then call MPI_FILE_SET_VIEW with the resulting
displacement. (End of advice to users.)

MPI_FILE_GET_BYTE_OFFSET(fh, offset, disp)

IN fh file handle (handle)

IN offset offset (integer)

OUT disp absolute byte position of offset (integer)

int MPI_File_get_byte_offset(MPI_File fh, MPI_Offset offset,

MPI_Offset *disp)

MPI_FILE_GET_BYTE_OFFSET(FH, OFFSET, DISP, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET, DISP

MPI::Offset MPI::File::Get_byte_offset(const MPI::Offset disp) const

MPI_FILE_GET_BYTE_OFFSET converts a view-relative offset into an absolute byte
position. The absolute byte position (from the beginning of the file) of offset relative to the
current view of fh is returned in disp.

13.4.4 Data Access with Shared File Pointers

MPI maintains exactly one shared file pointer per collective MPI_FILE_OPEN (shared among
processes in the communicator group). The current value of this pointer implicitly specifies
the offset in the data access routines described in this section. These routines only use and
update the shared file pointer maintained by MPI. The individual file pointers are not used
nor updated.

The shared file pointer routines have the same semantics as the data access with explicit
offset routines described in Section 13.4.2, page 390, with the following modifications:

• the offset is defined to be the current value of the MPI-maintained shared file pointer,

• the effect of multiple calls to shared file pointer routines is defined to behave as if the
calls were serialized, and
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• the use of shared file pointer routines is erroneous unless all processes use the same
file view.

For the noncollective shared file pointer routines, the serialization ordering is not determin-
istic. The user needs to use other synchronization means to enforce a specific order.

After a shared file pointer operation is initiated, the shared file pointer is updated to
point to the next etype after the last one that will be accessed. The file pointer is updated
relative to the current view of the file.

Noncollective Operations

MPI_FILE_READ_SHARED(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_read_shared(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_READ_SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

void MPI::File::Read_shared(void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Read_shared(void* buf, int count,

const MPI::Datatype& datatype)

MPI_FILE_READ_SHARED reads a file using the shared file pointer.

MPI_FILE_WRITE_SHARED(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_write_shared(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_WRITE_SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

400 CHAPTER 13. I/O

• the use of shared file pointer routines is erroneous unless all processes use the same
file view.

For the noncollective shared file pointer routines, the serialization ordering is not determin-
istic. The user needs to use other synchronization means to enforce a specific order.

After a shared file pointer operation is initiated, the shared file pointer is updated to
point to the next etype after the last one that will be accessed. The file pointer is updated
relative to the current view of the file.

Noncollective Operations

MPI_FILE_READ_SHARED(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_read_shared(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_READ_SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

void MPI::File::Read_shared(void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Read_shared(void* buf, int count,

const MPI::Datatype& datatype)

MPI_FILE_READ_SHARED reads a file using the shared file pointer.

MPI_FILE_WRITE_SHARED(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_write_shared(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_WRITE_SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)
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INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

void MPI::File::Write_shared(const void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Write_shared(const void* buf, int count,

const MPI::Datatype& datatype)

MPI_FILE_WRITE_SHARED writes a file using the shared file pointer.

MPI_FILE_IREAD_SHARED(fh, buf, count, datatype, request)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT request request object (handle)

int MPI_File_iread_shared(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

MPI_FILE_IREAD_SHARED(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI::Request MPI::File::Iread_shared(void* buf, int count,

const MPI::Datatype& datatype)

MPI_FILE_IREAD_SHARED is a nonblocking version of the MPI_FILE_READ_SHARED
interface.

MPI_FILE_IWRITE_SHARED(fh, buf, count, datatype, request)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT request request object (handle)

int MPI_File_iwrite_shared(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

MPI_FILE_IWRITE_SHARED(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI::Request MPI::File::Iwrite_shared(const void* buf, int count,

const MPI::Datatype& datatype)
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INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

void MPI::File::Write_shared(const void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Write_shared(const void* buf, int count,

const MPI::Datatype& datatype)

MPI_FILE_WRITE_SHARED writes a file using the shared file pointer.

MPI_FILE_IREAD_SHARED(fh, buf, count, datatype, request)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT request request object (handle)

int MPI_File_iread_shared(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

MPI_FILE_IREAD_SHARED(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI::Request MPI::File::Iread_shared(void* buf, int count,

const MPI::Datatype& datatype)

MPI_FILE_IREAD_SHARED is a nonblocking version of the MPI_FILE_READ_SHARED
interface.

MPI_FILE_IWRITE_SHARED(fh, buf, count, datatype, request)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT request request object (handle)

int MPI_File_iwrite_shared(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

MPI_FILE_IWRITE_SHARED(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI::Request MPI::File::Iwrite_shared(const void* buf, int count,

const MPI::Datatype& datatype)
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MPI_FILE_IWRITE_SHARED is a nonblocking version of the
MPI_FILE_WRITE_SHARED interface.

Collective Operations

The semantics of a collective access using a shared file pointer is that the accesses to the
file will be in the order determined by the ranks of the processes within the group. For each
process, the location in the file at which data is accessed is the position at which the shared
file pointer would be after all processes whose ranks within the group less than that of this
process had accessed their data. In addition, in order to prevent subsequent shared offset
accesses by the same processes from interfering with this collective access, the call might
return only after all the processes within the group have initiated their accesses. When the
call returns, the shared file pointer points to the next etype accessible, according to the file
view used by all processes, after the last etype requested.

Advice to users. There may be some programs in which all processes in the group
need to access the file using the shared file pointer, but the program may not re-
quire that data be accessed in order of process rank. In such programs, using the
shared ordered routines (e.g., MPI_FILE_WRITE_ORDERED rather than
MPI_FILE_WRITE_SHARED) may enable an implementation to optimize access, im-
proving performance. (End of advice to users.)

Advice to implementors. Accesses to the data requested by all processes do not have
to be serialized. Once all processes have issued their requests, locations within the file
for all accesses can be computed, and accesses can proceed independently from each
other, possibly in parallel. (End of advice to implementors.)

MPI_FILE_READ_ORDERED(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_read_ordered(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_READ_ORDERED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

void MPI::File::Read_ordered(void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Read_ordered(void* buf, int count,

const MPI::Datatype& datatype)
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MPI_FILE_IWRITE_SHARED is a nonblocking version of the
MPI_FILE_WRITE_SHARED interface.

Collective Operations

The semantics of a collective access using a shared file pointer is that the accesses to the
file will be in the order determined by the ranks of the processes within the group. For each
process, the location in the file at which data is accessed is the position at which the shared
file pointer would be after all processes whose ranks within the group less than that of this
process had accessed their data. In addition, in order to prevent subsequent shared offset
accesses by the same processes from interfering with this collective access, the call might
return only after all the processes within the group have initiated their accesses. When the
call returns, the shared file pointer points to the next etype accessible, according to the file
view used by all processes, after the last etype requested.

Advice to users. There may be some programs in which all processes in the group
need to access the file using the shared file pointer, but the program may not re-
quire that data be accessed in order of process rank. In such programs, using the
shared ordered routines (e.g., MPI_FILE_WRITE_ORDERED rather than
MPI_FILE_WRITE_SHARED) may enable an implementation to optimize access, im-
proving performance. (End of advice to users.)

Advice to implementors. Accesses to the data requested by all processes do not have
to be serialized. Once all processes have issued their requests, locations within the file
for all accesses can be computed, and accesses can proceed independently from each
other, possibly in parallel. (End of advice to implementors.)

MPI_FILE_READ_ORDERED(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_read_ordered(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_READ_ORDERED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

void MPI::File::Read_ordered(void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Read_ordered(void* buf, int count,

const MPI::Datatype& datatype)
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MPI_FILE_READ_ORDERED is a collective version of the MPI_FILE_READ_SHARED
interface.

MPI_FILE_WRITE_ORDERED(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_write_ordered(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_WRITE_ORDERED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

void MPI::File::Write_ordered(const void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Write_ordered(const void* buf, int count,

const MPI::Datatype& datatype)

MPI_FILE_WRITE_ORDERED is a collective version of the MPI_FILE_WRITE_SHARED
interface.

Seek

If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, it is erroneous
to call the following two routines (MPI_FILE_SEEK_SHARED and
MPI_FILE_GET_POSITION_SHARED).

MPI_FILE_SEEK_SHARED(fh, offset, whence)

INOUT fh file handle (handle)

IN offset file offset (integer)

IN whence update mode (state)

int MPI_File_seek_shared(MPI_File fh, MPI_Offset offset, int whence)

MPI_FILE_SEEK_SHARED(FH, OFFSET, WHENCE, IERROR)

INTEGER FH, WHENCE, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

void MPI::File::Seek_shared(MPI::Offset offset, int whence)

MPI_FILE_SEEK_SHARED updates the shared file pointer according to whence, which
has the following possible values:
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MPI_FILE_READ_ORDERED is a collective version of the MPI_FILE_READ_SHARED
interface.

MPI_FILE_WRITE_ORDERED(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_write_ordered(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_WRITE_ORDERED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

void MPI::File::Write_ordered(const void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Write_ordered(const void* buf, int count,

const MPI::Datatype& datatype)

MPI_FILE_WRITE_ORDERED is a collective version of the MPI_FILE_WRITE_SHARED
interface.

Seek

If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, it is erroneous
to call the following two routines (MPI_FILE_SEEK_SHARED and
MPI_FILE_GET_POSITION_SHARED).

MPI_FILE_SEEK_SHARED(fh, offset, whence)

INOUT fh file handle (handle)

IN offset file offset (integer)

IN whence update mode (state)

int MPI_File_seek_shared(MPI_File fh, MPI_Offset offset, int whence)

MPI_FILE_SEEK_SHARED(FH, OFFSET, WHENCE, IERROR)

INTEGER FH, WHENCE, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

void MPI::File::Seek_shared(MPI::Offset offset, int whence)

MPI_FILE_SEEK_SHARED updates the shared file pointer according to whence, which
has the following possible values:
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• MPI_SEEK_SET: the pointer is set to offset

• MPI_SEEK_CUR: the pointer is set to the current pointer position plus offset

• MPI_SEEK_END: the pointer is set to the end of file plus offset

MPI_FILE_SEEK_SHARED is collective; all the processes in the communicator group
associated with the file handle fh must call MPI_FILE_SEEK_SHARED with the same values
for offset and whence.

The offset can be negative, which allows seeking backwards. It is erroneous to seek to
a negative position in the view.

MPI_FILE_GET_POSITION_SHARED(fh, offset)

IN fh file handle (handle)

OUT offset offset of shared pointer (integer)

int MPI_File_get_position_shared(MPI_File fh, MPI_Offset *offset)

MPI_FILE_GET_POSITION_SHARED(FH, OFFSET, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI::Offset MPI::File::Get_position_shared() const

MPI_FILE_GET_POSITION_SHARED returns, in offset, the current position of the
shared file pointer in etype units relative to the current view.

Advice to users. The offset can be used in a future call to MPI_FILE_SEEK_SHARED
using whence = MPI_SEEK_SET to return to the current position. To set the displace-
ment to the current file pointer position, first convert offset into an absolute byte
position using MPI_FILE_GET_BYTE_OFFSET, then call MPI_FILE_SET_VIEW with
the resulting displacement. (End of advice to users.)

13.4.5 Split Collective Data Access Routines

MPI provides a restricted form of “nonblocking collective” I/O operations for all data ac-
cesses using split collective data access routines. These routines are referred to as “split”
collective routines because a single collective operation is split in two: a begin routine and
an end routine. The begin routine begins the operation, much like a nonblocking data access
(e.g., MPI_FILE_IREAD). The end routine completes the operation, much like the matching
test or wait (e.g., MPI_WAIT). As with nonblocking data access operations, the user must
not use the buffer passed to a begin routine while the routine is outstanding; the operation
must be completed with an end routine before it is safe to free buffers, etc.

Split collective data access operations on a file handle fh are subject to the semantic
rules given below.

• On any MPI process, each file handle may have at most one active split collective
operation at any time.
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• MPI_SEEK_SET: the pointer is set to offset

• MPI_SEEK_CUR: the pointer is set to the current pointer position plus offset

• MPI_SEEK_END: the pointer is set to the end of file plus offset

MPI_FILE_SEEK_SHARED is collective; all the processes in the communicator group
associated with the file handle fh must call MPI_FILE_SEEK_SHARED with the same values
for offset and whence.

The offset can be negative, which allows seeking backwards. It is erroneous to seek to
a negative position in the view.

MPI_FILE_GET_POSITION_SHARED(fh, offset)

IN fh file handle (handle)

OUT offset offset of shared pointer (integer)

int MPI_File_get_position_shared(MPI_File fh, MPI_Offset *offset)

MPI_FILE_GET_POSITION_SHARED(FH, OFFSET, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI::Offset MPI::File::Get_position_shared() const

MPI_FILE_GET_POSITION_SHARED returns, in offset, the current position of the
shared file pointer in etype units relative to the current view.

Advice to users. The offset can be used in a future call to MPI_FILE_SEEK_SHARED
using whence = MPI_SEEK_SET to return to the current position. To set the displace-
ment to the current file pointer position, first convert offset into an absolute byte
position using MPI_FILE_GET_BYTE_OFFSET, then call MPI_FILE_SET_VIEW with
the resulting displacement. (End of advice to users.)

13.4.5 Split Collective Data Access Routines

MPI provides a restricted form of “nonblocking collective” I/O operations for all data ac-
cesses using split collective data access routines. These routines are referred to as “split”
collective routines because a single collective operation is split in two: a begin routine and
an end routine. The begin routine begins the operation, much like a nonblocking data access
(e.g., MPI_FILE_IREAD). The end routine completes the operation, much like the matching
test or wait (e.g., MPI_WAIT). As with nonblocking data access operations, the user must
not use the buffer passed to a begin routine while the routine is outstanding; the operation
must be completed with an end routine before it is safe to free buffers, etc.

Split collective data access operations on a file handle fh are subject to the semantic
rules given below.

• On any MPI process, each file handle may have at most one active split collective
operation at any time.
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• Begin calls are collective over the group of processes that participated in the collective
open and follow the ordering rules for collective calls.

• End calls are collective over the group of processes that participated in the collective
open and follow the ordering rules for collective calls. Each end call matches the
preceding begin call for the same collective operation. When an “end” call is made,
exactly one unmatched “begin” call for the same operation must precede it.

• An implementation is free to implement any split collective data access routine using
the corresponding blocking collective routine when either the begin call (e.g.,
MPI_FILE_READ_ALL_BEGIN) or the end call (e.g., MPI_FILE_READ_ALL_END) is
issued. The begin and end calls are provided to allow the user and MPI implementation
to optimize the collective operation.

• Split collective operations do not match the corresponding regular collective opera-
tion. For example, in a single collective read operation, an MPI_FILE_READ_ALL
on one process does not match an MPI_FILE_READ_ALL_BEGIN/
MPI_FILE_READ_ALL_END pair on another process.

• Split collective routines must specify a buffer in both the begin and end routines.
By specifying the buffer that receives data in the end routine, we can avoid many
(though not all) of the problems described in “A Problem with Register Optimization,”
Section 16.2.2, page 466.

• No collective I/O operations are permitted on a file handle concurrently with a split
collective access on that file handle (i.e., between the begin and end of the access).
That is

MPI_File_read_all_begin(fh, ...);

...

MPI_File_read_all(fh, ...);

...

MPI_File_read_all_end(fh, ...);

is erroneous.

• In a multithreaded implementation, any split collective begin and end operation called
by a process must be called from the same thread. This restriction is made to simplify
the implementation in the multithreaded case. (Note that we have already disallowed
having two threads begin a split collective operation on the same file handle since only
one split collective operation can be active on a file handle at any time.)

The arguments for these routines have the same meaning as for the equivalent collective
versions (e.g., the argument definitions for MPI_FILE_READ_ALL_BEGIN and
MPI_FILE_READ_ALL_END are equivalent to the arguments for MPI_FILE_READ_ALL).
The begin routine (e.g., MPI_FILE_READ_ALL_BEGIN) begins a split collective operation
that, when completed with the matching end routine (i.e., MPI_FILE_READ_ALL_END)
produces the result as defined for the equivalent collective routine (i.e.,
MPI_FILE_READ_ALL).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13.4. DATA ACCESS 405

• Begin calls are collective over the group of processes that participated in the collective
open and follow the ordering rules for collective calls.

• End calls are collective over the group of processes that participated in the collective
open and follow the ordering rules for collective calls. Each end call matches the
preceding begin call for the same collective operation. When an “end” call is made,
exactly one unmatched “begin” call for the same operation must precede it.

• An implementation is free to implement any split collective data access routine using
the corresponding blocking collective routine when either the begin call (e.g.,
MPI_FILE_READ_ALL_BEGIN) or the end call (e.g., MPI_FILE_READ_ALL_END) is
issued. The begin and end calls are provided to allow the user and MPI implementation
to optimize the collective operation.

• Split collective operations do not match the corresponding regular collective opera-
tion. For example, in a single collective read operation, an MPI_FILE_READ_ALL
on one process does not match an MPI_FILE_READ_ALL_BEGIN/
MPI_FILE_READ_ALL_END pair on another process.

• Split collective routines must specify a buffer in both the begin and end routines.
By specifying the buffer that receives data in the end routine, we can avoid many
(though not all) of the problems described in “A Problem with Register Optimization,”
Section 16.2.2, page 466.

• No collective I/O operations are permitted on a file handle concurrently with a split
collective access on that file handle (i.e., between the begin and end of the access).
That is

MPI_File_read_all_begin(fh, ...);

...

MPI_File_read_all(fh, ...);

...

MPI_File_read_all_end(fh, ...);

is erroneous.

• In a multithreaded implementation, any split collective begin and end operation called
by a process must be called from the same thread. This restriction is made to simplify
the implementation in the multithreaded case. (Note that we have already disallowed
having two threads begin a split collective operation on the same file handle since only
one split collective operation can be active on a file handle at any time.)

The arguments for these routines have the same meaning as for the equivalent collective
versions (e.g., the argument definitions for MPI_FILE_READ_ALL_BEGIN and
MPI_FILE_READ_ALL_END are equivalent to the arguments for MPI_FILE_READ_ALL).
The begin routine (e.g., MPI_FILE_READ_ALL_BEGIN) begins a split collective operation
that, when completed with the matching end routine (i.e., MPI_FILE_READ_ALL_END)
produces the result as defined for the equivalent collective routine (i.e.,
MPI_FILE_READ_ALL).
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For the purpose of consistency semantics (Section 13.6.1, page 420), a matched pair
of split collective data access operations (e.g., MPI_FILE_READ_ALL_BEGIN and
MPI_FILE_READ_ALL_END) compose a single data access.

MPI_FILE_READ_AT_ALL_BEGIN(fh, offset, buf, count, datatype)

IN fh file handle (handle)

IN offset file offset (integer)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

int MPI_File_read_at_all_begin(MPI_File fh, MPI_Offset offset, void *buf,

int count, MPI_Datatype datatype)

MPI_FILE_READ_AT_ALL_BEGIN(FH, OFFSET, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

void MPI::File::Read_at_all_begin(MPI::Offset offset, void* buf, int count,

const MPI::Datatype& datatype)

MPI_FILE_READ_AT_ALL_END(fh, buf, status)

IN fh file handle (handle)

OUT buf initial address of buffer (choice)

OUT status status object (Status)

int MPI_File_read_at_all_end(MPI_File fh, void *buf, MPI_Status *status)

MPI_FILE_READ_AT_ALL_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

void MPI::File::Read_at_all_end(void* buf, MPI::Status& status)

void MPI::File::Read_at_all_end(void* buf)
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MPI_FILE_WRITE_AT_ALL_BEGIN(fh, offset, buf, count, datatype)

INOUT fh file handle (handle)

IN offset file offset (integer)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

int MPI_File_write_at_all_begin(MPI_File fh, MPI_Offset offset, void *buf,

int count, MPI_Datatype datatype)

MPI_FILE_WRITE_AT_ALL_BEGIN(FH, OFFSET, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

void MPI::File::Write_at_all_begin(MPI::Offset offset, const void* buf,

int count, const MPI::Datatype& datatype)

MPI_FILE_WRITE_AT_ALL_END(fh, buf, status)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

OUT status status object (Status)

int MPI_File_write_at_all_end(MPI_File fh, void *buf, MPI_Status *status)

MPI_FILE_WRITE_AT_ALL_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

void MPI::File::Write_at_all_end(const void* buf, MPI::Status& status)

void MPI::File::Write_at_all_end(const void* buf)

MPI_FILE_READ_ALL_BEGIN(fh, buf, count, datatype)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

int MPI_File_read_all_begin(MPI_File fh, void *buf, int count,

MPI_Datatype datatype)

MPI_FILE_READ_ALL_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)
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MPI_FILE_WRITE_AT_ALL_BEGIN(fh, offset, buf, count, datatype)

INOUT fh file handle (handle)

IN offset file offset (integer)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

int MPI_File_write_at_all_begin(MPI_File fh, MPI_Offset offset, void *buf,

int count, MPI_Datatype datatype)

MPI_FILE_WRITE_AT_ALL_BEGIN(FH, OFFSET, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

void MPI::File::Write_at_all_begin(MPI::Offset offset, const void* buf,

int count, const MPI::Datatype& datatype)

MPI_FILE_WRITE_AT_ALL_END(fh, buf, status)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

OUT status status object (Status)

int MPI_File_write_at_all_end(MPI_File fh, void *buf, MPI_Status *status)

MPI_FILE_WRITE_AT_ALL_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

void MPI::File::Write_at_all_end(const void* buf, MPI::Status& status)

void MPI::File::Write_at_all_end(const void* buf)

MPI_FILE_READ_ALL_BEGIN(fh, buf, count, datatype)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

int MPI_File_read_all_begin(MPI_File fh, void *buf, int count,

MPI_Datatype datatype)

MPI_FILE_READ_ALL_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)
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<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

void MPI::File::Read_all_begin(void* buf, int count,

const MPI::Datatype& datatype)

MPI_FILE_READ_ALL_END(fh, buf, status)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

OUT status status object (Status)

int MPI_File_read_all_end(MPI_File fh, void *buf, MPI_Status *status)

MPI_FILE_READ_ALL_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

void MPI::File::Read_all_end(void* buf, MPI::Status& status)

void MPI::File::Read_all_end(void* buf)

MPI_FILE_WRITE_ALL_BEGIN(fh, buf, count, datatype)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

int MPI_File_write_all_begin(MPI_File fh, void *buf, int count,

MPI_Datatype datatype)

MPI_FILE_WRITE_ALL_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

void MPI::File::Write_all_begin(const void* buf, int count,

const MPI::Datatype& datatype)

MPI_FILE_WRITE_ALL_END(fh, buf, status)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

OUT status status object (Status)

int MPI_File_write_all_end(MPI_File fh, void *buf, MPI_Status *status)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

408 CHAPTER 13. I/O

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

void MPI::File::Read_all_begin(void* buf, int count,

const MPI::Datatype& datatype)

MPI_FILE_READ_ALL_END(fh, buf, status)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

OUT status status object (Status)

int MPI_File_read_all_end(MPI_File fh, void *buf, MPI_Status *status)

MPI_FILE_READ_ALL_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

void MPI::File::Read_all_end(void* buf, MPI::Status& status)

void MPI::File::Read_all_end(void* buf)

MPI_FILE_WRITE_ALL_BEGIN(fh, buf, count, datatype)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

int MPI_File_write_all_begin(MPI_File fh, void *buf, int count,

MPI_Datatype datatype)

MPI_FILE_WRITE_ALL_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

void MPI::File::Write_all_begin(const void* buf, int count,

const MPI::Datatype& datatype)

MPI_FILE_WRITE_ALL_END(fh, buf, status)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

OUT status status object (Status)

int MPI_File_write_all_end(MPI_File fh, void *buf, MPI_Status *status)
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MPI_FILE_WRITE_ALL_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

void MPI::File::Write_all_end(const void* buf, MPI::Status& status)

void MPI::File::Write_all_end(const void* buf)

MPI_FILE_READ_ORDERED_BEGIN(fh, buf, count, datatype)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

int MPI_File_read_ordered_begin(MPI_File fh, void *buf, int count,

MPI_Datatype datatype)

MPI_FILE_READ_ORDERED_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

void MPI::File::Read_ordered_begin(void* buf, int count,

const MPI::Datatype& datatype)

MPI_FILE_READ_ORDERED_END(fh, buf, status)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

OUT status status object (Status)

int MPI_File_read_ordered_end(MPI_File fh, void *buf, MPI_Status *status)

MPI_FILE_READ_ORDERED_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

void MPI::File::Read_ordered_end(void* buf, MPI::Status& status)

void MPI::File::Read_ordered_end(void* buf)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13.4. DATA ACCESS 409
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MPI_FILE_WRITE_ORDERED_BEGIN(fh, buf, count, datatype)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

int MPI_File_write_ordered_begin(MPI_File fh, void *buf, int count,

MPI_Datatype datatype)

MPI_FILE_WRITE_ORDERED_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

void MPI::File::Write_ordered_begin(const void* buf, int count,

const MPI::Datatype& datatype)

MPI_FILE_WRITE_ORDERED_END(fh, buf, status)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

OUT status status object (Status)

int MPI_File_write_ordered_end(MPI_File fh, void *buf, MPI_Status *status)

MPI_FILE_WRITE_ORDERED_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

void MPI::File::Write_ordered_end(const void* buf, MPI::Status& status)

void MPI::File::Write_ordered_end(const void* buf)

13.5 File Interoperability

At the most basic level, file interoperability is the ability to read the information previously
written to a file—not just the bits of data, but the actual information the bits represent.
MPI guarantees full interoperability within a single MPI environment, and supports in-
creased interoperability outside that environment through the external data representation
(Section 13.5.2, page 414) as well as the data conversion functions (Section 13.5.3, page 415).

Interoperability within a single MPI environment (which could be considered “oper-
ability”) ensures that file data written by one MPI process can be read by any other MPI
process, subject to the consistency constraints (see Section 13.6.1, page 420), provided that
it would have been possible to start the two processes simultaneously and have them reside
in a single MPI_COMM_WORLD. Furthermore, both processes must see the same data values
at every absolute byte offset in the file for which data was written.
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13.5 File Interoperability

At the most basic level, file interoperability is the ability to read the information previously
written to a file—not just the bits of data, but the actual information the bits represent.
MPI guarantees full interoperability within a single MPI environment, and supports in-
creased interoperability outside that environment through the external data representation
(Section 13.5.2, page 414) as well as the data conversion functions (Section 13.5.3, page 415).

Interoperability within a single MPI environment (which could be considered “oper-
ability”) ensures that file data written by one MPI process can be read by any other MPI
process, subject to the consistency constraints (see Section 13.6.1, page 420), provided that
it would have been possible to start the two processes simultaneously and have them reside
in a single MPI_COMM_WORLD. Furthermore, both processes must see the same data values
at every absolute byte offset in the file for which data was written.
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This single environment file interoperability implies that file data is accessible regardless
of the number of processes.

There are three aspects to file interoperability:

• transferring the bits,

• converting between different file structures, and

• converting between different machine representations.

The first two aspects of file interoperability are beyond the scope of this standard,
as both are highly machine dependent. However, transferring the bits of a file into and
out of the MPI environment (e.g., by writing a file to tape) is required to be supported
by all MPI implementations. In particular, an implementation must specify how familiar
operations similar to POSIX cp, rm, and mv can be performed on the file. Furthermore, it
is expected that the facility provided maintains the correspondence between absolute byte
offsets (e.g., after possible file structure conversion, the data bits at byte offset 102 in the
MPI environment are at byte offset 102 outside the MPI environment). As an example,
a simple off-line conversion utility that transfers and converts files between the native file
system and the MPI environment would suffice, provided it maintained the offset coherence
mentioned above. In a high-quality implementation of MPI, users will be able to manipulate
MPI files using the same or similar tools that the native file system offers for manipulating
its files.

The remaining aspect of file interoperability, converting between different machine
representations, is supported by the typing information specified in the etype and filetype.
This facility allows the information in files to be shared between any two applications,
regardless of whether they use MPI, and regardless of the machine architectures on which
they run.

MPI supports multiple data representations: “native,” “internal,” and “external32.”
An implementation may support additional data representations. MPI also supports user-
defined data representations (see Section 13.5.3, page 415). The “native” and “internal”
data representations are implementation dependent, while the “external32” representation
is common to all MPI implementations and facilitates file interoperability. The data repre-
sentation is specified in the datarep argument to MPI_FILE_SET_VIEW.

Advice to users. MPI is not guaranteed to retain knowledge of what data representa-
tion was used when a file is written. Therefore, to correctly retrieve file data, an MPI
application is responsible for specifying the same data representation as was used to
create the file. (End of advice to users.)

“native” Data in this representation is stored in a file exactly as it is in memory. The ad-
vantage of this data representation is that data precision and I/O performance are not
lost in type conversions with a purely homogeneous environment. The disadvantage
is the loss of transparent interoperability within a heterogeneous MPI environment.

Advice to users. This data representation should only be used in a homogeneous
MPI environment, or when the MPI application is capable of performing the data
type conversions itself. (End of advice to users.)
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as both are highly machine dependent. However, transferring the bits of a file into and
out of the MPI environment (e.g., by writing a file to tape) is required to be supported
by all MPI implementations. In particular, an implementation must specify how familiar
operations similar to POSIX cp, rm, and mv can be performed on the file. Furthermore, it
is expected that the facility provided maintains the correspondence between absolute byte
offsets (e.g., after possible file structure conversion, the data bits at byte offset 102 in the
MPI environment are at byte offset 102 outside the MPI environment). As an example,
a simple off-line conversion utility that transfers and converts files between the native file
system and the MPI environment would suffice, provided it maintained the offset coherence
mentioned above. In a high-quality implementation of MPI, users will be able to manipulate
MPI files using the same or similar tools that the native file system offers for manipulating
its files.

The remaining aspect of file interoperability, converting between different machine
representations, is supported by the typing information specified in the etype and filetype.
This facility allows the information in files to be shared between any two applications,
regardless of whether they use MPI, and regardless of the machine architectures on which
they run.

MPI supports multiple data representations: “native,” “internal,” and “external32.”
An implementation may support additional data representations. MPI also supports user-
defined data representations (see Section 13.5.3, page 415). The “native” and “internal”
data representations are implementation dependent, while the “external32” representation
is common to all MPI implementations and facilitates file interoperability. The data repre-
sentation is specified in the datarep argument to MPI_FILE_SET_VIEW.

Advice to users. MPI is not guaranteed to retain knowledge of what data representa-
tion was used when a file is written. Therefore, to correctly retrieve file data, an MPI
application is responsible for specifying the same data representation as was used to
create the file. (End of advice to users.)

“native” Data in this representation is stored in a file exactly as it is in memory. The ad-
vantage of this data representation is that data precision and I/O performance are not
lost in type conversions with a purely homogeneous environment. The disadvantage
is the loss of transparent interoperability within a heterogeneous MPI environment.

Advice to users. This data representation should only be used in a homogeneous
MPI environment, or when the MPI application is capable of performing the data
type conversions itself. (End of advice to users.)
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Advice to implementors. When implementing read and write operations on
top of MPI message-passing, the message data should be typed as MPI_BYTE
to ensure that the message routines do not perform any type conversions on the
data. (End of advice to implementors.)

“internal” This data representation can be used for I/O operations in a homogeneous
or heterogeneous environment; the implementation will perform type conversions if
necessary. The implementation is free to store data in any format of its choice, with
the restriction that it will maintain constant extents for all predefined datatypes in any
one file. The environment in which the resulting file can be reused is implementation-
defined and must be documented by the implementation.

Rationale. This data representation allows the implementation to perform I/O
efficiently in a heterogeneous environment, though with implementation-defined
restrictions on how the file can be reused. (End of rationale.)

Advice to implementors. Since “external32” is a superset of the functionality
provided by “internal,” an implementation may choose to implement “internal”
as “external32.” (End of advice to implementors.)

“external32” This data representation states that read and write operations convert all
data from and to the “external32” representation defined in Section 13.5.2, page 414.
The data conversion rules for communication also apply to these conversions (see
Section 3.3.2, page 25-27, of the MPI-1 document). The data on the storage medium
is always in this canonical representation, and the data in memory is always in the
local process’s native representation.

This data representation has several advantages. First, all processes reading the file
in a heterogeneous MPI environment will automatically have the data converted to
their respective native representations. Second, the file can be exported from one MPI
environment and imported into any other MPI environment with the guarantee that
the second environment will be able to read all the data in the file.

The disadvantage of this data representation is that data precision and I/O perfor-
mance may be lost in data type conversions.

Advice to implementors. When implementing read and write operations on top
of MPI message-passing, the message data should be converted to and from the
“external32” representation in the client, and sent as type MPI_BYTE. This will
avoid possible double data type conversions and the associated further loss of
precision and performance. (End of advice to implementors.)

13.5.1 Datatypes for File Interoperability

If the file data representation is other than “native,” care must be taken in constructing
etypes and filetypes. Any of the datatype constructor functions may be used; however,
for those functions that accept displacements in bytes, the displacements must be specified
in terms of their values in the file for the file data representation being used. MPI will
interpret these byte displacements as is; no scaling will be done. The function
MPI_FILE_GET_TYPE_EXTENT can be used to calculate the extents of datatypes in the
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Advice to implementors. When implementing read and write operations on
top of MPI message-passing, the message data should be typed as MPI_BYTE
to ensure that the message routines do not perform any type conversions on the
data. (End of advice to implementors.)

“internal” This data representation can be used for I/O operations in a homogeneous
or heterogeneous environment; the implementation will perform type conversions if
necessary. The implementation is free to store data in any format of its choice, with
the restriction that it will maintain constant extents for all predefined datatypes in any
one file. The environment in which the resulting file can be reused is implementation-
defined and must be documented by the implementation.

Rationale. This data representation allows the implementation to perform I/O
efficiently in a heterogeneous environment, though with implementation-defined
restrictions on how the file can be reused. (End of rationale.)

Advice to implementors. Since “external32” is a superset of the functionality
provided by “internal,” an implementation may choose to implement “internal”
as “external32.” (End of advice to implementors.)

“external32” This data representation states that read and write operations convert all
data from and to the “external32” representation defined in Section 13.5.2, page 414.
The data conversion rules for communication also apply to these conversions (see
Section 3.3.2, page 25-27, of the MPI-1 document). The data on the storage medium
is always in this canonical representation, and the data in memory is always in the
local process’s native representation.

This data representation has several advantages. First, all processes reading the file
in a heterogeneous MPI environment will automatically have the data converted to
their respective native representations. Second, the file can be exported from one MPI
environment and imported into any other MPI environment with the guarantee that
the second environment will be able to read all the data in the file.

The disadvantage of this data representation is that data precision and I/O perfor-
mance may be lost in data type conversions.

Advice to implementors. When implementing read and write operations on top
of MPI message-passing, the message data should be converted to and from the
“external32” representation in the client, and sent as type MPI_BYTE. This will
avoid possible double data type conversions and the associated further loss of
precision and performance. (End of advice to implementors.)

13.5.1 Datatypes for File Interoperability

If the file data representation is other than “native,” care must be taken in constructing
etypes and filetypes. Any of the datatype constructor functions may be used; however,
for those functions that accept displacements in bytes, the displacements must be specified
in terms of their values in the file for the file data representation being used. MPI will
interpret these byte displacements as is; no scaling will be done. The function
MPI_FILE_GET_TYPE_EXTENT can be used to calculate the extents of datatypes in the
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file. For etypes and filetypes that are portable datatypes (see Section 2.4, page 11), MPI will
scale any displacements in the datatypes to match the file data representation. Datatypes
passed as arguments to read/write routines specify the data layout in memory; therefore,
they must always be constructed using displacements corresponding to displacements in
memory.

Advice to users. One can logically think of the file as if it were stored in the memory
of a file server. The etype and filetype are interpreted as if they were defined at this
file server, by the same sequence of calls used to define them at the calling process.
If the data representation is “native”, then this logical file server runs on the same
architecture as the calling process, so that these types define the same data layout
on the file as they would define in the memory of the calling process. If the etype
and filetype are portable datatypes, then the data layout defined in the file is the
same as would be defined in the calling process memory, up to a scaling factor. The
routine MPI_FILE_GET_FILE_EXTENT can be used to calculate this scaling factor.
Thus, two equivalent, portable datatypes will define the same data layout in the file,
even in a heterogeneous environment with “internal”, “external32”, or user defined
data representations. Otherwise, the etype and filetype must be constructed so that
their typemap and extent are the same on any architecture. This can be achieved if
they have an explicit upper bound and lower bound (defined either using MPI_LB and
MPI_UB markers, or using MPI_TYPE_CREATE_RESIZED). This condition must also
be fulfilled by any datatype that is used in the construction of the etype and filetype,
if this datatype is replicated contiguously, either explicitly, by a call to
MPI_TYPE_CONTIGUOUS, or implictly, by a blocklength argument that is greater
than one. If an etype or filetype is not portable, and has a typemap or extent that is
architecture dependent, then the data layout specified by it on a file is implementation
dependent.

File data representations other than “native” may be different from corresponding
data representations in memory. Therefore, for these file data representations, it is
important not to use hardwired byte offsets for file positioning, including the initial
displacement that specifies the view. When a portable datatype (see Section 2.4,
page 11) is used in a data access operation, any holes in the datatype are scaled to
match the data representation. However, note that this technique only works when
all the processes that created the file view build their etypes from the same predefined
datatypes. For example, if one process uses an etype built from MPI_INT and another
uses an etype built from MPI_FLOAT, the resulting views may be nonportable because
the relative sizes of these types may differ from one data representation to another.
(End of advice to users.)

MPI_FILE_GET_TYPE_EXTENT(fh, datatype, extent)

IN fh file handle (handle)

IN datatype datatype (handle)

OUT extent datatype extent (integer)
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file. For etypes and filetypes that are portable datatypes (see Section 2.4, page 11), MPI will
scale any displacements in the datatypes to match the file data representation. Datatypes
passed as arguments to read/write routines specify the data layout in memory; therefore,
they must always be constructed using displacements corresponding to displacements in
memory.

Advice to users. One can logically think of the file as if it were stored in the memory
of a file server. The etype and filetype are interpreted as if they were defined at this
file server, by the same sequence of calls used to define them at the calling process.
If the data representation is “native”, then this logical file server runs on the same
architecture as the calling process, so that these types define the same data layout
on the file as they would define in the memory of the calling process. If the etype
and filetype are portable datatypes, then the data layout defined in the file is the
same as would be defined in the calling process memory, up to a scaling factor. The
routine MPI_FILE_GET_FILE_EXTENT can be used to calculate this scaling factor.
Thus, two equivalent, portable datatypes will define the same data layout in the file,
even in a heterogeneous environment with “internal”, “external32”, or user defined
data representations. Otherwise, the etype and filetype must be constructed so that
their typemap and extent are the same on any architecture. This can be achieved if
they have an explicit upper bound and lower bound (defined either using MPI_LB and
MPI_UB markers, or using MPI_TYPE_CREATE_RESIZED). This condition must also
be fulfilled by any datatype that is used in the construction of the etype and filetype,
if this datatype is replicated contiguously, either explicitly, by a call to
MPI_TYPE_CONTIGUOUS, or implictly, by a blocklength argument that is greater
than one. If an etype or filetype is not portable, and has a typemap or extent that is
architecture dependent, then the data layout specified by it on a file is implementation
dependent.

File data representations other than “native” may be different from corresponding
data representations in memory. Therefore, for these file data representations, it is
important not to use hardwired byte offsets for file positioning, including the initial
displacement that specifies the view. When a portable datatype (see Section 2.4,
page 11) is used in a data access operation, any holes in the datatype are scaled to
match the data representation. However, note that this technique only works when
all the processes that created the file view build their etypes from the same predefined
datatypes. For example, if one process uses an etype built from MPI_INT and another
uses an etype built from MPI_FLOAT, the resulting views may be nonportable because
the relative sizes of these types may differ from one data representation to another.
(End of advice to users.)

MPI_FILE_GET_TYPE_EXTENT(fh, datatype, extent)

IN fh file handle (handle)

IN datatype datatype (handle)

OUT extent datatype extent (integer)
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int MPI_File_get_type_extent(MPI_File fh, MPI_Datatype datatype,

MPI_Aint *extent)

MPI_FILE_GET_TYPE_EXTENT(FH, DATATYPE, EXTENT, IERROR)

INTEGER FH, DATATYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTENT

MPI::Aint MPI::File::Get_type_extent(const MPI::Datatype& datatype) const

Returns the extent of datatype in the file fh. This extent will be the same for all
processes accessing the file fh. If the current view uses a user-defined data representation
(see Section 13.5.3, page 415), MPI uses the dtype_file_extent_fn callback to calculate the
extent.

Advice to implementors. In the case of user-defined data representations, the extent
of a derived datatype can be calculated by first determining the extents of the prede-
fined datatypes in this derived datatype using dtype_file_extent_fn (see Section 13.5.3,
page 415). (End of advice to implementors.)

13.5.2 External Data Representation: “external32”

All MPI implementations are required to support the data representation defined in this
section. Support of optional datatypes (e.g., MPI_INTEGER2) is not required.

All floating point values are in big-endian IEEE format [27] of the appropriate size.
Floating point values are represented by one of three IEEE formats. These are the IEEE
“Single,” “Double,” and “Double Extended” formats, requiring 4, 8 and 16 bytes of storage,
respectively. For the IEEE “Double Extended” formats, MPI specifies a Format Width of 16
bytes, with 15 exponent bits, bias = +16383, 112 fraction bits, and an encoding analogous
to the “Double” format. All integral values are in two’s complement big-endian format. Big-
endian means most significant byte at lowest address byte. For Fortran LOGICAL and C++
bool, 0 implies false and nonzero implies true. Fortran COMPLEX and DOUBLE COMPLEX are
represented by a pair of floating point format values for the real and imaginary components.
Characters are in ISO 8859-1 format [28]. Wide characters (of type MPI_WCHAR) are in
Unicode format [47].

All signed numerals (e.g., MPI_INT, MPI_REAL) have the sign bit at the most significant
bit. MPI_COMPLEX and MPI_DOUBLE_COMPLEX have the sign bit of the real and imaginary
parts at the most significant bit of each part.

According to IEEE specifications [27], the “NaN” (not a number) is system dependent.
It should not be interpreted within MPI as anything other than “NaN.”

Advice to implementors. The MPI treatment of “NaN” is similar to the approach used
in XDR (see ftp://ds.internic.net/rfc/rfc1832.txt). (End of advice to implementors.)

All data is byte aligned, regardless of type. All data items are stored contiguously in
the file (if the file view is contiguous).

Advice to implementors. All bytes of LOGICAL and bool must be checked to determine
the value. (End of advice to implementors.)

Advice to users. The type MPI_PACKED is treated as bytes and is not converted.
The user should be aware that MPI_PACK has the option of placing a header in the
beginning of the pack buffer. (End of advice to users.)
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int MPI_File_get_type_extent(MPI_File fh, MPI_Datatype datatype,

MPI_Aint *extent)

MPI_FILE_GET_TYPE_EXTENT(FH, DATATYPE, EXTENT, IERROR)

INTEGER FH, DATATYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTENT

MPI::Aint MPI::File::Get_type_extent(const MPI::Datatype& datatype) const

Returns the extent of datatype in the file fh. This extent will be the same for all
processes accessing the file fh. If the current view uses a user-defined data representation
(see Section 13.5.3, page 415), MPI uses the dtype_file_extent_fn callback to calculate the
extent.

Advice to implementors. In the case of user-defined data representations, the extent
of a derived datatype can be calculated by first determining the extents of the prede-
fined datatypes in this derived datatype using dtype_file_extent_fn (see Section 13.5.3,
page 415). (End of advice to implementors.)

13.5.2 External Data Representation: “external32”

All MPI implementations are required to support the data representation defined in this
section. Support of optional datatypes (e.g., MPI_INTEGER2) is not required.

All floating point values are in big-endian IEEE format [27] of the appropriate size.
Floating point values are represented by one of three IEEE formats. These are the IEEE
“Single,” “Double,” and “Double Extended” formats, requiring 4, 8 and 16 bytes of storage,
respectively. For the IEEE “Double Extended” formats, MPI specifies a Format Width of 16
bytes, with 15 exponent bits, bias = +16383, 112 fraction bits, and an encoding analogous
to the “Double” format. All integral values are in two’s complement big-endian format. Big-
endian means most significant byte at lowest address byte. For Fortran LOGICAL and C++
bool, 0 implies false and nonzero implies true. Fortran COMPLEX and DOUBLE COMPLEX are
represented by a pair of floating point format values for the real and imaginary components.
Characters are in ISO 8859-1 format [28]. Wide characters (of type MPI_WCHAR) are in
Unicode format [47].

All signed numerals (e.g., MPI_INT, MPI_REAL) have the sign bit at the most significant
bit. MPI_COMPLEX and MPI_DOUBLE_COMPLEX have the sign bit of the real and imaginary
parts at the most significant bit of each part.

According to IEEE specifications [27], the “NaN” (not a number) is system dependent.
It should not be interpreted within MPI as anything other than “NaN.”

Advice to implementors. The MPI treatment of “NaN” is similar to the approach used
in XDR (see ftp://ds.internic.net/rfc/rfc1832.txt). (End of advice to implementors.)

All data is byte aligned, regardless of type. All data items are stored contiguously in
the file (if the file view is contiguous).

Advice to implementors. All bytes of LOGICAL and bool must be checked to determine
the value. (End of advice to implementors.)

Advice to users. The type MPI_PACKED is treated as bytes and is not converted.
The user should be aware that MPI_PACK has the option of placing a header in the
beginning of the pack buffer. (End of advice to users.)
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The size of the predefined datatypes returned from MPI_TYPE_CREATE_F90_REAL,
MPI_TYPE_CREATE_F90_COMPLEX, and MPI_TYPE_CREATE_F90_INTEGER are defined
in Section 16.2.5, page 474.

Advice to implementors. When converting a larger size integer to a smaller size
integer, only the less significant bytes are moved. Care must be taken to preserve the
sign bit value. This allows no conversion errors if the data range is within the range
of the smaller size integer. (End of advice to implementors.)

Table 13.2 specifies the sizes of predefined datatypes in “external32” format.

13.5.3 User-Defined Data Representations

There are two situations that cannot be handled by the required representations:

1. a user wants to write a file in a representation unknown to the implementation, and

2. a user wants to read a file written in a representation unknown to the implementation.

User-defined data representations allow the user to insert a third party converter into
the I/O stream to do the data representation conversion.

MPI_REGISTER_DATAREP(datarep, read_conversion_fn, write_conversion_fn,
dtype_file_extent_fn, extra_state)

IN datarep data representation identifier (string)

IN read_conversion_fn function invoked to convert from file representation to

native representation (function)

IN write_conversion_fn function invoked to convert from native representation

to file representation (function)

IN dtype_file_extent_fn function invoked to get the extent of a datatype as

represented in the file (function)

IN extra_state extra state

int MPI_Register_datarep(char *datarep,

MPI_Datarep_conversion_function *read_conversion_fn,

MPI_Datarep_conversion_function *write_conversion_fn,

MPI_Datarep_extent_function *dtype_file_extent_fn,

void *extra_state)

MPI_REGISTER_DATAREP(DATAREP, READ_CONVERSION_FN, WRITE_CONVERSION_FN,

DTYPE_FILE_EXTENT_FN, EXTRA_STATE, IERROR)

CHARACTER*(*) DATAREP

EXTERNAL READ_CONVERSION_FN, WRITE_CONVERSION_FN, DTYPE_FILE_EXTENT_FN

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

INTEGER IERROR

void MPI::Register_datarep(const char* datarep,

MPI::Datarep_conversion_function* read_conversion_fn,
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Advice to implementors. When converting a larger size integer to a smaller size
integer, only the less significant bytes are moved. Care must be taken to preserve the
sign bit value. This allows no conversion errors if the data range is within the range
of the smaller size integer. (End of advice to implementors.)

Table 13.2 specifies the sizes of predefined datatypes in “external32” format.

13.5.3 User-Defined Data Representations

There are two situations that cannot be handled by the required representations:

1. a user wants to write a file in a representation unknown to the implementation, and

2. a user wants to read a file written in a representation unknown to the implementation.
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IN read_conversion_fn function invoked to convert from file representation to

native representation (function)
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to file representation (function)
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represented in the file (function)

IN extra_state extra state
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MPI_Datarep_conversion_function *write_conversion_fn,
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CHARACTER*(*) DATAREP

EXTERNAL READ_CONVERSION_FN, WRITE_CONVERSION_FN, DTYPE_FILE_EXTENT_FN
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Type Length

------------------ ------

MPI_PACKED 1

MPI_BYTE 1

MPI_CHAR 1

MPI_UNSIGNED_CHAR 1

MPI_SIGNED_CHAR 1

MPI_WCHAR 2

MPI_SHORT 2

MPI_UNSIGNED_SHORT 2

MPI_INT 4

MPI_UNSIGNED 4

MPI_LONG 4

MPI_UNSIGNED_LONG 4

MPI_LONG_LONG_INT 8

MPI_UNSIGNED_LONG_LONG 8

MPI_FLOAT 4

MPI_DOUBLE 8

MPI_LONG_DOUBLE 16

MPI_CHARACTER 1

MPI_LOGICAL 4

MPI_INTEGER 4

MPI_REAL 4

MPI_DOUBLE_PRECISION 8

MPI_COMPLEX 2*4

MPI_DOUBLE_COMPLEX 2*8

Optional Type Length

------------------ ------

MPI_INTEGER1 1

MPI_INTEGER2 2

MPI_INTEGER4 4

MPI_INTEGER8 8

MPI_REAL4 4

MPI_REAL8 8

MPI_REAL16 16

Table 13.2: “external32” sizes of predefined datatypes
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Type Length

------------------ ------

MPI_PACKED 1

MPI_BYTE 1

MPI_CHAR 1
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MPI_INT 4

MPI_UNSIGNED 4

MPI_LONG 4

MPI_UNSIGNED_LONG 4

MPI_LONG_LONG_INT 8

MPI_UNSIGNED_LONG_LONG 8

MPI_FLOAT 4

MPI_DOUBLE 8

MPI_LONG_DOUBLE 16

MPI_CHARACTER 1

MPI_LOGICAL 4

MPI_INTEGER 4

MPI_REAL 4

MPI_DOUBLE_PRECISION 8

MPI_COMPLEX 2*4

MPI_DOUBLE_COMPLEX 2*8

Optional Type Length

------------------ ------

MPI_INTEGER1 1

MPI_INTEGER2 2

MPI_INTEGER4 4

MPI_INTEGER8 8

MPI_REAL4 4

MPI_REAL8 8

MPI_REAL16 16
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MPI::Datarep_conversion_function* write_conversion_fn,

MPI::Datarep_extent_function* dtype_file_extent_fn,

void* extra_state)

The call associates read_conversion_fn, write_conversion_fn, and dtype_file_extent_fn
with the data representation identifier datarep. datarep can then be used as an argument
to MPI_FILE_SET_VIEW, causing subsequent data access operations to call the conversion
functions to convert all data items accessed between file data representation and native
representation. MPI_REGISTER_DATAREP is a local operation and only registers the data
representation for the calling MPI process. If datarep is already defined, an error in the
error class MPI_ERR_DUP_DATAREP is raised using the default file error handler (see Sec-
tion 13.7, page 429). The length of a data representation string is limited to the value of
MPI_MAX_DATAREP_STRING. MPI_MAX_DATAREP_STRING must have a value of at least 64.
No routines are provided to delete data representations and free the associated resources;
it is not expected that an application will generate them in significant numbers.

Extent Callback

typedef int MPI_Datarep_extent_function(MPI_Datatype datatype,

MPI_Aint *file_extent, void *extra_state);

SUBROUTINE DATAREP_EXTENT_FUNCTION(DATATYPE, EXTENT, EXTRA_STATE, IERROR)

INTEGER DATATYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTENT, EXTRA_STATE

typedef void MPI::Datarep_extent_function(const MPI::Datatype& datatype,

MPI::Aint& file_extent, void* extra_state);

The function dtype_file_extent_fn must return, in file_extent, the number of bytes re-
quired to store datatype in the file representation. The function is passed, in extra_state,
the argument that was passed to the MPI_REGISTER_DATAREP call. MPI will only call
this routine with predefined datatypes employed by the user.

Datarep Conversion Functions

typedef int MPI_Datarep_conversion_function(void *userbuf,

MPI_Datatype datatype, int count, void *filebuf,

MPI_Offset position, void *extra_state);

SUBROUTINE DATAREP_CONVERSION_FUNCTION(USERBUF, DATATYPE, COUNT, FILEBUF,

POSITION, EXTRA_STATE, IERROR)

<TYPE> USERBUF(*), FILEBUF(*)

INTEGER COUNT, DATATYPE, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) POSITION

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

typedef void MPI::Datarep_conversion_function(void* userbuf,

MPI::Datatype& datatype, int count, void* filebuf,

MPI::Offset position, void* extra_state);

The function read_conversion_fn must convert from file data representation to native
representation. Before calling this routine, MPI allocates and fills filebuf with
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MPI::Datarep_conversion_function* write_conversion_fn,

MPI::Datarep_extent_function* dtype_file_extent_fn,

void* extra_state)

The call associates read_conversion_fn, write_conversion_fn, and dtype_file_extent_fn
with the data representation identifier datarep. datarep can then be used as an argument
to MPI_FILE_SET_VIEW, causing subsequent data access operations to call the conversion
functions to convert all data items accessed between file data representation and native
representation. MPI_REGISTER_DATAREP is a local operation and only registers the data
representation for the calling MPI process. If datarep is already defined, an error in the
error class MPI_ERR_DUP_DATAREP is raised using the default file error handler (see Sec-
tion 13.7, page 429). The length of a data representation string is limited to the value of
MPI_MAX_DATAREP_STRING. MPI_MAX_DATAREP_STRING must have a value of at least 64.
No routines are provided to delete data representations and free the associated resources;
it is not expected that an application will generate them in significant numbers.

Extent Callback

typedef int MPI_Datarep_extent_function(MPI_Datatype datatype,

MPI_Aint *file_extent, void *extra_state);

SUBROUTINE DATAREP_EXTENT_FUNCTION(DATATYPE, EXTENT, EXTRA_STATE, IERROR)

INTEGER DATATYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTENT, EXTRA_STATE

typedef void MPI::Datarep_extent_function(const MPI::Datatype& datatype,

MPI::Aint& file_extent, void* extra_state);

The function dtype_file_extent_fn must return, in file_extent, the number of bytes re-
quired to store datatype in the file representation. The function is passed, in extra_state,
the argument that was passed to the MPI_REGISTER_DATAREP call. MPI will only call
this routine with predefined datatypes employed by the user.

Datarep Conversion Functions

typedef int MPI_Datarep_conversion_function(void *userbuf,

MPI_Datatype datatype, int count, void *filebuf,

MPI_Offset position, void *extra_state);

SUBROUTINE DATAREP_CONVERSION_FUNCTION(USERBUF, DATATYPE, COUNT, FILEBUF,

POSITION, EXTRA_STATE, IERROR)

<TYPE> USERBUF(*), FILEBUF(*)

INTEGER COUNT, DATATYPE, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) POSITION

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

typedef void MPI::Datarep_conversion_function(void* userbuf,

MPI::Datatype& datatype, int count, void* filebuf,

MPI::Offset position, void* extra_state);

The function read_conversion_fn must convert from file data representation to native
representation. Before calling this routine, MPI allocates and fills filebuf with
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count contiguous data items. The type of each data item matches the corresponding entry
for the predefined datatype in the type signature of datatype. The function is passed, in
extra_state, the argument that was passed to the MPI_REGISTER_DATAREP call. The
function must copy all count data items from filebuf to userbuf in the distribution described
by datatype, converting each data item from file representation to native representation.
datatype will be equivalent to the datatype that the user passed to the read function. If the
size of datatype is less than the size of the count data items, the conversion function must
treat datatype as being contiguously tiled over the userbuf. The conversion function must
begin storing converted data at the location in userbuf specified by position into the (tiled)
datatype.

Advice to users. Although the conversion functions have similarities to MPI_PACK
and MPI_UNPACK, one should note the differences in the use of the arguments count
and position. In the conversion functions, count is a count of data items (i.e., count
of typemap entries of datatype), and position is an index into this typemap. In
MPI_PACK, incount refers to the number of whole datatypes, and position is a number
of bytes. (End of advice to users.)

Advice to implementors. A converted read operation could be implemented as follows:

1. Get file extent of all data items

2. Allocate a filebuf large enough to hold all count data items

3. Read data from file into filebuf

4. Call read_conversion_fn to convert data and place it into userbuf

5. Deallocate filebuf

(End of advice to implementors.)

If MPI cannot allocate a buffer large enough to hold all the data to be converted from
a read operation, it may call the conversion function repeatedly using the same datatype
and userbuf, and reading successive chunks of data to be converted in filebuf. For the first
call (and in the case when all the data to be converted fits into filebuf), MPI will call the
function with position set to zero. Data converted during this call will be stored in the
userbuf according to the first count data items in datatype. Then in subsequent calls to the
conversion function, MPI will increment the value in position by the count of items converted
in the previous call, and the userbuf pointer will be unchanged.

Rationale. Passing the conversion function a position and one datatype for the
transfer allows the conversion function to decode the datatype only once and cache an
internal representation of it on the datatype. Then on subsequent calls, the conversion
function can use the position to quickly find its place in the datatype and continue
storing converted data where it left off at the end of the previous call. (End of
rationale.)

Advice to users. Although the conversion function may usefully cache an internal
representation on the datatype, it should not cache any state information specific to
an ongoing conversion operation, since it is possible for the same datatype to be used
concurrently in multiple conversion operations. (End of advice to users.)
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count contiguous data items. The type of each data item matches the corresponding entry
for the predefined datatype in the type signature of datatype. The function is passed, in
extra_state, the argument that was passed to the MPI_REGISTER_DATAREP call. The
function must copy all count data items from filebuf to userbuf in the distribution described
by datatype, converting each data item from file representation to native representation.
datatype will be equivalent to the datatype that the user passed to the read function. If the
size of datatype is less than the size of the count data items, the conversion function must
treat datatype as being contiguously tiled over the userbuf. The conversion function must
begin storing converted data at the location in userbuf specified by position into the (tiled)
datatype.

Advice to users. Although the conversion functions have similarities to MPI_PACK
and MPI_UNPACK, one should note the differences in the use of the arguments count
and position. In the conversion functions, count is a count of data items (i.e., count
of typemap entries of datatype), and position is an index into this typemap. In
MPI_PACK, incount refers to the number of whole datatypes, and position is a number
of bytes. (End of advice to users.)

Advice to implementors. A converted read operation could be implemented as follows:

1. Get file extent of all data items

2. Allocate a filebuf large enough to hold all count data items

3. Read data from file into filebuf

4. Call read_conversion_fn to convert data and place it into userbuf

5. Deallocate filebuf

(End of advice to implementors.)

If MPI cannot allocate a buffer large enough to hold all the data to be converted from
a read operation, it may call the conversion function repeatedly using the same datatype
and userbuf, and reading successive chunks of data to be converted in filebuf. For the first
call (and in the case when all the data to be converted fits into filebuf), MPI will call the
function with position set to zero. Data converted during this call will be stored in the
userbuf according to the first count data items in datatype. Then in subsequent calls to the
conversion function, MPI will increment the value in position by the count of items converted
in the previous call, and the userbuf pointer will be unchanged.

Rationale. Passing the conversion function a position and one datatype for the
transfer allows the conversion function to decode the datatype only once and cache an
internal representation of it on the datatype. Then on subsequent calls, the conversion
function can use the position to quickly find its place in the datatype and continue
storing converted data where it left off at the end of the previous call. (End of
rationale.)

Advice to users. Although the conversion function may usefully cache an internal
representation on the datatype, it should not cache any state information specific to
an ongoing conversion operation, since it is possible for the same datatype to be used
concurrently in multiple conversion operations. (End of advice to users.)
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The function write_conversion_fn must convert from native representation to file data
representation. Before calling this routine, MPI allocates filebuf of a size large enough to
hold count contiguous data items. The type of each data item matches the corresponding
entry for the predefined datatype in the type signature of datatype. The function must copy
count data items from userbuf in the distribution described by datatype, to a contiguous
distribution in filebuf, converting each data item from native representation to file repre-
sentation. If the size of datatype is less than the size of count data items, the conversion
function must treat datatype as being contiguously tiled over the userbuf.

The function must begin copying at the location in userbuf specified by position into
the (tiled) datatype. datatype will be equivalent to the datatype that the user passed to the
write function. The function is passed, in extra_state, the argument that was passed to the
MPI_REGISTER_DATAREP call.

The predefined constant MPI_CONVERSION_FN_NULL may be used as either
write_conversion_fn or read_conversion_fn. In that case, MPI will not attempt to invoke
write_conversion_fn or read_conversion_fn, respectively, but will perform the requested data
access using the native data representation.

An MPI implementation must ensure that all data accessed is converted, either by
using a filebuf large enough to hold all the requested data items or else by making repeated
calls to the conversion function with the same datatype argument and appropriate values
for position.

An implementation will only invoke the callback routines in this section
(read_conversion_fn, write_conversion_fn, and dtype_file_extent_fn) when one of the read or
write routines in Section 13.4, page 387, or MPI_FILE_GET_TYPE_EXTENT is called by
the user. dtype_file_extent_fn will only be passed predefined datatypes employed by the
user. The conversion functions will only be passed datatypes equivalent to those that the
user has passed to one of the routines noted above.

The conversion functions must be reentrant. User defined data representations are
restricted to use byte alignment for all types. Furthermore, it is erroneous for the conversion
functions to call any collective routines or to free datatype.

The conversion functions should return an error code. If the returned error code has
a value other than MPI_SUCCESS, the implementation will raise an error in the class
MPI_ERR_CONVERSION.

13.5.4 Matching Data Representations

It is the user’s responsibility to ensure that the data representation used to read data from
a file is compatible with the data representation that was used to write that data to the file.

In general, using the same data representation name when writing and reading a file
does not guarantee that the representation is compatible. Similarly, using different repre-
sentation names on two different implementations may yield compatible representations.

Compatibility can be obtained when “external32” representation is used, although
precision may be lost and the performance may be less than when “native” representation is
used. Compatibility is guaranteed using ”external32” provided at least one of the following
conditions is met.

• The data access routines directly use types enumerated in Section 13.5.2, page 414,
that are supported by all implementations participating in the I/O. The predefined
type used to write a data item must also be used to read a data item.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13.5. FILE INTEROPERABILITY 419

The function write_conversion_fn must convert from native representation to file data
representation. Before calling this routine, MPI allocates filebuf of a size large enough to
hold count contiguous data items. The type of each data item matches the corresponding
entry for the predefined datatype in the type signature of datatype. The function must copy
count data items from userbuf in the distribution described by datatype, to a contiguous
distribution in filebuf, converting each data item from native representation to file repre-
sentation. If the size of datatype is less than the size of count data items, the conversion
function must treat datatype as being contiguously tiled over the userbuf.

The function must begin copying at the location in userbuf specified by position into
the (tiled) datatype. datatype will be equivalent to the datatype that the user passed to the
write function. The function is passed, in extra_state, the argument that was passed to the
MPI_REGISTER_DATAREP call.

The predefined constant MPI_CONVERSION_FN_NULL may be used as either
write_conversion_fn or read_conversion_fn. In that case, MPI will not attempt to invoke
write_conversion_fn or read_conversion_fn, respectively, but will perform the requested data
access using the native data representation.

An MPI implementation must ensure that all data accessed is converted, either by
using a filebuf large enough to hold all the requested data items or else by making repeated
calls to the conversion function with the same datatype argument and appropriate values
for position.

An implementation will only invoke the callback routines in this section
(read_conversion_fn, write_conversion_fn, and dtype_file_extent_fn) when one of the read or
write routines in Section 13.4, page 387, or MPI_FILE_GET_TYPE_EXTENT is called by
the user. dtype_file_extent_fn will only be passed predefined datatypes employed by the
user. The conversion functions will only be passed datatypes equivalent to those that the
user has passed to one of the routines noted above.

The conversion functions must be reentrant. User defined data representations are
restricted to use byte alignment for all types. Furthermore, it is erroneous for the conversion
functions to call any collective routines or to free datatype.

The conversion functions should return an error code. If the returned error code has
a value other than MPI_SUCCESS, the implementation will raise an error in the class
MPI_ERR_CONVERSION.

13.5.4 Matching Data Representations

It is the user’s responsibility to ensure that the data representation used to read data from
a file is compatible with the data representation that was used to write that data to the file.

In general, using the same data representation name when writing and reading a file
does not guarantee that the representation is compatible. Similarly, using different repre-
sentation names on two different implementations may yield compatible representations.

Compatibility can be obtained when “external32” representation is used, although
precision may be lost and the performance may be less than when “native” representation is
used. Compatibility is guaranteed using ”external32” provided at least one of the following
conditions is met.

• The data access routines directly use types enumerated in Section 13.5.2, page 414,
that are supported by all implementations participating in the I/O. The predefined
type used to write a data item must also be used to read a data item.
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• In the case of Fortran 90 programs, the programs participating in the data accesses
obtain compatible datatypes using MPI routines that specify precision and/or range
(Section 16.2.5, page 470).

• For any given data item, the programs participating in the data accesses use compat-
ible predefined types to write and read the data item.

User-defined data representations may be used to provide an implementation compat-
iblity with another implementation’s “native” or “internal” representation.

Advice to users. Section 16.2.5, page 470, defines routines that support the use of
matching datatypes in heterogeneous environments and contains examples illustrating
their use. (End of advice to users.)

13.6 Consistency and Semantics

13.6.1 File Consistency

Consistency semantics define the outcome of multiple accesses to a single file. All file
accesses in MPI are relative to a specific file handle created from a collective open. MPI
provides three levels of consistency: sequential consistency among all accesses using a single
file handle, sequential consistency among all accesses using file handles created from a single
collective open with atomic mode enabled, and user-imposed consistency among accesses
other than the above. Sequential consistency means the behavior of a set of operations will
be as if the operations were performed in some serial order consistent with program order;
each access appears atomic, although the exact ordering of accesses is unspecified. User-
imposed consistency may be obtained using program order and calls to MPI_FILE_SYNC.

Let FH1 be the set of file handles created from one particular collective open of the
file FOO, and FH2 be the set of file handles created from a different collective open of
FOO. Note that nothing restrictive is said about FH1 and FH2: the sizes of FH1 and
FH2 may be different, the groups of processes used for each open may or may not intersect,
the file handles in FH1 may be destroyed before those in FH2 are created, etc. Consider
the following three cases: a single file handle (e.g., fh1 ∈ FH1), two file handles created
from a single collective open (e.g., fh1a ∈ FH1 and fh1b ∈ FH1), and two file handles from
different collective opens (e.g., fh1 ∈ FH1 and fh2 ∈ FH2).

For the purpose of consistency semantics, a matched pair (Section 13.4.5, page 404)
of split collective data access operations (e.g., MPI_FILE_READ_ALL_BEGIN and
MPI_FILE_READ_ALL_END) compose a single data access operation. Similarly, a non-
blocking data access routine (e.g., MPI_FILE_IREAD) and the routine which completes the
request (e.g., MPI_WAIT) also compose a single data access operation. For all cases below,
these data access operations are subject to the same constraints as blocking data access
operations.

Advice to users. For an MPI_FILE_IREAD and MPI_WAIT pair, the operation begins
when MPI_FILE_IREAD is called and ends when MPI_WAIT returns. (End of advice
to users.)

Assume that A1 and A2 are two data access operations. Let D1 (D2) be the set of
absolute byte displacements of every byte accessed in A1 (A2). The two data accesses

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

420 CHAPTER 13. I/O

• In the case of Fortran 90 programs, the programs participating in the data accesses
obtain compatible datatypes using MPI routines that specify precision and/or range
(Section 16.2.5, page 470).

• For any given data item, the programs participating in the data accesses use compat-
ible predefined types to write and read the data item.

User-defined data representations may be used to provide an implementation compat-
iblity with another implementation’s “native” or “internal” representation.

Advice to users. Section 16.2.5, page 470, defines routines that support the use of
matching datatypes in heterogeneous environments and contains examples illustrating
their use. (End of advice to users.)
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13.6.1 File Consistency

Consistency semantics define the outcome of multiple accesses to a single file. All file
accesses in MPI are relative to a specific file handle created from a collective open. MPI
provides three levels of consistency: sequential consistency among all accesses using a single
file handle, sequential consistency among all accesses using file handles created from a single
collective open with atomic mode enabled, and user-imposed consistency among accesses
other than the above. Sequential consistency means the behavior of a set of operations will
be as if the operations were performed in some serial order consistent with program order;
each access appears atomic, although the exact ordering of accesses is unspecified. User-
imposed consistency may be obtained using program order and calls to MPI_FILE_SYNC.

Let FH1 be the set of file handles created from one particular collective open of the
file FOO, and FH2 be the set of file handles created from a different collective open of
FOO. Note that nothing restrictive is said about FH1 and FH2: the sizes of FH1 and
FH2 may be different, the groups of processes used for each open may or may not intersect,
the file handles in FH1 may be destroyed before those in FH2 are created, etc. Consider
the following three cases: a single file handle (e.g., fh1 ∈ FH1), two file handles created
from a single collective open (e.g., fh1a ∈ FH1 and fh1b ∈ FH1), and two file handles from
different collective opens (e.g., fh1 ∈ FH1 and fh2 ∈ FH2).

For the purpose of consistency semantics, a matched pair (Section 13.4.5, page 404)
of split collective data access operations (e.g., MPI_FILE_READ_ALL_BEGIN and
MPI_FILE_READ_ALL_END) compose a single data access operation. Similarly, a non-
blocking data access routine (e.g., MPI_FILE_IREAD) and the routine which completes the
request (e.g., MPI_WAIT) also compose a single data access operation. For all cases below,
these data access operations are subject to the same constraints as blocking data access
operations.

Advice to users. For an MPI_FILE_IREAD and MPI_WAIT pair, the operation begins
when MPI_FILE_IREAD is called and ends when MPI_WAIT returns. (End of advice
to users.)

Assume that A1 and A2 are two data access operations. Let D1 (D2) be the set of
absolute byte displacements of every byte accessed in A1 (A2). The two data accesses
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overlap if D1 ∩ D2 6= ∅. The two data accesses conflict if they overlap and at least one is a
write access.

Let SEQfh be a sequence of file operations on a single file handle, bracketed by
MPI_FILE_SYNCs on that file handle. (Both opening and closing a file implicitly perform
an MPI_FILE_SYNC.) SEQfh is a “write sequence” if any of the data access operations in
the sequence are writes or if any of the file manipulation operations in the sequence change
the state of the file (e.g., MPI_FILE_SET_SIZE or MPI_FILE_PREALLOCATE). Given two
sequences, SEQ1 and SEQ2, we say they are not concurrent if one sequence is guaranteed
to completely precede the other (temporally).

The requirements for guaranteeing sequential consistency among all accesses to a par-
ticular file are divided into the three cases given below. If any of these requirements are
not met, then the value of all data in that file is implementation dependent.

Case 1: fh1 ∈ FH1 All operations on fh1 are sequentially consistent if atomic mode is
set. If nonatomic mode is set, then all operations on fh1 are sequentially consistent if they
are either nonconcurrent, nonconflicting, or both.

Case 2: fh1a ∈ FH1 and fh1b ∈ FH1 Assume A1 is a data access operation using fh1a,
and A2 is a data access operation using fh1b. If for any access A1, there is no access A2

that conflicts with A1, then MPI guarantees sequential consistency.
However, unlike POSIX semantics, the default MPI semantics for conflicting accesses

do not guarantee sequential consistency. If A1 and A2 conflict, sequential consistency can
be guaranteed by either enabling atomic mode via the MPI_FILE_SET_ATOMICITY routine,
or meeting the condition described in Case 3 below.

Case 3: fh1 ∈ FH1 and fh2 ∈ FH2 Consider access to a single file using file handles from
distinct collective opens. In order to guarantee sequential consistency, MPI_FILE_SYNC
must be used (both opening and closing a file implicitly perform an MPI_FILE_SYNC).

Sequential consistency is guaranteed among accesses to a single file if for any write
sequence SEQ1 to the file, there is no sequence SEQ2 to the file which is concurrent with
SEQ1. To guarantee sequential consistency when there are write sequences,
MPI_FILE_SYNC must be used together with a mechanism that guarantees nonconcurrency
of the sequences.

See the examples in Section 13.6.10, page 425, for further clarification of some of these
consistency semantics.

MPI_FILE_SET_ATOMICITY(fh, flag)

INOUT fh file handle (handle)

IN flag true to set atomic mode, false to set nonatomic mode

(logical)

int MPI_File_set_atomicity(MPI_File fh, int flag)

MPI_FILE_SET_ATOMICITY(FH, FLAG, IERROR)

INTEGER FH, IERROR

LOGICAL FLAG
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do not guarantee sequential consistency. If A1 and A2 conflict, sequential consistency can
be guaranteed by either enabling atomic mode via the MPI_FILE_SET_ATOMICITY routine,
or meeting the condition described in Case 3 below.
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must be used (both opening and closing a file implicitly perform an MPI_FILE_SYNC).
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SEQ1. To guarantee sequential consistency when there are write sequences,
MPI_FILE_SYNC must be used together with a mechanism that guarantees nonconcurrency
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See the examples in Section 13.6.10, page 425, for further clarification of some of these
consistency semantics.
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void MPI::File::Set_atomicity(bool flag)

Let FH be the set of file handles created by one collective open. The consistency
semantics for data access operations using FH is set by collectively calling
MPI_FILE_SET_ATOMICITY on FH. MPI_FILE_SET_ATOMICITY is collective; all pro-
cesses in the group must pass identical values for fh and flag. If flag is true, atomic mode is
set; if flag is false, nonatomic mode is set.

Changing the consistency semantics for an open file only affects new data accesses.
All completed data accesses are guaranteed to abide by the consistency semantics in effect
during their execution. Nonblocking data accesses and split collective operations that have
not completed (e.g., via MPI_WAIT) are only guaranteed to abide by nonatomic mode
consistency semantics.

Advice to implementors. Since the semantics guaranteed by atomic mode are stronger
than those guaranteed by nonatomic mode, an implementation is free to adhere to
the more stringent atomic mode semantics for outstanding requests. (End of advice
to implementors.)

MPI_FILE_GET_ATOMICITY(fh, flag)

IN fh file handle (handle)

OUT flag true if atomic mode, false if nonatomic mode (logical)

int MPI_File_get_atomicity(MPI_File fh, int *flag)

MPI_FILE_GET_ATOMICITY(FH, FLAG, IERROR)

INTEGER FH, IERROR

LOGICAL FLAG

bool MPI::File::Get_atomicity() const

MPI_FILE_GET_ATOMICITY returns the current consistency semantics for data access
operations on the set of file handles created by one collective open. If flag is true, atomic
mode is enabled; if flag is false, nonatomic mode is enabled.

MPI_FILE_SYNC(fh)

INOUT fh file handle (handle)

int MPI_File_sync(MPI_File fh)

MPI_FILE_SYNC(FH, IERROR)

INTEGER FH, IERROR

void MPI::File::Sync()

Calling MPI_FILE_SYNC with fh causes all previous writes to fh by the calling process
to be transferred to the storage device. If other processes have made updates to the storage
device, then all such updates become visible to subsequent reads of fh by the calling process.
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void MPI::File::Set_atomicity(bool flag)

Let FH be the set of file handles created by one collective open. The consistency
semantics for data access operations using FH is set by collectively calling
MPI_FILE_SET_ATOMICITY on FH. MPI_FILE_SET_ATOMICITY is collective; all pro-
cesses in the group must pass identical values for fh and flag. If flag is true, atomic mode is
set; if flag is false, nonatomic mode is set.

Changing the consistency semantics for an open file only affects new data accesses.
All completed data accesses are guaranteed to abide by the consistency semantics in effect
during their execution. Nonblocking data accesses and split collective operations that have
not completed (e.g., via MPI_WAIT) are only guaranteed to abide by nonatomic mode
consistency semantics.

Advice to implementors. Since the semantics guaranteed by atomic mode are stronger
than those guaranteed by nonatomic mode, an implementation is free to adhere to
the more stringent atomic mode semantics for outstanding requests. (End of advice
to implementors.)

MPI_FILE_GET_ATOMICITY(fh, flag)

IN fh file handle (handle)

OUT flag true if atomic mode, false if nonatomic mode (logical)

int MPI_File_get_atomicity(MPI_File fh, int *flag)

MPI_FILE_GET_ATOMICITY(FH, FLAG, IERROR)

INTEGER FH, IERROR

LOGICAL FLAG

bool MPI::File::Get_atomicity() const

MPI_FILE_GET_ATOMICITY returns the current consistency semantics for data access
operations on the set of file handles created by one collective open. If flag is true, atomic
mode is enabled; if flag is false, nonatomic mode is enabled.

MPI_FILE_SYNC(fh)

INOUT fh file handle (handle)

int MPI_File_sync(MPI_File fh)

MPI_FILE_SYNC(FH, IERROR)

INTEGER FH, IERROR

void MPI::File::Sync()

Calling MPI_FILE_SYNC with fh causes all previous writes to fh by the calling process
to be transferred to the storage device. If other processes have made updates to the storage
device, then all such updates become visible to subsequent reads of fh by the calling process.
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MPI_FILE_SYNC may be necessary to ensure sequential consistency in certain cases (see
above).

MPI_FILE_SYNC is a collective operation.
The user is responsible for ensuring that all nonblocking requests and split collective

operations on fh have been completed before calling MPI_FILE_SYNC—otherwise, the call
to MPI_FILE_SYNC is erroneous.

13.6.2 Random Access vs. Sequential Files

MPI distinguishes ordinary random access files from sequential stream files, such as pipes
and tape files. Sequential stream files must be opened with the MPI_MODE_SEQUENTIAL

flag set in the amode. For these files, the only permitted data access operations are shared
file pointer reads and writes. Filetypes and etypes with holes are erroneous. In addition, the
notion of file pointer is not meaningful; therefore, calls to MPI_FILE_SEEK_SHARED and
MPI_FILE_GET_POSITION_SHARED are erroneous, and the pointer update rules specified
for the data access routines do not apply. The amount of data accessed by a data access
operation will be the amount requested unless the end of file is reached or an error is raised.

Rationale. This implies that reading on a pipe will always wait until the requested
amount of data is available or until the process writing to the pipe has issued an end
of file. (End of rationale.)

Finally, for some sequential files, such as those corresponding to magnetic tapes or
streaming network connections, writes to the file may be destructive. In other words, a
write may act as a truncate (a MPI_FILE_SET_SIZE with size set to the current position)
followed by the write.

13.6.3 Progress

The progress rules of MPI are both a promise to users and a set of constraints on imple-
mentors. In cases where the progress rules restrict possible implementation choices more
than the interface specification alone, the progress rules take precedence.

All blocking routines must complete in finite time unless an exceptional condition (such
as resource exhaustion) causes an error.

Nonblocking data access routines inherit the following progress rule from nonblocking
point to point communication: a nonblocking write is equivalent to a nonblocking send for
which a receive is eventually posted, and a nonblocking read is equivalent to a nonblocking
receive for which a send is eventually posted.

Finally, an implementation is free to delay progress of collective routines until all pro-
cesses in the group associated with the collective call have invoked the routine. Once all
processes in the group have invoked the routine, the progress rule of the equivalent noncol-
lective routine must be followed.

13.6.4 Collective File Operations

Collective file operations are subject to the same restrictions as collective communication
operations. For a complete discussion, please refer to the semantics set forth in Section 5.12
on page 177.
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Rationale. This implies that reading on a pipe will always wait until the requested
amount of data is available or until the process writing to the pipe has issued an end
of file. (End of rationale.)

Finally, for some sequential files, such as those corresponding to magnetic tapes or
streaming network connections, writes to the file may be destructive. In other words, a
write may act as a truncate (a MPI_FILE_SET_SIZE with size set to the current position)
followed by the write.

13.6.3 Progress

The progress rules of MPI are both a promise to users and a set of constraints on imple-
mentors. In cases where the progress rules restrict possible implementation choices more
than the interface specification alone, the progress rules take precedence.

All blocking routines must complete in finite time unless an exceptional condition (such
as resource exhaustion) causes an error.

Nonblocking data access routines inherit the following progress rule from nonblocking
point to point communication: a nonblocking write is equivalent to a nonblocking send for
which a receive is eventually posted, and a nonblocking read is equivalent to a nonblocking
receive for which a send is eventually posted.

Finally, an implementation is free to delay progress of collective routines until all pro-
cesses in the group associated with the collective call have invoked the routine. Once all
processes in the group have invoked the routine, the progress rule of the equivalent noncol-
lective routine must be followed.

13.6.4 Collective File Operations

Collective file operations are subject to the same restrictions as collective communication
operations. For a complete discussion, please refer to the semantics set forth in Section 5.12
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Collective file operations are collective over a dup of the communicator used to open
the file—this duplicate communicator is implicitly specified via the file handle argument.
Different processes can pass different values for other arguments of a collective routine unless
specified otherwise.

13.6.5 Type Matching

The type matching rules for I/O mimic the type matching rules for communication with one
exception: if etype is MPI_BYTE, then this matches any datatype in a data access operation.
In general, the etype of data items written must match the etype used to read the items,
and for each data access operation, the current etype must also match the type declaration
of the data access buffer.

Advice to users. In most cases, use of MPI_BYTE as a wild card will defeat the
file interoperability features of MPI. File interoperability can only perform automatic
conversion between heterogeneous data representations when the exact datatypes ac-
cessed are explicitly specified. (End of advice to users.)

13.6.6 Miscellaneous Clarifications

Once an I/O routine completes, it is safe to free any opaque objects passed as arguments
to that routine. For example, the comm and info used in an MPI_FILE_OPEN, or the etype
and filetype used in an MPI_FILE_SET_VIEW, can be freed without affecting access to the
file. Note that for nonblocking routines and split collective operations, the operation must
be completed before it is safe to reuse data buffers passed as arguments.

As in communication, datatypes must be committed before they can be used in file
manipulation or data access operations. For example, the etype and filetype must be com-
mitted before calling MPI_FILE_SET_VIEW, and the datatype must be committed before
calling MPI_FILE_READ or MPI_FILE_WRITE.

13.6.7 MPI_Offset Type

MPI_Offset is an integer type of size sufficient to represent the size (in bytes) of the largest
file supported by MPI. Displacements and offsets are always specified as values of type
MPI_Offset.

In Fortran, the corresponding integer is an integer of kind MPI_OFFSET_KIND, defined
in mpif.h and the mpi module.

In Fortran 77 environments that do not support KIND parameters, MPI_Offset argu-
ments should be declared as an INTEGER of suitable size. The language interoperability
implications for MPI_Offset are similar to those for addresses (see Section 16.3, page 478).

13.6.8 Logical vs. Physical File Layout

MPI specifies how the data should be laid out in a virtual file structure (the view), not
how that file structure is to be stored on one or more disks. Specification of the physical
file structure was avoided because it is expected that the mapping of files to disks will be
system specific, and any specific control over file layout would therefore restrict program
portability. However, there are still cases where some information may be necessary to
optimize file layout. This information can be provided as hints specified via info when a file
is created (see Section 13.2.8, page 382).
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Collective file operations are collective over a dup of the communicator used to open
the file—this duplicate communicator is implicitly specified via the file handle argument.
Different processes can pass different values for other arguments of a collective routine unless
specified otherwise.

13.6.5 Type Matching

The type matching rules for I/O mimic the type matching rules for communication with one
exception: if etype is MPI_BYTE, then this matches any datatype in a data access operation.
In general, the etype of data items written must match the etype used to read the items,
and for each data access operation, the current etype must also match the type declaration
of the data access buffer.

Advice to users. In most cases, use of MPI_BYTE as a wild card will defeat the
file interoperability features of MPI. File interoperability can only perform automatic
conversion between heterogeneous data representations when the exact datatypes ac-
cessed are explicitly specified. (End of advice to users.)
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Once an I/O routine completes, it is safe to free any opaque objects passed as arguments
to that routine. For example, the comm and info used in an MPI_FILE_OPEN, or the etype
and filetype used in an MPI_FILE_SET_VIEW, can be freed without affecting access to the
file. Note that for nonblocking routines and split collective operations, the operation must
be completed before it is safe to reuse data buffers passed as arguments.

As in communication, datatypes must be committed before they can be used in file
manipulation or data access operations. For example, the etype and filetype must be com-
mitted before calling MPI_FILE_SET_VIEW, and the datatype must be committed before
calling MPI_FILE_READ or MPI_FILE_WRITE.

13.6.7 MPI_Offset Type

MPI_Offset is an integer type of size sufficient to represent the size (in bytes) of the largest
file supported by MPI. Displacements and offsets are always specified as values of type
MPI_Offset.

In Fortran, the corresponding integer is an integer of kind MPI_OFFSET_KIND, defined
in mpif.h and the mpi module.

In Fortran 77 environments that do not support KIND parameters, MPI_Offset argu-
ments should be declared as an INTEGER of suitable size. The language interoperability
implications for MPI_Offset are similar to those for addresses (see Section 16.3, page 478).

13.6.8 Logical vs. Physical File Layout

MPI specifies how the data should be laid out in a virtual file structure (the view), not
how that file structure is to be stored on one or more disks. Specification of the physical
file structure was avoided because it is expected that the mapping of files to disks will be
system specific, and any specific control over file layout would therefore restrict program
portability. However, there are still cases where some information may be necessary to
optimize file layout. This information can be provided as hints specified via info when a file
is created (see Section 13.2.8, page 382).
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13.6.9 File Size

The size of a file may be increased by writing to the file after the current end of file. The size
may also be changed by calling MPI size changing routines, such as MPI_FILE_SET_SIZE. A
call to a size changing routine does not necessarily change the file size. For example, calling
MPI_FILE_PREALLOCATE with a size less than the current size does not change the size.

Consider a set of bytes that has been written to a file since the most recent call to a
size changing routine, or since MPI_FILE_OPEN if no such routine has been called. Let the
high byte be the byte in that set with the largest displacement. The file size is the larger of

• One plus the displacement of the high byte.

• The size immediately after the size changing routine, or MPI_FILE_OPEN, returned.

When applying consistency semantics, calls to MPI_FILE_SET_SIZE and
MPI_FILE_PREALLOCATE are considered writes to the file (which conflict with operations
that access bytes at displacements between the old and new file sizes), and
MPI_FILE_GET_SIZE is considered a read of the file (which overlaps with all accesses to the
file).

Advice to users. Any sequence of operations containing the collective routines
MPI_FILE_SET_SIZE and MPI_FILE_PREALLOCATE is a write sequence. As such,
sequential consistency in nonatomic mode is not guaranteed unless the conditions in
Section 13.6.1, page 420, are satisfied. (End of advice to users.)

File pointer update semantics (i.e., file pointers are updated by the amount accessed)
are only guaranteed if file size changes are sequentially consistent.

Advice to users. Consider the following example. Given two operations made by
separate processes to a file containing 100 bytes: an MPI_FILE_READ of 10 bytes and
an MPI_FILE_SET_SIZE to 0 bytes. If the user does not enforce sequential consis-
tency between these two operations, the file pointer may be updated by the amount
requested (10 bytes) even if the amount accessed is zero bytes. (End of advice to
users.)

13.6.10 Examples

The examples in this section illustrate the application of the MPI consistency and semantics
guarantees. These address

• conflicting accesses on file handles obtained from a single collective open, and

• all accesses on file handles obtained from two separate collective opens.

The simplest way to achieve consistency for conflicting accesses is to obtain sequential
consistency by setting atomic mode. For the code below, process 1 will read either 0 or 10
integers. If the latter, every element of b will be 5. If nonatomic mode is set, the results of
the read are undefined.

/* Process 0 */

int i, a[10] ;

int TRUE = 1;
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• all accesses on file handles obtained from two separate collective opens.

The simplest way to achieve consistency for conflicting accesses is to obtain sequential
consistency by setting atomic mode. For the code below, process 1 will read either 0 or 10
integers. If the latter, every element of b will be 5. If nonatomic mode is set, the results of
the read are undefined.

/* Process 0 */

int i, a[10] ;

int TRUE = 1;
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for ( i=0;i<10;i++)

a[i] = 5 ;

MPI_File_open( MPI_COMM_WORLD, "workfile",

MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh0 ) ;

MPI_File_set_view( fh0, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;

MPI_File_set_atomicity( fh0, TRUE ) ;

MPI_File_write_at(fh0, 0, a, 10, MPI_INT, &status) ;

/* MPI_Barrier( MPI_COMM_WORLD ) ; */

/* Process 1 */

int b[10] ;

int TRUE = 1;

MPI_File_open( MPI_COMM_WORLD, "workfile",

MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh1 ) ;

MPI_File_set_view( fh1, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;

MPI_File_set_atomicity( fh1, TRUE ) ;

/* MPI_Barrier( MPI_COMM_WORLD ) ; */

MPI_File_read_at(fh1, 0, b, 10, MPI_INT, &status) ;

A user may guarantee that the write on process 0 precedes the read on process 1 by imposing
temporal order with, for example, calls to MPI_BARRIER.

Advice to users. Routines other than MPI_BARRIER may be used to impose temporal
order. In the example above, process 0 could use MPI_SEND to send a 0 byte message,
received by process 1 using MPI_RECV. (End of advice to users.)

Alternatively, a user can impose consistency with nonatomic mode set:

/* Process 0 */

int i, a[10] ;

for ( i=0;i<10;i++)

a[i] = 5 ;

MPI_File_open( MPI_COMM_WORLD, "workfile",

MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh0 ) ;

MPI_File_set_view( fh0, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;

MPI_File_write_at(fh0, 0, a, 10, MPI_INT, &status ) ;

MPI_File_sync( fh0 ) ;

MPI_Barrier( MPI_COMM_WORLD ) ;

MPI_File_sync( fh0 ) ;

/* Process 1 */

int b[10] ;

MPI_File_open( MPI_COMM_WORLD, "workfile",

MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh1 ) ;

MPI_File_set_view( fh1, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;

MPI_File_sync( fh1 ) ;
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for ( i=0;i<10;i++)

a[i] = 5 ;

MPI_File_open( MPI_COMM_WORLD, "workfile",

MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh0 ) ;

MPI_File_set_view( fh0, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;

MPI_File_set_atomicity( fh0, TRUE ) ;

MPI_File_write_at(fh0, 0, a, 10, MPI_INT, &status) ;

/* MPI_Barrier( MPI_COMM_WORLD ) ; */

/* Process 1 */

int b[10] ;

int TRUE = 1;

MPI_File_open( MPI_COMM_WORLD, "workfile",

MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh1 ) ;

MPI_File_set_view( fh1, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;

MPI_File_set_atomicity( fh1, TRUE ) ;

/* MPI_Barrier( MPI_COMM_WORLD ) ; */

MPI_File_read_at(fh1, 0, b, 10, MPI_INT, &status) ;

A user may guarantee that the write on process 0 precedes the read on process 1 by imposing
temporal order with, for example, calls to MPI_BARRIER.

Advice to users. Routines other than MPI_BARRIER may be used to impose temporal
order. In the example above, process 0 could use MPI_SEND to send a 0 byte message,
received by process 1 using MPI_RECV. (End of advice to users.)

Alternatively, a user can impose consistency with nonatomic mode set:

/* Process 0 */

int i, a[10] ;

for ( i=0;i<10;i++)

a[i] = 5 ;

MPI_File_open( MPI_COMM_WORLD, "workfile",

MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh0 ) ;

MPI_File_set_view( fh0, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;

MPI_File_write_at(fh0, 0, a, 10, MPI_INT, &status ) ;

MPI_File_sync( fh0 ) ;

MPI_Barrier( MPI_COMM_WORLD ) ;

MPI_File_sync( fh0 ) ;

/* Process 1 */

int b[10] ;

MPI_File_open( MPI_COMM_WORLD, "workfile",

MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh1 ) ;

MPI_File_set_view( fh1, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;

MPI_File_sync( fh1 ) ;
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MPI_Barrier( MPI_COMM_WORLD ) ;

MPI_File_sync( fh1 ) ;

MPI_File_read_at(fh1, 0, b, 10, MPI_INT, &status ) ;

The “sync-barrier-sync” construct is required because:

• The barrier ensures that the write on process 0 occurs before the read on process 1.

• The first sync guarantees that the data written by all processes is transferred to the
storage device.

• The second sync guarantees that all data which has been transferred to the storage
device is visible to all processes. (This does not affect process 0 in this example.)

The following program represents an erroneous attempt to achieve consistency by elim-
inating the apparently superfluous second “sync” call for each process.

/* ---------------- THIS EXAMPLE IS ERRONEOUS --------------- */

/* Process 0 */

int i, a[10] ;

for ( i=0;i<10;i++)

a[i] = 5 ;

MPI_File_open( MPI_COMM_WORLD, "workfile",

MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh0 ) ;

MPI_File_set_view( fh0, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;

MPI_File_write_at(fh0, 0, a, 10, MPI_INT, &status ) ;

MPI_File_sync( fh0 ) ;

MPI_Barrier( MPI_COMM_WORLD ) ;

/* Process 1 */

int b[10] ;

MPI_File_open( MPI_COMM_WORLD, "workfile",

MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh1 ) ;

MPI_File_set_view( fh1, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;

MPI_Barrier( MPI_COMM_WORLD ) ;

MPI_File_sync( fh1 ) ;

MPI_File_read_at(fh1, 0, b, 10, MPI_INT, &status ) ;

/* ---------------- THIS EXAMPLE IS ERRONEOUS --------------- */

The above program also violates the MPI rule against out-of-order collective operations and
will deadlock for implementations in which MPI_FILE_SYNC blocks.

Advice to users. Some implementations may choose to implement MPI_FILE_SYNC
as a temporally synchronizing function. When using such an implementation, the
“sync-barrier-sync” construct above can be replaced by a single “sync.” The results of
using such code with an implementation for which MPI_FILE_SYNC is not temporally
synchronizing is undefined. (End of advice to users.)
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MPI_Barrier( MPI_COMM_WORLD ) ;

MPI_File_sync( fh1 ) ;

MPI_File_read_at(fh1, 0, b, 10, MPI_INT, &status ) ;

The “sync-barrier-sync” construct is required because:

• The barrier ensures that the write on process 0 occurs before the read on process 1.

• The first sync guarantees that the data written by all processes is transferred to the
storage device.

• The second sync guarantees that all data which has been transferred to the storage
device is visible to all processes. (This does not affect process 0 in this example.)

The following program represents an erroneous attempt to achieve consistency by elim-
inating the apparently superfluous second “sync” call for each process.

/* ---------------- THIS EXAMPLE IS ERRONEOUS --------------- */

/* Process 0 */

int i, a[10] ;

for ( i=0;i<10;i++)

a[i] = 5 ;

MPI_File_open( MPI_COMM_WORLD, "workfile",

MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh0 ) ;

MPI_File_set_view( fh0, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;

MPI_File_write_at(fh0, 0, a, 10, MPI_INT, &status ) ;

MPI_File_sync( fh0 ) ;

MPI_Barrier( MPI_COMM_WORLD ) ;

/* Process 1 */

int b[10] ;

MPI_File_open( MPI_COMM_WORLD, "workfile",

MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh1 ) ;

MPI_File_set_view( fh1, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;

MPI_Barrier( MPI_COMM_WORLD ) ;

MPI_File_sync( fh1 ) ;

MPI_File_read_at(fh1, 0, b, 10, MPI_INT, &status ) ;

/* ---------------- THIS EXAMPLE IS ERRONEOUS --------------- */

The above program also violates the MPI rule against out-of-order collective operations and
will deadlock for implementations in which MPI_FILE_SYNC blocks.

Advice to users. Some implementations may choose to implement MPI_FILE_SYNC
as a temporally synchronizing function. When using such an implementation, the
“sync-barrier-sync” construct above can be replaced by a single “sync.” The results of
using such code with an implementation for which MPI_FILE_SYNC is not temporally
synchronizing is undefined. (End of advice to users.)
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Asynchronous I/O

The behavior of asynchronous I/O operations is determined by applying the rules specified
above for synchronous I/O operations.

The following examples all access a preexisting file “myfile.” Word 10 in myfile initially
contains the integer 2. Each example writes and reads word 10.

First consider the following code fragment:

int a = 4, b, TRUE=1;

MPI_File_open( MPI_COMM_WORLD, "myfile",

MPI_MODE_RDWR, MPI_INFO_NULL, &fh ) ;

MPI_File_set_view( fh, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;

/* MPI_File_set_atomicity( fh, TRUE ) ; Use this to set atomic mode. */

MPI_File_iwrite_at(fh, 10, &a, 1, MPI_INT, &reqs[0]) ;

MPI_File_iread_at(fh, 10, &b, 1, MPI_INT, &reqs[1]) ;

MPI_Waitall(2, reqs, statuses) ;

For asynchronous data access operations, MPI specifies that the access occurs at any time
between the call to the asynchronous data access routine and the return from the corre-
sponding request complete routine. Thus, executing either the read before the write, or the
write before the read is consistent with program order. If atomic mode is set, then MPI
guarantees sequential consistency, and the program will read either 2 or 4 into b. If atomic
mode is not set, then sequential consistency is not guaranteed and the program may read
something other than 2 or 4 due to the conflicting data access.

Similarly, the following code fragment does not order file accesses:

int a = 4, b;

MPI_File_open( MPI_COMM_WORLD, "myfile",

MPI_MODE_RDWR, MPI_INFO_NULL, &fh ) ;

MPI_File_set_view( fh, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;

/* MPI_File_set_atomicity( fh, TRUE ) ; Use this to set atomic mode. */

MPI_File_iwrite_at(fh, 10, &a, 1, MPI_INT, &reqs[0]) ;

MPI_File_iread_at(fh, 10, &b, 1, MPI_INT, &reqs[1]) ;

MPI_Wait(&reqs[0], &status) ;

MPI_Wait(&reqs[1], &status) ;

If atomic mode is set, either 2 or 4 will be read into b. Again, MPI does not guarantee
sequential consistency in nonatomic mode.

On the other hand, the following code fragment:

int a = 4, b;

MPI_File_open( MPI_COMM_WORLD, "myfile",

MPI_MODE_RDWR, MPI_INFO_NULL, &fh ) ;

MPI_File_set_view( fh, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;

MPI_File_iwrite_at(fh, 10, &a, 1, MPI_INT, &reqs[0]) ;

MPI_Wait(&reqs[0], &status) ;

MPI_File_iread_at(fh, 10, &b, 1, MPI_INT, &reqs[1]) ;

MPI_Wait(&reqs[1], &status) ;

defines the same ordering as:
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Asynchronous I/O

The behavior of asynchronous I/O operations is determined by applying the rules specified
above for synchronous I/O operations.

The following examples all access a preexisting file “myfile.” Word 10 in myfile initially
contains the integer 2. Each example writes and reads word 10.

First consider the following code fragment:

int a = 4, b, TRUE=1;

MPI_File_open( MPI_COMM_WORLD, "myfile",

MPI_MODE_RDWR, MPI_INFO_NULL, &fh ) ;

MPI_File_set_view( fh, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;

/* MPI_File_set_atomicity( fh, TRUE ) ; Use this to set atomic mode. */

MPI_File_iwrite_at(fh, 10, &a, 1, MPI_INT, &reqs[0]) ;

MPI_File_iread_at(fh, 10, &b, 1, MPI_INT, &reqs[1]) ;

MPI_Waitall(2, reqs, statuses) ;

For asynchronous data access operations, MPI specifies that the access occurs at any time
between the call to the asynchronous data access routine and the return from the corre-
sponding request complete routine. Thus, executing either the read before the write, or the
write before the read is consistent with program order. If atomic mode is set, then MPI
guarantees sequential consistency, and the program will read either 2 or 4 into b. If atomic
mode is not set, then sequential consistency is not guaranteed and the program may read
something other than 2 or 4 due to the conflicting data access.

Similarly, the following code fragment does not order file accesses:

int a = 4, b;

MPI_File_open( MPI_COMM_WORLD, "myfile",

MPI_MODE_RDWR, MPI_INFO_NULL, &fh ) ;

MPI_File_set_view( fh, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;

/* MPI_File_set_atomicity( fh, TRUE ) ; Use this to set atomic mode. */

MPI_File_iwrite_at(fh, 10, &a, 1, MPI_INT, &reqs[0]) ;

MPI_File_iread_at(fh, 10, &b, 1, MPI_INT, &reqs[1]) ;

MPI_Wait(&reqs[0], &status) ;

MPI_Wait(&reqs[1], &status) ;

If atomic mode is set, either 2 or 4 will be read into b. Again, MPI does not guarantee
sequential consistency in nonatomic mode.

On the other hand, the following code fragment:

int a = 4, b;

MPI_File_open( MPI_COMM_WORLD, "myfile",

MPI_MODE_RDWR, MPI_INFO_NULL, &fh ) ;

MPI_File_set_view( fh, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;

MPI_File_iwrite_at(fh, 10, &a, 1, MPI_INT, &reqs[0]) ;

MPI_Wait(&reqs[0], &status) ;

MPI_File_iread_at(fh, 10, &b, 1, MPI_INT, &reqs[1]) ;

MPI_Wait(&reqs[1], &status) ;

defines the same ordering as:
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int a = 4, b;

MPI_File_open( MPI_COMM_WORLD, "myfile",

MPI_MODE_RDWR, MPI_INFO_NULL, &fh ) ;

MPI_File_set_view( fh, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;

MPI_File_write_at(fh, 10, &a, 1, MPI_INT, &status ) ;

MPI_File_read_at(fh, 10, &b, 1, MPI_INT, &status ) ;

Since

• nonconcurrent operations on a single file handle are sequentially consistent, and

• the program fragments specify an order for the operations,

MPI guarantees that both program fragments will read the value 4 into b. There is no need
to set atomic mode for this example.

Similar considerations apply to conflicting accesses of the form:

MPI_File_write_all_begin(fh,...) ;

MPI_File_iread(fh,...) ;

MPI_Wait(fh,...) ;

MPI_File_write_all_end(fh,...) ;

Recall that constraints governing consistency and semantics are not relevant to the
following:

MPI_File_write_all_begin(fh,...) ;

MPI_File_read_all_begin(fh,...) ;

MPI_File_read_all_end(fh,...) ;

MPI_File_write_all_end(fh,...) ;

since split collective operations on the same file handle may not overlap (see Section 13.4.5,
page 404).

13.7 I/O Error Handling

By default, communication errors are fatal—MPI_ERRORS_ARE_FATAL is the default error
handler associated with MPI_COMM_WORLD. I/O errors are usually less catastrophic (e.g.,
“file not found”) than communication errors, and common practice is to catch these errors
and continue executing. For this reason, MPI provides additional error facilities for I/O.

Advice to users. MPI does not specify the state of a computation after an erroneous
MPI call has occurred. A high-quality implementation will support the I/O error
handling facilities, allowing users to write programs using common practice for I/O.
(End of advice to users.)

Like communicators, each file handle has an error handler associated with it. The MPI
I/O error handling routines are defined in Section 8.3, page 264.

When MPI calls a user-defined error handler resulting from an error on a particular
file handle, the first two arguments passed to the file error handler are the file handle and
the error code. For I/O errors that are not associated with a valid file handle (e.g., in
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int a = 4, b;

MPI_File_open( MPI_COMM_WORLD, "myfile",

MPI_MODE_RDWR, MPI_INFO_NULL, &fh ) ;

MPI_File_set_view( fh, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;

MPI_File_write_at(fh, 10, &a, 1, MPI_INT, &status ) ;

MPI_File_read_at(fh, 10, &b, 1, MPI_INT, &status ) ;

Since

• nonconcurrent operations on a single file handle are sequentially consistent, and

• the program fragments specify an order for the operations,

MPI guarantees that both program fragments will read the value 4 into b. There is no need
to set atomic mode for this example.

Similar considerations apply to conflicting accesses of the form:

MPI_File_write_all_begin(fh,...) ;

MPI_File_iread(fh,...) ;

MPI_Wait(fh,...) ;

MPI_File_write_all_end(fh,...) ;

Recall that constraints governing consistency and semantics are not relevant to the
following:

MPI_File_write_all_begin(fh,...) ;

MPI_File_read_all_begin(fh,...) ;

MPI_File_read_all_end(fh,...) ;

MPI_File_write_all_end(fh,...) ;

since split collective operations on the same file handle may not overlap (see Section 13.4.5,
page 404).

13.7 I/O Error Handling

By default, communication errors are fatal—MPI_ERRORS_ARE_FATAL is the default error
handler associated with MPI_COMM_WORLD. I/O errors are usually less catastrophic (e.g.,
“file not found”) than communication errors, and common practice is to catch these errors
and continue executing. For this reason, MPI provides additional error facilities for I/O.

Advice to users. MPI does not specify the state of a computation after an erroneous
MPI call has occurred. A high-quality implementation will support the I/O error
handling facilities, allowing users to write programs using common practice for I/O.
(End of advice to users.)

Like communicators, each file handle has an error handler associated with it. The MPI
I/O error handling routines are defined in Section 8.3, page 264.

When MPI calls a user-defined error handler resulting from an error on a particular
file handle, the first two arguments passed to the file error handler are the file handle and
the error code. For I/O errors that are not associated with a valid file handle (e.g., in
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MPI_FILE_OPEN or MPI_FILE_DELETE), the first argument passed to the error handler is
MPI_FILE_NULL,

I/O error handling differs from communication error handling in another important
aspect. By default, the predefined error handler for file handles is MPI_ERRORS_RETURN.
The default file error handler has two purposes: when a new file handle is created (by
MPI_FILE_OPEN), the error handler for the new file handle is initially set to the default
error handler, and I/O routines that have no valid file handle on which to raise an error (e.g.,
MPI_FILE_OPEN or MPI_FILE_DELETE) use the default file error handler. The default
file error handler can be changed by specifying MPI_FILE_NULL as the
fh argument to MPI_FILE_SET_ERRHANDLER. The current value of the default file error
handler can be determined by passing MPI_FILE_NULL as the fh argument to
MPI_FILE_GET_ERRHANDLER.

Rationale. For communication, the default error handler is inherited from
MPI_COMM_WORLD. In I/O, there is no analogous “root” file handle from which de-
fault properties can be inherited. Rather than invent a new global file handle, the
default file error handler is manipulated as if it were attached to MPI_FILE_NULL. (End
of rationale.)

13.8 I/O Error Classes

The implementation dependent error codes returned by the I/O routines can be converted
into the error classes defined in Table 13.3.

In addition, calls to routines in this chapter may raise errors in other MPI classes, such
as MPI_ERR_TYPE.

13.9 Examples

13.9.1 Double Buffering with Split Collective I/O

This example shows how to overlap computation and output. The computation is performed
by the function compute_buffer().

/*=========================================================================

*

* Function: double_buffer

*

* Synopsis:

* void double_buffer(

* MPI_File fh, ** IN

* MPI_Datatype buftype, ** IN

* int bufcount ** IN

* )

*

* Description:

* Performs the steps to overlap computation with a collective write

* by using a double-buffering technique.

*
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MPI_FILE_OPEN or MPI_FILE_DELETE), the first argument passed to the error handler is
MPI_FILE_NULL,

I/O error handling differs from communication error handling in another important
aspect. By default, the predefined error handler for file handles is MPI_ERRORS_RETURN.
The default file error handler has two purposes: when a new file handle is created (by
MPI_FILE_OPEN), the error handler for the new file handle is initially set to the default
error handler, and I/O routines that have no valid file handle on which to raise an error (e.g.,
MPI_FILE_OPEN or MPI_FILE_DELETE) use the default file error handler. The default
file error handler can be changed by specifying MPI_FILE_NULL as the
fh argument to MPI_FILE_SET_ERRHANDLER. The current value of the default file error
handler can be determined by passing MPI_FILE_NULL as the fh argument to
MPI_FILE_GET_ERRHANDLER.

Rationale. For communication, the default error handler is inherited from
MPI_COMM_WORLD. In I/O, there is no analogous “root” file handle from which de-
fault properties can be inherited. Rather than invent a new global file handle, the
default file error handler is manipulated as if it were attached to MPI_FILE_NULL. (End
of rationale.)

13.8 I/O Error Classes

The implementation dependent error codes returned by the I/O routines can be converted
into the error classes defined in Table 13.3.

In addition, calls to routines in this chapter may raise errors in other MPI classes, such
as MPI_ERR_TYPE.

13.9 Examples

13.9.1 Double Buffering with Split Collective I/O

This example shows how to overlap computation and output. The computation is performed
by the function compute_buffer().

/*=========================================================================

*

* Function: double_buffer

*

* Synopsis:

* void double_buffer(

* MPI_File fh, ** IN

* MPI_Datatype buftype, ** IN

* int bufcount ** IN

* )

*

* Description:

* Performs the steps to overlap computation with a collective write

* by using a double-buffering technique.

*
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MPI_ERR_FILE Invalid file handle
MPI_ERR_NOT_SAME Collective argument not identical on all

processes, or collective routines called in
a different order by different processes

MPI_ERR_AMODE Error related to the amode passed to
MPI_FILE_OPEN

MPI_ERR_UNSUPPORTED_DATAREP Unsupported datarep passed to
MPI_FILE_SET_VIEW

MPI_ERR_UNSUPPORTED_OPERATION Unsupported operation, such as seeking on
a file which supports sequential access only

MPI_ERR_NO_SUCH_FILE File does not exist
MPI_ERR_FILE_EXISTS File exists
MPI_ERR_BAD_FILE Invalid file name (e.g., path name too long)
MPI_ERR_ACCESS Permission denied
MPI_ERR_NO_SPACE Not enough space
MPI_ERR_QUOTA Quota exceeded
MPI_ERR_READ_ONLY Read-only file or file system
MPI_ERR_FILE_IN_USE File operation could not be completed, as

the file is currently open by some process
MPI_ERR_DUP_DATAREP Conversion functions could not be regis-

tered because a data representation identi-
fier that was already defined was passed to
MPI_REGISTER_DATAREP

MPI_ERR_CONVERSION An error occurred in a user supplied data
conversion function.

MPI_ERR_IO Other I/O error

Table 13.3: I/O Error Classes
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* Parameters:

* fh previously opened MPI file handle

* buftype MPI datatype for memory layout

* (Assumes a compatible view has been set on fh)

* bufcount # buftype elements to transfer

*------------------------------------------------------------------------*/

/* this macro switches which buffer "x" is pointing to */

#define TOGGLE_PTR(x) (((x)==(buffer1)) ? (x=buffer2) : (x=buffer1))

void double_buffer( MPI_File fh, MPI_Datatype buftype, int bufcount)

{

MPI_Status status; /* status for MPI calls */

float *buffer1, *buffer2; /* buffers to hold results */

float *compute_buf_ptr; /* destination buffer */

/* for computing */

float *write_buf_ptr; /* source for writing */

int done; /* determines when to quit */

/* buffer initialization */

buffer1 = (float *)

malloc(bufcount*sizeof(float)) ;

buffer2 = (float *)

malloc(bufcount*sizeof(float)) ;

compute_buf_ptr = buffer1 ; /* initially point to buffer1 */

write_buf_ptr = buffer1 ; /* initially point to buffer1 */

/* DOUBLE-BUFFER prolog:

* compute buffer1; then initiate writing buffer1 to disk

*/

compute_buffer(compute_buf_ptr, bufcount, &done);

MPI_File_write_all_begin(fh, write_buf_ptr, bufcount, buftype);

/* DOUBLE-BUFFER steady state:

* Overlap writing old results from buffer pointed to by write_buf_ptr

* with computing new results into buffer pointed to by compute_buf_ptr.

*

* There is always one write-buffer and one compute-buffer in use

* during steady state.

*/

while (!done) {

TOGGLE_PTR(compute_buf_ptr);

compute_buffer(compute_buf_ptr, bufcount, &done);

MPI_File_write_all_end(fh, write_buf_ptr, &status);

TOGGLE_PTR(write_buf_ptr);

MPI_File_write_all_begin(fh, write_buf_ptr, bufcount, buftype);
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}

/* DOUBLE-BUFFER epilog:

* wait for final write to complete.

*/

MPI_File_write_all_end(fh, write_buf_ptr, &status);

/* buffer cleanup */

free(buffer1);

free(buffer2);

}

13.9.2 Subarray Filetype Constructor

Process 0 Process 2

Process 1 Process 3

Figure 13.4: Example array file layout

HolesMPI_DOUBLE

Figure 13.5: Example local array filetype for process 1

Assume we are writing out a 100x100 2D array of double precision floating point num-
bers that is distributed among 4 processes such that each process has a block of 25 columns
(e.g., process 0 has columns 0-24, process 1 has columns 25-49, etc.; see Figure 13.4). To
create the filetypes for each process one could use the following C program (see Section 4.1.3
on page 87):
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}

/* DOUBLE-BUFFER epilog:

* wait for final write to complete.

*/

MPI_File_write_all_end(fh, write_buf_ptr, &status);

/* buffer cleanup */

free(buffer1);

free(buffer2);

}
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Assume we are writing out a 100x100 2D array of double precision floating point num-
bers that is distributed among 4 processes such that each process has a block of 25 columns
(e.g., process 0 has columns 0-24, process 1 has columns 25-49, etc.; see Figure 13.4). To
create the filetypes for each process one could use the following C program (see Section 4.1.3
on page 87):
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double subarray[100][25];

MPI_Datatype filetype;

int sizes[2], subsizes[2], starts[2];

int rank;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

sizes[0]=100; sizes[1]=100;

subsizes[0]=100; subsizes[1]=25;

starts[0]=0; starts[1]=rank*subsizes[1];

MPI_Type_create_subarray(2, sizes, subsizes, starts, MPI_ORDER_C,

MPI_DOUBLE, &filetype);

Or, equivalently in Fortran:

double precision subarray(100,25)

integer filetype, rank, ierror

integer sizes(2), subsizes(2), starts(2)

call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierror)

sizes(1)=100

sizes(2)=100

subsizes(1)=100

subsizes(2)=25

starts(1)=0

starts(2)=rank*subsizes(2)

call MPI_TYPE_CREATE_SUBARRAY(2, sizes, subsizes, starts, &

MPI_ORDER_FORTRAN, MPI_DOUBLE_PRECISION, &

filetype, ierror)

The generated filetype will then describe the portion of the file contained within the
process’s subarray with holes for the space taken by the other processes. Figure 13.5 shows
the filetype created for process 1.
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Chapter 14

Profiling Interface

14.1 Requirements

To meet the MPI profiling interface, an implementation of the MPI functions must

1. provide a mechanism through which all of the MPI defined functions except those
allowed as macros (See Section 2.6.5). This requires, in C and Fortran, an alternate
entry point name, with the prefix PMPI_ for each MPI function. The profiling interface
in C++ is described in Section 16.1.10. For routines implemented as macros, it is still
required that the PMPI_ version be supplied and work as expected, but it is not
possible to replace at link time the MPI_ version with a user-defined version.

2. ensure that those MPI functions that are not replaced may still be linked into an
executable image without causing name clashes.

3. document the implementation of different language bindings of the MPI interface if
they are layered on top of each other, so that the profiler developer knows whether
she must implement the profile interface for each binding, or can economise by imple-
menting it only for the lowest level routines.

4. where the implementation of different language bindings is done through a layered
approach (e.g. the Fortran binding is a set of “wrapper” functions that call the C
implementation), ensure that these wrapper functions are separable from the rest of
the library.

This separability is necessary to allow a separate profiling library to be correctly
implemented, since (at least with Unix linker semantics) the profiling library must
contain these wrapper functions if it is to perform as expected. This requirement
allows the person who builds the profiling library to extract these functions from the
original MPI library and add them into the profiling library without bringing along
any other unnecessary code.

5. provide a no-op routine MPI_PCONTROL in the MPI library.

14.2 Discussion

The objective of the MPI profiling interface is to ensure that it is relatively easy for authors
of profiling (and other similar) tools to interface their codes to MPI implementations on
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different machines.
Since MPI is a machine independent standard with many different implementations,

it is unreasonable to expect that the authors of profiling tools for MPI will have access to
the source code that implements MPI on any particular machine. It is therefore necessary
to provide a mechanism by which the implementors of such tools can collect whatever
performance information they wish without access to the underlying implementation.

We believe that having such an interface is important if MPI is to be attractive to end
users, since the availability of many different tools will be a significant factor in attracting
users to the MPI standard.

The profiling interface is just that, an interface. It says nothing about the way in which
it is used. There is therefore no attempt to lay down what information is collected through
the interface, or how the collected information is saved, filtered, or displayed.

While the initial impetus for the development of this interface arose from the desire to
permit the implementation of profiling tools, it is clear that an interface like that specified
may also prove useful for other purposes, such as “internetworking” multiple MPI imple-
mentations. Since all that is defined is an interface, there is no objection to its being used
wherever it is useful.

As the issues being addressed here are intimately tied up with the way in which ex-
ecutable images are built, which may differ greatly on different machines, the examples
given below should be treated solely as one way of implementing the objective of the MPI
profiling interface. The actual requirements made of an implementation are those detailed
in the Requirements section above, the whole of the rest of this chapter is only present as
justification and discussion of the logic for those requirements.

The examples below show one way in which an implementation could be constructed to
meet the requirements on a Unix system (there are doubtless others that would be equally
valid).

14.3 Logic of the Design

Provided that an MPI implementation meets the requirements above, it is possible for the
implementor of the profiling system to intercept all of the MPI calls that are made by
the user program. She can then collect whatever information she requires before calling
the underlying MPI implementation (through its name shifted entry points) to achieve the
desired effects.

14.3.1 Miscellaneous Control of Profiling

There is a clear requirement for the user code to be able to control the profiler dynamically
at run time. This is normally used for (at least) the purposes of

• Enabling and disabling profiling depending on the state of the calculation.

• Flushing trace buffers at non-critical points in the calculation

• Adding user events to a trace file.

These requirements are met by use of the MPI_PCONTROL.
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MPI_PCONTROL(level, . . . )

IN level Profiling level

int MPI_Pcontrol(const int level, ...)

MPI_PCONTROL(LEVEL)

INTEGER LEVEL, ...

void MPI::Pcontrol(const int level, ...)

MPI libraries themselves make no use of this routine, and simply return immediately
to the user code. However the presence of calls to this routine allows a profiling package to
be explicitly called by the user.

Since MPI has no control of the implementation of the profiling code, we are unable
to specify precisely the semantics that will be provided by calls to MPI_PCONTROL. This
vagueness extends to the number of arguments to the function, and their datatypes.

However to provide some level of portability of user codes to different profiling libraries,
we request the following meanings for certain values of level.

• level==0 Profiling is disabled.

• level==1 Profiling is enabled at a normal default level of detail.

• level==2 Profile buffers are flushed. (This may be a no-op in some profilers).

• All other values of level have profile library defined effects and additional arguments.

We also request that the default state after MPI_INIT has been called is for profiling
to be enabled at the normal default level. (i.e. as if MPI_PCONTROL had just been called
with the argument 1). This allows users to link with a profiling library and obtain profile
output without having to modify their source code at all.

The provision of MPI_PCONTROL as a no-op in the standard MPI library allows them
to modify their source code to obtain more detailed profiling information, but still be able
to link exactly the same code against the standard MPI library.

14.4 Examples

14.4.1 Profiler Implementation

Suppose that the profiler wishes to accumulate the total amount of data sent by the
MPI_SEND function, along with the total elapsed time spent in the function. This could
trivially be achieved thus

static int totalBytes;

static double totalTime;

int MPI_SEND(void * buffer, const int count, MPI_Datatype datatype,

int dest, int tag, MPI_comm comm)

{

double tstart = MPI_Wtime(); /* Pass on all the arguments */

int extent;
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MPI_PCONTROL(level, . . . )

IN level Profiling level

int MPI_Pcontrol(const int level, ...)

MPI_PCONTROL(LEVEL)

INTEGER LEVEL, ...

void MPI::Pcontrol(const int level, ...)

MPI libraries themselves make no use of this routine, and simply return immediately
to the user code. However the presence of calls to this routine allows a profiling package to
be explicitly called by the user.

Since MPI has no control of the implementation of the profiling code, we are unable
to specify precisely the semantics that will be provided by calls to MPI_PCONTROL. This
vagueness extends to the number of arguments to the function, and their datatypes.

However to provide some level of portability of user codes to different profiling libraries,
we request the following meanings for certain values of level.

• level==0 Profiling is disabled.

• level==1 Profiling is enabled at a normal default level of detail.

• level==2 Profile buffers are flushed. (This may be a no-op in some profilers).

• All other values of level have profile library defined effects and additional arguments.

We also request that the default state after MPI_INIT has been called is for profiling
to be enabled at the normal default level. (i.e. as if MPI_PCONTROL had just been called
with the argument 1). This allows users to link with a profiling library and obtain profile
output without having to modify their source code at all.

The provision of MPI_PCONTROL as a no-op in the standard MPI library allows them
to modify their source code to obtain more detailed profiling information, but still be able
to link exactly the same code against the standard MPI library.

14.4 Examples

14.4.1 Profiler Implementation

Suppose that the profiler wishes to accumulate the total amount of data sent by the
MPI_SEND function, along with the total elapsed time spent in the function. This could
trivially be achieved thus

static int totalBytes;

static double totalTime;

int MPI_SEND(void * buffer, const int count, MPI_Datatype datatype,

int dest, int tag, MPI_comm comm)

{

double tstart = MPI_Wtime(); /* Pass on all the arguments */

int extent;
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int result = PMPI_Send(buffer,count,datatype,dest,tag,comm);

MPI_Type_size(datatype, &extent); /* Compute size */

totalBytes += count*extent;

totalTime += MPI_Wtime() - tstart; /* and time */

return result;

}

14.4.2 MPI Library Implementation

On a Unix system, in which the MPI library is implemented in C, then there are various
possible options, of which two of the most obvious are presented here. Which is better
depends on whether the linker and compiler support weak symbols.

Systems with Weak Symbols

If the compiler and linker support weak external symbols (e.g. Solaris 2.x, other system
V.4 machines), then only a single library is required through the use of #pragma weak thus

#pragma weak MPI_Example = PMPI_Example

int PMPI_Example(/* appropriate args */)

{

/* Useful content */

}

The effect of this #pragma is to define the external symbol MPI_Example as a weak
definition. This means that the linker will not complain if there is another definition of the
symbol (for instance in the profiling library), however if no other definition exists, then the
linker will use the weak definition.

Systems Without Weak Symbols

In the absence of weak symbols then one possible solution would be to use the C macro
pre-processor thus

#ifdef PROFILELIB

# ifdef __STDC__

# define FUNCTION(name) P##name

# else

# define FUNCTION(name) P/**/name

# endif

#else

# define FUNCTION(name) name

#endif

Each of the user visible functions in the library would then be declared thus
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int result = PMPI_Send(buffer,count,datatype,dest,tag,comm);

MPI_Type_size(datatype, &extent); /* Compute size */

totalBytes += count*extent;

totalTime += MPI_Wtime() - tstart; /* and time */

return result;

}

14.4.2 MPI Library Implementation

On a Unix system, in which the MPI library is implemented in C, then there are various
possible options, of which two of the most obvious are presented here. Which is better
depends on whether the linker and compiler support weak symbols.

Systems with Weak Symbols

If the compiler and linker support weak external symbols (e.g. Solaris 2.x, other system
V.4 machines), then only a single library is required through the use of #pragma weak thus

#pragma weak MPI_Example = PMPI_Example

int PMPI_Example(/* appropriate args */)

{

/* Useful content */

}

The effect of this #pragma is to define the external symbol MPI_Example as a weak
definition. This means that the linker will not complain if there is another definition of the
symbol (for instance in the profiling library), however if no other definition exists, then the
linker will use the weak definition.

Systems Without Weak Symbols

In the absence of weak symbols then one possible solution would be to use the C macro
pre-processor thus

#ifdef PROFILELIB

# ifdef __STDC__

# define FUNCTION(name) P##name

# else

# define FUNCTION(name) P/**/name

# endif

#else

# define FUNCTION(name) name

#endif

Each of the user visible functions in the library would then be declared thus
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int FUNCTION(MPI_Example)(/* appropriate args */)

{

/* Useful content */

}

The same source file can then be compiled to produce both versions of the library,
depending on the state of the PROFILELIB macro symbol.

It is required that the standard MPI library be built in such a way that the inclusion of
MPI functions can be achieved one at a time. This is a somewhat unpleasant requirement,
since it may mean that each external function has to be compiled from a separate file.
However this is necessary so that the author of the profiling library need only define those
MPI functions that she wishes to intercept, references to any others being fulfilled by the
normal MPI library. Therefore the link step can look something like this

% cc ... -lmyprof -lpmpi -lmpi

Here libmyprof.a contains the profiler functions that intercept some of the MPI func-
tions. libpmpi.a contains the “name shifted” MPI functions, and libmpi.a contains the
normal definitions of the MPI functions.

14.4.3 Complications

Multiple Counting

Since parts of the MPI library may themselves be implemented using more basic MPI func-
tions (e.g. a portable implementation of the collective operations implemented using point
to point communications), there is potential for profiling functions to be called from within
an MPI function that was called from a profiling function. This could lead to “double
counting” of the time spent in the inner routine. Since this effect could actually be useful
under some circumstances (e.g. it might allow one to answer the question “How much time
is spent in the point to point routines when they’re called from collective functions ?”), we
have decided not to enforce any restrictions on the author of the MPI library that would
overcome this. Therefore the author of the profiling library should be aware of this problem,
and guard against it herself. In a single threaded world this is easily achieved through use
of a static variable in the profiling code that remembers if you are already inside a profiling
routine. It becomes more complex in a multi-threaded environment (as does the meaning
of the times recorded !)

Linker Oddities

The Unix linker traditionally operates in one pass : the effect of this is that functions from
libraries are only included in the image if they are needed at the time the library is scanned.
When combined with weak symbols, or multiple definitions of the same function, this can
cause odd (and unexpected) effects.

Consider, for instance, an implementation of MPI in which the Fortran binding is
achieved by using wrapper functions on top of the C implementation. The author of the
profile library then assumes that it is reasonable only to provide profile functions for the C
binding, since Fortran will eventually call these, and the cost of the wrappers is assumed
to be small. However, if the wrapper functions are not in the profiling library, then none
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int FUNCTION(MPI_Example)(/* appropriate args */)

{

/* Useful content */

}

The same source file can then be compiled to produce both versions of the library,
depending on the state of the PROFILELIB macro symbol.

It is required that the standard MPI library be built in such a way that the inclusion of
MPI functions can be achieved one at a time. This is a somewhat unpleasant requirement,
since it may mean that each external function has to be compiled from a separate file.
However this is necessary so that the author of the profiling library need only define those
MPI functions that she wishes to intercept, references to any others being fulfilled by the
normal MPI library. Therefore the link step can look something like this

% cc ... -lmyprof -lpmpi -lmpi

Here libmyprof.a contains the profiler functions that intercept some of the MPI func-
tions. libpmpi.a contains the “name shifted” MPI functions, and libmpi.a contains the
normal definitions of the MPI functions.

14.4.3 Complications

Multiple Counting

Since parts of the MPI library may themselves be implemented using more basic MPI func-
tions (e.g. a portable implementation of the collective operations implemented using point
to point communications), there is potential for profiling functions to be called from within
an MPI function that was called from a profiling function. This could lead to “double
counting” of the time spent in the inner routine. Since this effect could actually be useful
under some circumstances (e.g. it might allow one to answer the question “How much time
is spent in the point to point routines when they’re called from collective functions ?”), we
have decided not to enforce any restrictions on the author of the MPI library that would
overcome this. Therefore the author of the profiling library should be aware of this problem,
and guard against it herself. In a single threaded world this is easily achieved through use
of a static variable in the profiling code that remembers if you are already inside a profiling
routine. It becomes more complex in a multi-threaded environment (as does the meaning
of the times recorded !)

Linker Oddities

The Unix linker traditionally operates in one pass : the effect of this is that functions from
libraries are only included in the image if they are needed at the time the library is scanned.
When combined with weak symbols, or multiple definitions of the same function, this can
cause odd (and unexpected) effects.

Consider, for instance, an implementation of MPI in which the Fortran binding is
achieved by using wrapper functions on top of the C implementation. The author of the
profile library then assumes that it is reasonable only to provide profile functions for the C
binding, since Fortran will eventually call these, and the cost of the wrappers is assumed
to be small. However, if the wrapper functions are not in the profiling library, then none
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of the profiled entry points will be undefined when the profiling library is called. Therefore
none of the profiling code will be included in the image. When the standard MPI library
is scanned, the Fortran wrappers will be resolved, and will also pull in the base versions of
the MPI functions. The overall effect is that the code will link successfully, but will not be
profiled.

To overcome this we must ensure that the Fortran wrapper functions are included in
the profiling version of the library. We ensure that this is possible by requiring that these
be separable from the rest of the base MPI library. This allows them to be ared out of the
base library and into the profiling one.

14.5 Multiple Levels of Interception

The scheme given here does not directly support the nesting of profiling functions, since it
provides only a single alternative name for each MPI function. Consideration was given to
an implementation that would allow multiple levels of call interception, however we were
unable to construct an implementation of this that did not have the following disadvantages

• assuming a particular implementation language.

• imposing a run time cost even when no profiling was taking place.

Since one of the objectives of MPI is to permit efficient, low latency implementations, and
it is not the business of a standard to require a particular implementation language, we
decided to accept the scheme outlined above.

Note, however, that it is possible to use the scheme above to implement a multi-level
system, since the function called by the user may call many different profiling functions
before calling the underlying MPI function.

Unfortunately such an implementation may require more cooperation between the dif-
ferent profiling libraries than is required for the single level implementation detailed above.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

440 CHAPTER 14. PROFILING INTERFACE

of the profiled entry points will be undefined when the profiling library is called. Therefore
none of the profiling code will be included in the image. When the standard MPI library
is scanned, the Fortran wrappers will be resolved, and will also pull in the base versions of
the MPI functions. The overall effect is that the code will link successfully, but will not be
profiled.

To overcome this we must ensure that the Fortran wrapper functions are included in
the profiling version of the library. We ensure that this is possible by requiring that these
be separable from the rest of the base MPI library. This allows them to be ared out of the
base library and into the profiling one.

14.5 Multiple Levels of Interception

The scheme given here does not directly support the nesting of profiling functions, since it
provides only a single alternative name for each MPI function. Consideration was given to
an implementation that would allow multiple levels of call interception, however we were
unable to construct an implementation of this that did not have the following disadvantages

• assuming a particular implementation language.

• imposing a run time cost even when no profiling was taking place.

Since one of the objectives of MPI is to permit efficient, low latency implementations, and
it is not the business of a standard to require a particular implementation language, we
decided to accept the scheme outlined above.

Note, however, that it is possible to use the scheme above to implement a multi-level
system, since the function called by the user may call many different profiling functions
before calling the underlying MPI function.

Unfortunately such an implementation may require more cooperation between the dif-
ferent profiling libraries than is required for the single level implementation detailed above.
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Chapter 15

Deprecated Functions

15.1 Deprecated since MPI-2.0

The following function is deprecated and is superseded by MPI_TYPE_CREATE_HVECTOR
in MPI-2.0. The language independent definition and the C binding of the deprecated
function is the same as of the new function, except of the function name. Only the Fortran
language binding is different.

MPI_TYPE_HVECTOR( count, blocklength, stride, oldtype, newtype)

IN count number of blocks (nonnegative integer)

IN blocklength number of elements in each block (nonnegative inte-

ger)

IN stride number of bytes between start of each block (integer)

IN oldtype old datatype (handle)

OUT newtype new datatype (handle)

int MPI_Type_hvector(int count, int blocklength, MPI_Aint stride,

MPI_Datatype oldtype, MPI_Datatype *newtype)

MPI_TYPE_HVECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR

The following function is deprecated and is superseded by
MPI_TYPE_CREATE_HINDEXED in MPI-2.0. The language independent definition and
the C binding of the deprecated function is the same as of the new function, except of the
function name. Only the Fortran language binding is different.
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Chapter 15

Deprecated Functions

15.1 Deprecated since MPI-2.0

The following function is deprecated and is superseded by MPI_TYPE_CREATE_HVECTOR
in MPI-2.0. The language independent definition and the C binding of the deprecated
function is the same as of the new function, except of the function name. Only the Fortran
language binding is different.

MPI_TYPE_HVECTOR( count, blocklength, stride, oldtype, newtype)

IN count number of blocks (nonnegative integer)

IN blocklength number of elements in each block (nonnegative inte-

ger)

IN stride number of bytes between start of each block (integer)

IN oldtype old datatype (handle)

OUT newtype new datatype (handle)

int MPI_Type_hvector(int count, int blocklength, MPI_Aint stride,

MPI_Datatype oldtype, MPI_Datatype *newtype)

MPI_TYPE_HVECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR

The following function is deprecated and is superseded by
MPI_TYPE_CREATE_HINDEXED in MPI-2.0. The language independent definition and
the C binding of the deprecated function is the same as of the new function, except of the
function name. Only the Fortran language binding is different.
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MPI_TYPE_HINDEXED( count, array_of_blocklengths, array_of_displacements, oldtype, new-
type)

IN count number of blocks – also number of entries in

array_of_displacements and array_of_blocklengths (non-

negative integer)

IN array_of_blocklengths number of elements in each block (array of nonnega-

tive integers)

IN array_of_displacements byte displacement of each block (array of integer)

IN oldtype old datatype (handle)

OUT newtype new datatype (handle)

int MPI_Type_hindexed(int count, int *array_of_blocklengths,

MPI_Aint *array_of_displacements, MPI_Datatype oldtype,

MPI_Datatype *newtype)

MPI_TYPE_HINDEXED(COUNT, ARRAY_OF_BLOCKLENGTHS, ARRAY_OF_DISPLACEMENTS,

OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_DISPLACEMENTS(*),

OLDTYPE, NEWTYPE, IERROR

The following function is deprecated and is superseded by
MPI_TYPE_CREATE_STRUCT in MPI-2.0. The language independent definition and the C
binding of the deprecated function is the same as of the new function, except of the function
name. Only the Fortran language binding is different.

MPI_TYPE_STRUCT(count, array_of_blocklengths, array_of_displacements, array_of_types,
newtype)

IN count number of blocks (integer) (nonnegative integer) – also

number of entries in arrays array_of_types,

array_of_displacements and array_of_blocklengths

IN array_of_blocklength number of elements in each block (array of nonnega-

tive integer)

IN array_of_displacements byte displacement of each block (array of integer)

IN array_of_types type of elements in each block (array of handles to

datatype objects)

OUT newtype new datatype (handle)

int MPI_Type_struct(int count, int *array_of_blocklengths,

MPI_Aint *array_of_displacements,

MPI_Datatype *array_of_types, MPI_Datatype *newtype)

MPI_TYPE_STRUCT(COUNT, ARRAY_OF_BLOCKLENGTHS, ARRAY_OF_DISPLACEMENTS,

ARRAY_OF_TYPES, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_DISPLACEMENTS(*),

ARRAY_OF_TYPES(*), NEWTYPE, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

442 CHAPTER 15. DEPRECATED FUNCTIONS

MPI_TYPE_HINDEXED( count, array_of_blocklengths, array_of_displacements, oldtype, new-
type)

IN count number of blocks – also number of entries in

array_of_displacements and array_of_blocklengths (non-

negative integer)

IN array_of_blocklengths number of elements in each block (array of nonnega-

tive integers)

IN array_of_displacements byte displacement of each block (array of integer)

IN oldtype old datatype (handle)

OUT newtype new datatype (handle)

int MPI_Type_hindexed(int count, int *array_of_blocklengths,

MPI_Aint *array_of_displacements, MPI_Datatype oldtype,

MPI_Datatype *newtype)

MPI_TYPE_HINDEXED(COUNT, ARRAY_OF_BLOCKLENGTHS, ARRAY_OF_DISPLACEMENTS,

OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_DISPLACEMENTS(*),

OLDTYPE, NEWTYPE, IERROR

The following function is deprecated and is superseded by
MPI_TYPE_CREATE_STRUCT in MPI-2.0. The language independent definition and the C
binding of the deprecated function is the same as of the new function, except of the function
name. Only the Fortran language binding is different.

MPI_TYPE_STRUCT(count, array_of_blocklengths, array_of_displacements, array_of_types,
newtype)

IN count number of blocks (integer) (nonnegative integer) – also

number of entries in arrays array_of_types,

array_of_displacements and array_of_blocklengths

IN array_of_blocklength number of elements in each block (array of nonnega-

tive integer)

IN array_of_displacements byte displacement of each block (array of integer)

IN array_of_types type of elements in each block (array of handles to

datatype objects)

OUT newtype new datatype (handle)

int MPI_Type_struct(int count, int *array_of_blocklengths,

MPI_Aint *array_of_displacements,

MPI_Datatype *array_of_types, MPI_Datatype *newtype)

MPI_TYPE_STRUCT(COUNT, ARRAY_OF_BLOCKLENGTHS, ARRAY_OF_DISPLACEMENTS,

ARRAY_OF_TYPES, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_DISPLACEMENTS(*),

ARRAY_OF_TYPES(*), NEWTYPE, IERROR
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The following function is deprecated and is superseded by MPI_GET_ADDRESS in MPI-
2.0. The language independent definition and the C binding of the deprecated function is
the same as of the new function, except of the function name. Only the Fortran language
binding is different.

MPI_ADDRESS(location, address)

IN location location in caller memory (choice)

OUT address address of location (integer)

int MPI_Address(void* location, MPI_Aint *address)

MPI_ADDRESS(LOCATION, ADDRESS, IERROR)

<type> LOCATION(*)

INTEGER ADDRESS, IERROR

The following functions are deprecated and are superseded by
MPI_TYPE_GET_EXTENT in MPI-2.0.

MPI_TYPE_EXTENT(datatype, extent)

IN datatype datatype (handle)

OUT extent datatype extent (integer)

int MPI_Type_extent(MPI_Datatype datatype, MPI_Aint *extent)

MPI_TYPE_EXTENT(DATATYPE, EXTENT, IERROR)

INTEGER DATATYPE, EXTENT, IERROR

Returns the extent of a datatype, where extent is as defined on page 96.
The two functions below can be used for finding the lower bound and the upper bound

of a datatype.

MPI_TYPE_LB( datatype, displacement)

IN datatype datatype (handle)

OUT displacement displacement of lower bound from origin, in bytes (in-

teger)

int MPI_Type_lb(MPI_Datatype datatype, MPI_Aint* displacement)

MPI_TYPE_LB( DATATYPE, DISPLACEMENT, IERROR)

INTEGER DATATYPE, DISPLACEMENT, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

15.1. DEPRECATED SINCE MPI-2.0 443

The following function is deprecated and is superseded by MPI_GET_ADDRESS in MPI-
2.0. The language independent definition and the C binding of the deprecated function is
the same as of the new function, except of the function name. Only the Fortran language
binding is different.

MPI_ADDRESS(location, address)

IN location location in caller memory (choice)

OUT address address of location (integer)

int MPI_Address(void* location, MPI_Aint *address)

MPI_ADDRESS(LOCATION, ADDRESS, IERROR)

<type> LOCATION(*)

INTEGER ADDRESS, IERROR

The following functions are deprecated and are superseded by
MPI_TYPE_GET_EXTENT in MPI-2.0.

MPI_TYPE_EXTENT(datatype, extent)

IN datatype datatype (handle)

OUT extent datatype extent (integer)

int MPI_Type_extent(MPI_Datatype datatype, MPI_Aint *extent)

MPI_TYPE_EXTENT(DATATYPE, EXTENT, IERROR)

INTEGER DATATYPE, EXTENT, IERROR

Returns the extent of a datatype, where extent is as defined on page 96.
The two functions below can be used for finding the lower bound and the upper bound

of a datatype.

MPI_TYPE_LB( datatype, displacement)

IN datatype datatype (handle)

OUT displacement displacement of lower bound from origin, in bytes (in-

teger)

int MPI_Type_lb(MPI_Datatype datatype, MPI_Aint* displacement)

MPI_TYPE_LB( DATATYPE, DISPLACEMENT, IERROR)

INTEGER DATATYPE, DISPLACEMENT, IERROR
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MPI_TYPE_UB( datatype, displacement)

IN datatype datatype (handle)

OUT displacement displacement of upper bound from origin, in bytes (in-

teger)

int MPI_Type_ub(MPI_Datatype datatype, MPI_Aint* displacement)

MPI_TYPE_UB( DATATYPE, DISPLACEMENT, IERROR)

INTEGER DATATYPE, DISPLACEMENT, IERROR

The following function is deprecated and is superseded by
MPI_COMM_CREATE_KEYVAL in MPI-2.0. The language independent definition of the
deprecated function is the same as of the new function, except of the function name. The
language bindings are modified.

MPI_KEYVAL_CREATE(copy_fn, delete_fn, keyval, extra_state)

IN copy_fn Copy callback function for keyval

IN delete_fn Delete callback function for keyval

OUT keyval key value for future access (integer)

IN extra_state Extra state for callback functions

int MPI_Keyval_create(MPI_Copy_function *copy_fn, MPI_Delete_function

*delete_fn, int *keyval, void* extra_state)

MPI_KEYVAL_CREATE(COPY_FN, DELETE_FN, KEYVAL, EXTRA_STATE, IERROR)

EXTERNAL COPY_FN, DELETE_FN

INTEGER KEYVAL, EXTRA_STATE, IERROR

The copy_fn function is invoked when a communicator is duplicated by
MPI_COMM_DUP. copy_fn should be of type MPI_Copy_function, which is defined as follows:

typedef int MPI_Copy_function(MPI_Comm oldcomm, int keyval,

void *extra_state, void *attribute_val_in,

void *attribute_val_out, int *flag)

A Fortran declaration for such a function is as follows:
SUBROUTINE COPY_FUNCTION(OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, FLAG, IERR)

INTEGER OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, IERR

LOGICAL FLAG

copy_fn may be specified as MPI_NULL_COPY_FN or MPI_DUP_FN from either C or
FORTRAN; MPI_NULL_COPY_FN is a function that does nothing other than returning
flag = 0 and MPI_SUCCESS. MPI_DUP_FN is a simple-minded copy function that sets flag =

1, returns the value of attribute_val_in in attribute_val_out, and returns MPI_SUCCESS. Note
that MPI_NULL_COPY_FN and MPI_DUP_FN are also deprecated.
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MPI_TYPE_UB( datatype, displacement)

IN datatype datatype (handle)

OUT displacement displacement of upper bound from origin, in bytes (in-

teger)

int MPI_Type_ub(MPI_Datatype datatype, MPI_Aint* displacement)

MPI_TYPE_UB( DATATYPE, DISPLACEMENT, IERROR)

INTEGER DATATYPE, DISPLACEMENT, IERROR

The following function is deprecated and is superseded by
MPI_COMM_CREATE_KEYVAL in MPI-2.0. The language independent definition of the
deprecated function is the same as of the new function, except of the function name. The
language bindings are modified.

MPI_KEYVAL_CREATE(copy_fn, delete_fn, keyval, extra_state)

IN copy_fn Copy callback function for keyval

IN delete_fn Delete callback function for keyval

OUT keyval key value for future access (integer)

IN extra_state Extra state for callback functions

int MPI_Keyval_create(MPI_Copy_function *copy_fn, MPI_Delete_function

*delete_fn, int *keyval, void* extra_state)

MPI_KEYVAL_CREATE(COPY_FN, DELETE_FN, KEYVAL, EXTRA_STATE, IERROR)

EXTERNAL COPY_FN, DELETE_FN

INTEGER KEYVAL, EXTRA_STATE, IERROR

The copy_fn function is invoked when a communicator is duplicated by
MPI_COMM_DUP. copy_fn should be of type MPI_Copy_function, which is defined as follows:

typedef int MPI_Copy_function(MPI_Comm oldcomm, int keyval,

void *extra_state, void *attribute_val_in,

void *attribute_val_out, int *flag)

A Fortran declaration for such a function is as follows:
SUBROUTINE COPY_FUNCTION(OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, FLAG, IERR)

INTEGER OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, IERR

LOGICAL FLAG

copy_fn may be specified as MPI_NULL_COPY_FN or MPI_DUP_FN from either C or
FORTRAN; MPI_NULL_COPY_FN is a function that does nothing other than returning
flag = 0 and MPI_SUCCESS. MPI_DUP_FN is a simple-minded copy function that sets flag =

1, returns the value of attribute_val_in in attribute_val_out, and returns MPI_SUCCESS. Note
that MPI_NULL_COPY_FN and MPI_DUP_FN are also deprecated.
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Analogous to copy_fn is a callback deletion function, defined as follows. The delete_fn
function is invoked when a communicator is deleted by MPI_COMM_FREE or when a call
is made explicitly to MPI_ATTR_DELETE. delete_fn should be of type MPI_Delete_function,
which is defined as follows:

typedef int MPI_Delete_function(MPI_Comm comm, int keyval,

void *attribute_val, void *extra_state);

A Fortran declaration for such a function is as follows:
SUBROUTINE DELETE_FUNCTION(COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERR)

INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERR

delete_fn may be specified as MPI_NULL_DELETE_FN from either C or FORTRAN;
MPI_NULL_DELETE_FN is a function that does nothing, other than returning
MPI_SUCCESS. Note that MPI_NULL_DELETE_FN is also deprecated.

The following function is deprecated and is superseded by MPI_COMM_FREE_KEYVAL
in MPI-2.0. The language independent definition of the deprecated function is the same as
of the new function, except of the function name. The language bindings are modified.

MPI_KEYVAL_FREE(keyval)

INOUT keyval Frees the integer key value (integer)

int MPI_Keyval_free(int *keyval)

MPI_KEYVAL_FREE(KEYVAL, IERROR)

INTEGER KEYVAL, IERROR

The following function is deprecated and is superseded by MPI_COMM_SET_ATTR in
MPI-2.0. The language independent definition of the deprecated function is the same as of
the new function, except of the function name. The language bindings are modified.

MPI_ATTR_PUT(comm, keyval, attribute_val)

INOUT comm communicator to which attribute will be attached (han-

dle)

IN keyval key value, as returned by

MPI_KEYVAL_CREATE (integer)

IN attribute_val attribute value

int MPI_Attr_put(MPI_Comm comm, int keyval, void* attribute_val)

MPI_ATTR_PUT(COMM, KEYVAL, ATTRIBUTE_VAL, IERROR)

INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, IERROR

The following function is deprecated and is superseded by MPI_COMM_GET_ATTR in
MPI-2.0. The language independent definition of the deprecated function is the same as of
the new function, except of the function name. The language bindings are modified.
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Analogous to copy_fn is a callback deletion function, defined as follows. The delete_fn
function is invoked when a communicator is deleted by MPI_COMM_FREE or when a call
is made explicitly to MPI_ATTR_DELETE. delete_fn should be of type MPI_Delete_function,
which is defined as follows:

typedef int MPI_Delete_function(MPI_Comm comm, int keyval,

void *attribute_val, void *extra_state);

A Fortran declaration for such a function is as follows:
SUBROUTINE DELETE_FUNCTION(COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERR)

INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERR

delete_fn may be specified as MPI_NULL_DELETE_FN from either C or FORTRAN;
MPI_NULL_DELETE_FN is a function that does nothing, other than returning
MPI_SUCCESS. Note that MPI_NULL_DELETE_FN is also deprecated.

The following function is deprecated and is superseded by MPI_COMM_FREE_KEYVAL
in MPI-2.0. The language independent definition of the deprecated function is the same as
of the new function, except of the function name. The language bindings are modified.

MPI_KEYVAL_FREE(keyval)

INOUT keyval Frees the integer key value (integer)

int MPI_Keyval_free(int *keyval)

MPI_KEYVAL_FREE(KEYVAL, IERROR)

INTEGER KEYVAL, IERROR

The following function is deprecated and is superseded by MPI_COMM_SET_ATTR in
MPI-2.0. The language independent definition of the deprecated function is the same as of
the new function, except of the function name. The language bindings are modified.

MPI_ATTR_PUT(comm, keyval, attribute_val)

INOUT comm communicator to which attribute will be attached (han-

dle)

IN keyval key value, as returned by

MPI_KEYVAL_CREATE (integer)

IN attribute_val attribute value

int MPI_Attr_put(MPI_Comm comm, int keyval, void* attribute_val)

MPI_ATTR_PUT(COMM, KEYVAL, ATTRIBUTE_VAL, IERROR)

INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, IERROR

The following function is deprecated and is superseded by MPI_COMM_GET_ATTR in
MPI-2.0. The language independent definition of the deprecated function is the same as of
the new function, except of the function name. The language bindings are modified.
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MPI_ATTR_GET(comm, keyval, attribute_val, flag)

IN comm communicator to which attribute is attached (handle)

IN keyval key value (integer)

OUT attribute_val attribute value, unless flag = false

OUT flag true if an attribute value was extracted; false if no

attribute is associated with the key

int MPI_Attr_get(MPI_Comm comm, int keyval, void *attribute_val, int *flag)

MPI_ATTR_GET(COMM, KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)

INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, IERROR

LOGICAL FLAG

The following function is deprecated and is superseded by MPI_COMM_DELETE_ATTR
in MPI-2.0. The language independent definition of the deprecated function is the same as
of the new function, except of the function name. The language bindings are modified.

MPI_ATTR_DELETE(comm, keyval)

INOUT comm communicator to which attribute is attached (handle)

IN keyval The key value of the deleted attribute (integer)

int MPI_Attr_delete(MPI_Comm comm, int keyval)

MPI_ATTR_DELETE(COMM, KEYVAL, IERROR)

INTEGER COMM, KEYVAL, IERROR

The following function is deprecated and is superseded by
MPI_COMM_CREATE_ERRHANDLER in MPI-2.0. The language independent definition
of the deprecated function is the same as of the new function, except of the function name.
The language bindings are modified.

MPI_ERRHANDLER_CREATE( function, errhandler )

IN function user defined error handling procedure

OUT errhandler MPI error handler (handle)

int MPI_Errhandler_create(MPI_Handler_function *function,

MPI_Errhandler *errhandler)

MPI_ERRHANDLER_CREATE(FUNCTION, ERRHANDLER, IERROR)

EXTERNAL FUNCTION

INTEGER ERRHANDLER, IERROR

Register the user routine function for use as an MPI exception handler. Returns in
errhandler a handle to the registered exception handler.
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MPI_ATTR_GET(comm, keyval, attribute_val, flag)

IN comm communicator to which attribute is attached (handle)

IN keyval key value (integer)

OUT attribute_val attribute value, unless flag = false

OUT flag true if an attribute value was extracted; false if no

attribute is associated with the key

int MPI_Attr_get(MPI_Comm comm, int keyval, void *attribute_val, int *flag)

MPI_ATTR_GET(COMM, KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)

INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, IERROR

LOGICAL FLAG

The following function is deprecated and is superseded by MPI_COMM_DELETE_ATTR
in MPI-2.0. The language independent definition of the deprecated function is the same as
of the new function, except of the function name. The language bindings are modified.

MPI_ATTR_DELETE(comm, keyval)

INOUT comm communicator to which attribute is attached (handle)

IN keyval The key value of the deleted attribute (integer)

int MPI_Attr_delete(MPI_Comm comm, int keyval)

MPI_ATTR_DELETE(COMM, KEYVAL, IERROR)

INTEGER COMM, KEYVAL, IERROR

The following function is deprecated and is superseded by
MPI_COMM_CREATE_ERRHANDLER in MPI-2.0. The language independent definition
of the deprecated function is the same as of the new function, except of the function name.
The language bindings are modified.

MPI_ERRHANDLER_CREATE( function, errhandler )

IN function user defined error handling procedure

OUT errhandler MPI error handler (handle)

int MPI_Errhandler_create(MPI_Handler_function *function,

MPI_Errhandler *errhandler)

MPI_ERRHANDLER_CREATE(FUNCTION, ERRHANDLER, IERROR)

EXTERNAL FUNCTION

INTEGER ERRHANDLER, IERROR

Register the user routine function for use as an MPI exception handler. Returns in
errhandler a handle to the registered exception handler.
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In the C language, the user routine should be a C function of type MPI_Handler_function,
which is defined as:

typedef void (MPI_Handler_function)(MPI_Comm *, int *, ...);

The first argument is the communicator in use, the second is the error code to be
returned.

In the Fortran language, the user routine should be of the form:

SUBROUTINE HANDLER_FUNCTION(COMM, ERROR_CODE, .....)

INTEGER COMM, ERROR_CODE

The following function is deprecated and is superseded by
MPI_COMM_SET_ERRHANDLER in MPI-2.0. The language independent definition of the
deprecated function is the same as of the new function, except of the function name. The
language bindings are modified.

MPI_ERRHANDLER_SET( comm, errhandler )

INOUT comm communicator to set the error handler for (handle)

IN errhandler new MPI error handler for communicator (handle)

int MPI_Errhandler_set(MPI_Comm comm, MPI_Errhandler errhandler)

MPI_ERRHANDLER_SET(COMM, ERRHANDLER, IERROR)

INTEGER COMM, ERRHANDLER, IERROR

Associates the new error handler errorhandler with communicator comm at the calling
process. Note that an error handler is always associated with the communicator.

The following function is deprecated and is superseded by
MPI_COMM_GET_ERRHANDLER in MPI-2.0. The language independent definition of the
deprecated function is the same as of the new function, except of the function name. The
language bindings are modified.

MPI_ERRHANDLER_GET( comm, errhandler )

IN comm communicator to get the error handler from (handle)

OUT errhandler MPI error handler currently associated with commu-

nicator (handle)

int MPI_Errhandler_get(MPI_Comm comm, MPI_Errhandler *errhandler)

MPI_ERRHANDLER_GET(COMM, ERRHANDLER, IERROR)

INTEGER COMM, ERRHANDLER, IERROR

Returns in errhandler (a handle to) the error handler that is currently associated with
communicator comm.
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In the C language, the user routine should be a C function of type MPI_Handler_function,
which is defined as:

typedef void (MPI_Handler_function)(MPI_Comm *, int *, ...);

The first argument is the communicator in use, the second is the error code to be
returned.

In the Fortran language, the user routine should be of the form:

SUBROUTINE HANDLER_FUNCTION(COMM, ERROR_CODE, .....)

INTEGER COMM, ERROR_CODE

The following function is deprecated and is superseded by
MPI_COMM_SET_ERRHANDLER in MPI-2.0. The language independent definition of the
deprecated function is the same as of the new function, except of the function name. The
language bindings are modified.

MPI_ERRHANDLER_SET( comm, errhandler )

INOUT comm communicator to set the error handler for (handle)

IN errhandler new MPI error handler for communicator (handle)

int MPI_Errhandler_set(MPI_Comm comm, MPI_Errhandler errhandler)

MPI_ERRHANDLER_SET(COMM, ERRHANDLER, IERROR)

INTEGER COMM, ERRHANDLER, IERROR

Associates the new error handler errorhandler with communicator comm at the calling
process. Note that an error handler is always associated with the communicator.

The following function is deprecated and is superseded by
MPI_COMM_GET_ERRHANDLER in MPI-2.0. The language independent definition of the
deprecated function is the same as of the new function, except of the function name. The
language bindings are modified.

MPI_ERRHANDLER_GET( comm, errhandler )

IN comm communicator to get the error handler from (handle)

OUT errhandler MPI error handler currently associated with commu-

nicator (handle)

int MPI_Errhandler_get(MPI_Comm comm, MPI_Errhandler *errhandler)

MPI_ERRHANDLER_GET(COMM, ERRHANDLER, IERROR)

INTEGER COMM, ERRHANDLER, IERROR

Returns in errhandler (a handle to) the error handler that is currently associated with
communicator comm.
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Chapter 16

Language Bindings

16.1 C++

16.1.1 Overview

There are some issues specific to C++ that must be considered in the design of an interface
that go beyond the simple description of language bindings. In particular, in C++, we must
be concerned with the design of objects and their interfaces, rather than just the design of
a language-specific functional interface to MPI. Fortunately, the design of MPI was based
on the notion of objects, so a natural set of classes is already part of MPI.

MPI-2 includes C++ bindings as part of its function specifications. In some cases,
MPI-2 provides new names for the C bindings of MPI-1 functions. In this case, the C++
binding matches the new C name — there is no binding for the deprecated name.

16.1.2 Design

The C++ language interface for MPI is designed according to the following criteria:

1. The C++ language interface consists of a small set of classes with a lightweight
functional interface to MPI. The classes are based upon the fundamental MPI object
types (e.g., communicator, group, etc.).

2. The MPI C++ language bindings provide a semantically correct interface to MPI.

3. To the greatest extent possible, the C++ bindings for MPI functions are member
functions of MPI classes.

Rationale. Providing a lightweight set of MPI objects that correspond to the basic
MPI types is the best fit to MPI’s implicit object-based design; methods can be supplied
for these objects to realize MPI functionality. The existing C bindings can be used in
C++ programs, but much of the expressive power of the C++ language is forfeited.
On the other hand, while a comprehensive class library would make user programming
more elegant, such a library it is not suitable as a language binding for MPI since a
binding must provide a direct and unambiguous mapping to the specified functionality
of MPI. (End of rationale.)
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MPI types is the best fit to MPI’s implicit object-based design; methods can be supplied
for these objects to realize MPI functionality. The existing C bindings can be used in
C++ programs, but much of the expressive power of the C++ language is forfeited.
On the other hand, while a comprehensive class library would make user programming
more elegant, such a library it is not suitable as a language binding for MPI since a
binding must provide a direct and unambiguous mapping to the specified functionality
of MPI. (End of rationale.)
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16.1.3 C++ Classes for MPI

All MPI classes, constants, and functions are declared within the scope of an MPI namespace.
Thus, instead of the MPI_ prefix that is used in C and Fortran, MPI functions essentially
have an MPI:: prefix.

The members of the MPI namespace are those classes corresponding to objects implicitly
used by MPI. An abbreviated definition of the MPI namespace and its member classes is as
follows:

namespace MPI {

class Comm {...};

class Intracomm : public Comm {...};

class Graphcomm : public Intracomm {...};

class Cartcomm : public Intracomm {...};

class Intercomm : public Comm {...};

class Datatype {...};

class Errhandler {...};

class Exception {...};

class File {...};

class Group {...};

class Info {...};

class Op {...};

class Request {...};

class Prequest : public Request {...};

class Grequest : public Request {...};

class Status {...};

class Win {...};

};

Note that there are a small number of derived classes, and that virtual inheritance is
not used.

16.1.4 Class Member Functions for MPI

Besides the member functions which constitute the C++ language bindings for MPI, the
C++ language interface has additional functions (as required by the C++ language). In
particular, the C++ language interface must provide a constructor and destructor, an
assignment operator, and comparison operators.

The complete set of C++ language bindings for MPI is presented in Annex A.4. The
bindings take advantage of some important C++ features, such as references and const.
Declarations (which apply to all MPI member classes) for construction, destruction, copying,
assignment, comparison, and mixed-language operability are also provided.

Except where indicated, all non-static member functions (except for constructors and
the assignment operator) of MPI member classes are virtual functions.

Rationale. Providing virtual member functions is an important part of design for
inheritance. Virtual functions can be bound at run-time, which allows users of libraries
to re-define the behavior of objects already contained in a library. There is a small
performance penalty that must be paid (the virtual function must be looked up before
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it can be called). However, users concerned about this performance penalty can force
compile-time function binding. (End of rationale.)

Example 16.1 Example showing a derived MPI class.

class foo_comm : public MPI::Intracomm {

public:

void Send(const void* buf, int count, const MPI::Datatype& type,

int dest, int tag) const

{

// Class library functionality

MPI::Intracomm::Send(buf, count, type, dest, tag);

// More class library functionality

}

};

Advice to implementors. Implementors must be careful to avoid unintended side
effects from class libraries that use inheritance, especially in layered implementations.
For example, if MPI_BCAST is implemented by repeated calls to MPI_SEND or
MPI_RECV, the behavior of MPI_BCAST cannot be changed by derived communicator
classes that might redefine MPI_SEND or MPI_RECV. The implementation of
MPI_BCAST must explicitly use the MPI_SEND (or MPI_RECV) of the base
MPI::Comm class. (End of advice to implementors.)

16.1.5 Semantics

The semantics of the member functions constituting the C++ language binding for MPI are
specified by the MPI function description itself. Here, we specify the semantics for those
portions of the C++ language interface that are not part of the language binding. In this
subsection, functions are prototyped using the type MPI::〈CLASS〉 rather than listing each
function for every MPI class; the word 〈CLASS〉 can be replaced with any valid MPI class
name (e.g., Group), except as noted.

Construction / Destruction The default constructor and destructor are prototyped as fol-
lows:

MPI::<CLASS>()

∼MPI::<CLASS>()

In terms of construction and destruction, opaque MPI user level objects behave like
handles. Default constructors for all MPI objects except MPI::Status create corresponding
MPI::*_NULL handles. That is, when an MPI object is instantiated, comparing it with its
corresponding MPI::*_NULL object will return true. The default constructors do not create
new MPI opaque objects. Some classes have a member function Create() for this purpose.

Example 16.2 In the following code fragment, the test will return true and the message
will be sent to cout.
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it can be called). However, users concerned about this performance penalty can force
compile-time function binding. (End of rationale.)

Example 16.1 Example showing a derived MPI class.

class foo_comm : public MPI::Intracomm {

public:

void Send(const void* buf, int count, const MPI::Datatype& type,

int dest, int tag) const

{

// Class library functionality

MPI::Intracomm::Send(buf, count, type, dest, tag);

// More class library functionality

}

};

Advice to implementors. Implementors must be careful to avoid unintended side
effects from class libraries that use inheritance, especially in layered implementations.
For example, if MPI_BCAST is implemented by repeated calls to MPI_SEND or
MPI_RECV, the behavior of MPI_BCAST cannot be changed by derived communicator
classes that might redefine MPI_SEND or MPI_RECV. The implementation of
MPI_BCAST must explicitly use the MPI_SEND (or MPI_RECV) of the base
MPI::Comm class. (End of advice to implementors.)

16.1.5 Semantics

The semantics of the member functions constituting the C++ language binding for MPI are
specified by the MPI function description itself. Here, we specify the semantics for those
portions of the C++ language interface that are not part of the language binding. In this
subsection, functions are prototyped using the type MPI::〈CLASS〉 rather than listing each
function for every MPI class; the word 〈CLASS〉 can be replaced with any valid MPI class
name (e.g., Group), except as noted.

Construction / Destruction The default constructor and destructor are prototyped as fol-
lows:

MPI::<CLASS>()

∼MPI::<CLASS>()

In terms of construction and destruction, opaque MPI user level objects behave like
handles. Default constructors for all MPI objects except MPI::Status create corresponding
MPI::*_NULL handles. That is, when an MPI object is instantiated, comparing it with its
corresponding MPI::*_NULL object will return true. The default constructors do not create
new MPI opaque objects. Some classes have a member function Create() for this purpose.

Example 16.2 In the following code fragment, the test will return true and the message
will be sent to cout.
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void foo()

{

MPI::Intracomm bar;

if (bar == MPI::COMM_NULL)

cout << "bar is MPI::COMM_NULL" << endl;

}

The destructor for each MPI user level object does not invoke the corresponding
MPI_*_FREE function (if it exists).

Rationale. MPI_*_FREE functions are not automatically invoked for the following
reasons:

1. Automatic destruction contradicts the shallow-copy semantics of the MPI classes.

2. The model put forth in MPI makes memory allocation and deallocation the re-
sponsibility of the user, not the implementation.

3. Calling MPI_*_FREE upon destruction could have unintended side effects, in-
cluding triggering collective operations (this also affects the copy, assignment,
and construction semantics). In the following example, we would want neither
foo_comm nor bar_comm to automatically invoke MPI_*_FREE upon exit from
the function.

void example_function()

{

MPI::Intracomm foo_comm(MPI::COMM_WORLD), bar_comm;

bar_comm = MPI::COMM_WORLD.Dup();

// rest of function

}

(End of rationale.)

Copy / Assignment The copy constructor and assignment operator are prototyped as fol-
lows:

MPI::<CLASS>(const MPI::<CLASS>& data)

MPI::<CLASS>& MPI::<CLASS>::operator=(const MPI::<CLASS>& data)

In terms of copying and assignment, opaque MPI user level objects behave like handles.
Copy constructors perform handle-based (shallow) copies. MPI::Status objects are excep-
tions to this rule. These objects perform deep copies for assignment and copy construction.

Advice to implementors. Each MPI user level object is likely to contain, by value
or by reference, implementation-dependent state information. The assignment and
copying of MPI object handles may simply copy this value (or reference). (End of
advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

452 CHAPTER 16. LANGUAGE BINDINGS

void foo()

{

MPI::Intracomm bar;

if (bar == MPI::COMM_NULL)

cout << "bar is MPI::COMM_NULL" << endl;

}

The destructor for each MPI user level object does not invoke the corresponding
MPI_*_FREE function (if it exists).

Rationale. MPI_*_FREE functions are not automatically invoked for the following
reasons:

1. Automatic destruction contradicts the shallow-copy semantics of the MPI classes.

2. The model put forth in MPI makes memory allocation and deallocation the re-
sponsibility of the user, not the implementation.

3. Calling MPI_*_FREE upon destruction could have unintended side effects, in-
cluding triggering collective operations (this also affects the copy, assignment,
and construction semantics). In the following example, we would want neither
foo_comm nor bar_comm to automatically invoke MPI_*_FREE upon exit from
the function.

void example_function()

{

MPI::Intracomm foo_comm(MPI::COMM_WORLD), bar_comm;

bar_comm = MPI::COMM_WORLD.Dup();

// rest of function

}

(End of rationale.)

Copy / Assignment The copy constructor and assignment operator are prototyped as fol-
lows:

MPI::<CLASS>(const MPI::<CLASS>& data)

MPI::<CLASS>& MPI::<CLASS>::operator=(const MPI::<CLASS>& data)

In terms of copying and assignment, opaque MPI user level objects behave like handles.
Copy constructors perform handle-based (shallow) copies. MPI::Status objects are excep-
tions to this rule. These objects perform deep copies for assignment and copy construction.

Advice to implementors. Each MPI user level object is likely to contain, by value
or by reference, implementation-dependent state information. The assignment and
copying of MPI object handles may simply copy this value (or reference). (End of
advice to implementors.)
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Example 16.3 Example using assignment operator. In this example,
MPI::Intracomm::Dup() is not called for foo_comm. The object foo_comm is simply an
alias for MPI::COMM_WORLD. But bar_comm is created with a call to
MPI::Intracomm::Dup() and is therefore a different communicator than foo_comm (and
thus different from MPI::COMM_WORLD). baz_comm becomes an alias for bar_comm. If one of
bar_comm or baz_comm is freed with MPI_COMM_FREE it will be set to MPI::COMM_NULL.
The state of the other handle will be undefined — it will be invalid, but not necessarily set
to MPI::COMM_NULL.

MPI::Intracomm foo_comm, bar_comm, baz_comm;

foo_comm = MPI::COMM_WORLD;

bar_comm = MPI::COMM_WORLD.Dup();

baz_comm = bar_comm;

Comparison The comparison operators are prototyped as follows:

bool MPI::<CLASS>::operator==(const MPI::<CLASS>& data) const

bool MPI::<CLASS>::operator!=(const MPI::<CLASS>& data) const

The member function operator==() returns true only when the handles reference the
same internal MPI object, false otherwise. operator!=() returns the boolean complement
of operator==(). However, since the Status class is not a handle to an underlying MPI
object, it does not make sense to compare Status instances. Therefore, the operator==()

and operator!=() functions are not defined on the Status class.

Constants Constants are singleton objects and are declared const. Note that not all glob-
ally defined MPI objects are constant. For example, MPI::COMM_WORLD and MPI::COMM_SELF

are not const.

16.1.6 C++ Datatypes

Table 16.1 lists all of the C++ predefined MPI datatypes and their corresponding C and
C++ datatypes, Table 16.2 lists all of the Fortran predefined MPI datatypes and their
corresponding Fortran 77 datatypes. Table 16.3 lists the C++ names for all other MPI
datatypes.

MPI::BYTE and MPI::PACKED conform to the same restrictions as MPI_BYTE and
MPI_PACKED, listed in Sections 3.2.2 on page 27 and Sections 4.2 on page 120, respectively.

The following table defines groups of MPI predefined datatypes:

C integer: MPI::INT, MPI::LONG, MPI::SHORT,
MPI::UNSIGNED_SHORT, MPI::UNSIGNED,
MPI::UNSIGNED_LONG,
MPI::_LONG_LONG, MPI::UNSIGNED_LONG_LONG,
MPI::SIGNED_CHAR, MPI::UNSIGNED_CHAR

Fortran integer: MPI::INTEGER
Floating point: MPI::FLOAT, MPI::DOUBLE, MPI::REAL,

MPI::DOUBLE_PRECISION,
MPI::LONG_DOUBLE
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MPI datatype C datatype C++ datatype

MPI::CHAR char char

MPI::SHORT signed short signed short

MPI::INT signed int signed int

MPI::LONG signed long signed long

MPI::LONG_LONG signed long long signed long long

MPI::SIGNED_CHAR signed char signed char

MPI::UNSIGNED_CHAR unsigned char unsigned char

MPI::UNSIGNED_SHORT unsigned short unsigned short

MPI::UNSIGNED unsigned int unsigned int

MPI::UNSIGNED_LONG unsigned long unsigned long int

MPI::UNSIGNED_LONG_LONG unsigned long long unsigned long long

MPI::FLOAT float float

MPI::DOUBLE double double

MPI::LONG_DOUBLE long double long double

MPI::BOOL bool

MPI::COMPLEX Complex<float>

MPI::DOUBLE_COMPLEX Complex<double>

MPI::LONG_DOUBLE_COMPLEX Complex<long double>

MPI::WCHAR wchar_t wchar_t

MPI::BYTE
MPI::PACKED

Table 16.1: C++ names for the MPI C and C++ predefined datatypes, and their corre-
sponding C/C++ datatypes.

MPI datatype Fortran datatype

MPI::INTEGER INTEGER

MPI::REAL REAL

MPI::DOUBLE_PRECISION DOUBLE PRECISION

MPI::F_COMPLEX COMPLEX

MPI::LOGICAL LOGICAL

MPI::CHARACTER CHARACTER(1)

MPI::BYTE
MPI::PACKED

Table 16.2: C++ names for the MPI Fortran predefined datatypes, and their corresponding
Fortran 77 datatypes.
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MPI datatype Description

MPI::FLOAT_INT C/C++ reduction type
MPI::DOUBLE_INT C/C++ reduction type
MPI::LONG_INT C/C++ reduction type
MPI::TWOINT C/C++ reduction type
MPI::SHORT_INT C/C++ reduction type
MPI::LONG_DOUBLE_INT C/C++ reduction type

MPI::TWOREAL Fortran reduction type
MPI::TWODOUBLE_PRECISION Fortran reduction type
MPI::TWOINTEGER Fortran reduction type

MPI::F_DOUBLE_COMPLEX Optional Fortran type
MPI::INTEGER1 Explicit size type
MPI::INTEGER2 Explicit size type
MPI::INTEGER4 Explicit size type
MPI::INTEGER8 Explicit size type
MPI::REAL4 Explicit size type
MPI::REAL8 Explicit size type
MPI::REAL16 Explicit size type

Table 16.3: C++ names for other MPI datatypes. Implementations may also define other
optional types (e.g., MPI::INTEGER8).

Logical: MPI::LOGICAL, MPI::BOOL
Complex: MPI::F_COMPLEX, MPI::COMPLEX,

MPI::F_DOUBLE_COMPLEX,
MPI::DOUBLE_COMPLEX,
MPI::LONG_DOUBLE_COMPLEX

Byte: MPI::BYTE

Valid datatypes for each reduction operation are specified below in terms of the groups
defined above.

Op Allowed Types

MPI::MAX, MPI::MIN C integer, Fortran integer, Floating point

MPI::SUM, MPI::PROD C integer, Fortran integer, Floating point, Complex

MPI::LAND, MPI::LOR, MPI::LXOR C integer, Logical

MPI::BAND, MPI::BOR, MPI::BXOR C integer, Fortran integer, Byte

MPI::MINLOC and MPI::MAXLOC perform just as their C and Fortran counterparts; see
Section 5.9.4 on page 164.

16.1.7 Communicators

The MPI::Comm class hierarchy makes explicit the different kinds of communicators implic-
itly defined by MPI and allows them to be strongly typed. Since the original design of MPI
defined only one type of handle for all types of communicators, the following clarifications
are provided for the C++ design.
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MPI datatype Description

MPI::FLOAT_INT C/C++ reduction type
MPI::DOUBLE_INT C/C++ reduction type
MPI::LONG_INT C/C++ reduction type
MPI::TWOINT C/C++ reduction type
MPI::SHORT_INT C/C++ reduction type
MPI::LONG_DOUBLE_INT C/C++ reduction type

MPI::TWOREAL Fortran reduction type
MPI::TWODOUBLE_PRECISION Fortran reduction type
MPI::TWOINTEGER Fortran reduction type

MPI::F_DOUBLE_COMPLEX Optional Fortran type
MPI::INTEGER1 Explicit size type
MPI::INTEGER2 Explicit size type
MPI::INTEGER4 Explicit size type
MPI::INTEGER8 Explicit size type
MPI::REAL4 Explicit size type
MPI::REAL8 Explicit size type
MPI::REAL16 Explicit size type

Table 16.3: C++ names for other MPI datatypes. Implementations may also define other
optional types (e.g., MPI::INTEGER8).

Logical: MPI::LOGICAL, MPI::BOOL
Complex: MPI::F_COMPLEX, MPI::COMPLEX,

MPI::F_DOUBLE_COMPLEX,
MPI::DOUBLE_COMPLEX,
MPI::LONG_DOUBLE_COMPLEX

Byte: MPI::BYTE

Valid datatypes for each reduction operation are specified below in terms of the groups
defined above.

Op Allowed Types

MPI::MAX, MPI::MIN C integer, Fortran integer, Floating point

MPI::SUM, MPI::PROD C integer, Fortran integer, Floating point, Complex

MPI::LAND, MPI::LOR, MPI::LXOR C integer, Logical

MPI::BAND, MPI::BOR, MPI::BXOR C integer, Fortran integer, Byte

MPI::MINLOC and MPI::MAXLOC perform just as their C and Fortran counterparts; see
Section 5.9.4 on page 164.

16.1.7 Communicators

The MPI::Comm class hierarchy makes explicit the different kinds of communicators implic-
itly defined by MPI and allows them to be strongly typed. Since the original design of MPI
defined only one type of handle for all types of communicators, the following clarifications
are provided for the C++ design.
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Types of communicators There are five different types of communicators: MPI::Comm,
MPI::Intercomm, MPI::Intracomm, MPI::Cartcomm, and MPI::Graphcomm. MPI::Comm is
the abstract base communicator class, encapsulating the functionality common to all MPI
communicators. MPI::Intercomm and MPI::Intracomm are derived from MPI::Comm.
MPI::Cartcomm and MPI::Graphcomm are derived from MPI::Intracomm.

Advice to users. Initializing a derived class with an instance of a base class is not legal
in C++. For instance, it is not legal to initialize a Cartcomm from an Intracomm.
Moreover, because MPI::Comm is an abstract base class, it is non-instantiable, so that
it is not possible to have an object of class MPI::Comm. However, it is possible to
have a reference or a pointer to an MPI::Comm.

Example 16.4 The following code is erroneous.

Intracomm intra = MPI::COMM_WORLD.Dup();

Cartcomm cart(intra); // This is erroneous

(End of advice to users.)

MPI::COMM_NULL The specific type of MPI::COMM_NULL is implementation dependent.
MPI::COMM_NULL must be able to be used in comparisons and initializations with all types
of communicators. MPI::COMM_NULL must also be able to be passed to a function that
expects a communicator argument in the parameter list (provided that MPI::COMM_NULL

is an allowed value for the communicator argument).

Rationale. There are several possibilities for implementation of MPI::COMM_NULL.
Specifying its required behavior, rather than its realization, provides maximum flexi-
bility to implementors. (End of rationale.)

Example 16.5 The following example demonstrates the behavior of assignment and com-
parison using MPI::COMM_NULL.

MPI::Intercomm comm;

comm = MPI::COMM_NULL; // assign with COMM_NULL

if (comm == MPI::COMM_NULL) // true

cout << "comm is NULL" << endl;

if (MPI::COMM_NULL == comm) // note -- a different function!

cout << "comm is still NULL" << endl;

Dup() is not defined as a member function of MPI::Comm, but it is defined for the
derived classes of MPI::Comm. Dup() is not virtual and it returns its OUT parameter by
value.
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Types of communicators There are five different types of communicators: MPI::Comm,
MPI::Intercomm, MPI::Intracomm, MPI::Cartcomm, and MPI::Graphcomm. MPI::Comm is
the abstract base communicator class, encapsulating the functionality common to all MPI
communicators. MPI::Intercomm and MPI::Intracomm are derived from MPI::Comm.
MPI::Cartcomm and MPI::Graphcomm are derived from MPI::Intracomm.

Advice to users. Initializing a derived class with an instance of a base class is not legal
in C++. For instance, it is not legal to initialize a Cartcomm from an Intracomm.
Moreover, because MPI::Comm is an abstract base class, it is non-instantiable, so that
it is not possible to have an object of class MPI::Comm. However, it is possible to
have a reference or a pointer to an MPI::Comm.

Example 16.4 The following code is erroneous.

Intracomm intra = MPI::COMM_WORLD.Dup();

Cartcomm cart(intra); // This is erroneous

(End of advice to users.)

MPI::COMM_NULL The specific type of MPI::COMM_NULL is implementation dependent.
MPI::COMM_NULL must be able to be used in comparisons and initializations with all types
of communicators. MPI::COMM_NULL must also be able to be passed to a function that
expects a communicator argument in the parameter list (provided that MPI::COMM_NULL

is an allowed value for the communicator argument).

Rationale. There are several possibilities for implementation of MPI::COMM_NULL.
Specifying its required behavior, rather than its realization, provides maximum flexi-
bility to implementors. (End of rationale.)

Example 16.5 The following example demonstrates the behavior of assignment and com-
parison using MPI::COMM_NULL.

MPI::Intercomm comm;

comm = MPI::COMM_NULL; // assign with COMM_NULL

if (comm == MPI::COMM_NULL) // true

cout << "comm is NULL" << endl;

if (MPI::COMM_NULL == comm) // note -- a different function!

cout << "comm is still NULL" << endl;

Dup() is not defined as a member function of MPI::Comm, but it is defined for the
derived classes of MPI::Comm. Dup() is not virtual and it returns its OUT parameter by
value.
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MPI::Comm::Clone() The C++ language interface for MPI includes a new function
Clone(). MPI::Comm::Clone() is a pure virtual function. For the derived communicator
classes, Clone() behaves like Dup() except that it returns a new object by reference. The
Clone() functions are prototyped as follows:

Comm& Comm::Clone() const = 0

Intracomm& Intracomm::Clone() const

Intercomm& Intercomm::Clone() const

Cartcomm& Cartcomm::Clone() const

Graphcomm& Graphcomm::Clone() const

Rationale. Clone() provides the “virtual dup” functionality that is expected by C++
programmers and library writers. Since Clone() returns a new object by reference,
users are responsible for eventually deleting the object. A new name is introduced
rather than changing the functionality of Dup(). (End of rationale.)

Advice to implementors. Within their class declarations, prototypes for Clone() and
Dup() would look like the following:

namespace MPI {

class Comm {

virtual Comm& Clone() const = 0;

};

class Intracomm : public Comm {

Intracomm Dup() const { ... };

virtual Intracomm& Clone() const { ... };

};

class Intercomm : public Comm {

Intercomm Dup() const { ... };

virtual Intercomm& Clone() const { ... };

};

// Cartcomm and Graphcomm are similarly defined

};

(End of advice to implementors.)

16.1.8 Exceptions

The C++ language interface for MPI includes the predefined error handler
MPI::ERRORS_THROW_EXCEPTIONS for use with the Set_errhandler() member functions.
MPI::ERRORS_THROW_EXCEPTIONS can only be set or retrieved by C++ functions. If a
non-C++ program causes an error that invokes the MPI::ERRORS_THROW_EXCEPTIONS error
handler, the exception will pass up the calling stack until C++ code can catch it. If there
is no C++ code to catch it, the behavior is undefined. In a multi-threaded environment or
if a non-blocking MPI call throws an exception while making progress in the background,
the behavior is implementation dependent.
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MPI::Comm::Clone() The C++ language interface for MPI includes a new function
Clone(). MPI::Comm::Clone() is a pure virtual function. For the derived communicator
classes, Clone() behaves like Dup() except that it returns a new object by reference. The
Clone() functions are prototyped as follows:

Comm& Comm::Clone() const = 0

Intracomm& Intracomm::Clone() const

Intercomm& Intercomm::Clone() const

Cartcomm& Cartcomm::Clone() const

Graphcomm& Graphcomm::Clone() const

Rationale. Clone() provides the “virtual dup” functionality that is expected by C++
programmers and library writers. Since Clone() returns a new object by reference,
users are responsible for eventually deleting the object. A new name is introduced
rather than changing the functionality of Dup(). (End of rationale.)

Advice to implementors. Within their class declarations, prototypes for Clone() and
Dup() would look like the following:

namespace MPI {
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virtual Comm& Clone() const = 0;

};

class Intracomm : public Comm {

Intracomm Dup() const { ... };

virtual Intracomm& Clone() const { ... };

};

class Intercomm : public Comm {

Intercomm Dup() const { ... };

virtual Intercomm& Clone() const { ... };

};

// Cartcomm and Graphcomm are similarly defined

};

(End of advice to implementors.)

16.1.8 Exceptions

The C++ language interface for MPI includes the predefined error handler
MPI::ERRORS_THROW_EXCEPTIONS for use with the Set_errhandler() member functions.
MPI::ERRORS_THROW_EXCEPTIONS can only be set or retrieved by C++ functions. If a
non-C++ program causes an error that invokes the MPI::ERRORS_THROW_EXCEPTIONS error
handler, the exception will pass up the calling stack until C++ code can catch it. If there
is no C++ code to catch it, the behavior is undefined. In a multi-threaded environment or
if a non-blocking MPI call throws an exception while making progress in the background,
the behavior is implementation dependent.
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The error handler MPI::ERRORS_THROW_EXCEPTIONS causes an MPI::Exception to be
thrown for any MPI result code other than MPI::SUCCESS. The public interface to
MPI::Exception class is defined as follows:

namespace MPI {

class Exception {

public:

Exception(int error_code);

int Get_error_code() const;

int Get_error_class() const;

const char *Get_error_string() const;

};

};

Advice to implementors.

The exception will be thrown within the body of MPI::ERRORS_THROW_EXCEPTIONS.
It is expected that control will be returned to the user when the exception is thrown.
Some MPI functions specify certain return information in their parameters in the case
of an error and MPI_ERRORS_RETURN is specified. The same type of return information
must be provided when exceptions are thrown.

For example, MPI_WAITALL puts an error code for each request in the corresponding
entry in the status array and returns MPI_ERR_IN_STATUS. When using
MPI::ERRORS_THROW_EXCEPTIONS, it is expected that the error codes in the status
array will be set appropriately before the exception is thrown.

(End of advice to implementors.)

16.1.9 Mixed-Language Operability

The C++ language interface provides functions listed below for mixed-language operability.
These functions provide for a seamless transition between C and C++. For the case where
the C++ class corresponding to <CLASS> has derived classes, functions are also provided
for converting between the derived classes and the C MPI_<CLASS>.

MPI::<CLASS>& MPI::<CLASS>::operator=(const MPI_<CLASS>& data)

MPI::<CLASS>(const MPI_<CLASS>& data)

MPI::<CLASS>::operator MPI_<CLASS>() const

These functions are discussed in Section 16.3.4.

16.1.10 Profiling

This section specifies the requirements of a C++ profiling interface to MPI.

Advice to implementors. Since the main goal of profiling is to intercept function calls
from user code, it is the implementor’s decision how to layer the underlying imple-
mentation to allow function calls to be intercepted and profiled. If an implementation
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The error handler MPI::ERRORS_THROW_EXCEPTIONS causes an MPI::Exception to be
thrown for any MPI result code other than MPI::SUCCESS. The public interface to
MPI::Exception class is defined as follows:

namespace MPI {

class Exception {

public:

Exception(int error_code);

int Get_error_code() const;

int Get_error_class() const;

const char *Get_error_string() const;

};

};

Advice to implementors.

The exception will be thrown within the body of MPI::ERRORS_THROW_EXCEPTIONS.
It is expected that control will be returned to the user when the exception is thrown.
Some MPI functions specify certain return information in their parameters in the case
of an error and MPI_ERRORS_RETURN is specified. The same type of return information
must be provided when exceptions are thrown.

For example, MPI_WAITALL puts an error code for each request in the corresponding
entry in the status array and returns MPI_ERR_IN_STATUS. When using
MPI::ERRORS_THROW_EXCEPTIONS, it is expected that the error codes in the status
array will be set appropriately before the exception is thrown.

(End of advice to implementors.)
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These functions provide for a seamless transition between C and C++. For the case where
the C++ class corresponding to <CLASS> has derived classes, functions are also provided
for converting between the derived classes and the C MPI_<CLASS>.

MPI::<CLASS>& MPI::<CLASS>::operator=(const MPI_<CLASS>& data)

MPI::<CLASS>(const MPI_<CLASS>& data)

MPI::<CLASS>::operator MPI_<CLASS>() const

These functions are discussed in Section 16.3.4.
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This section specifies the requirements of a C++ profiling interface to MPI.

Advice to implementors. Since the main goal of profiling is to intercept function calls
from user code, it is the implementor’s decision how to layer the underlying imple-
mentation to allow function calls to be intercepted and profiled. If an implementation
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of the MPI C++ bindings is layered on top of MPI bindings in another language
(such as C), or if the C++ bindings are layered on top of a profiling interface in an-
other language, no extra profiling interface is necessary because the underlying MPI
implementation already meets the MPI profiling interface requirements.

Native C++ MPI implementations that do not have access to other profiling interfaces
must implement an interface that meets the requirements outlined in this section.

High-quality implementations can implement the interface outlined in this section in
order to promote portable C++ profiling libraries. Implementors may wish to provide
an option whether to build the C++ profiling interface or not; C++ implementations
that are already layered on top of bindings in another language or another profiling
interface will have to insert a third layer to implement the C++ profiling interface.
(End of advice to implementors.)

To meet the requirements of the C++ MPI profiling interface, an implementation of
the MPI functions must:

1. Provide a mechanism through which all of the MPI defined functions may be accessed
with a name shift. Thus all of the MPI functions (which normally start with the prefix
“MPI::”) should also be accessible with the prefix “PMPI::.”

2. Ensure that those MPI functions which are not replaced may still be linked into an
executable image without causing name clashes.

3. Document the implementation of different language bindings of the MPI interface if
they are layered on top of each other, so that profiler developer knows whether they
must implement the profile interface for each binding, or can economize by imple-
menting it only for the lowest level routines.

4. Where the implementation of different language bindings is done through a layered
approach (e.g., the C++ binding is a set of “wrapper” functions which call the C
implementation), ensure that these wrapper functions are separable from the rest of
the library.

This is necessary to allow a separate profiling library to be correctly implemented,
since (at least with Unix linker semantics) the profiling library must contain these
wrapper functions if it is to perform as expected. This requirement allows the author
of the profiling library to extract these functions from the original MPI library and add
them into the profiling library without bringing along any other unnecessary code.

5. Provide a no-op routine MPI::Pcontrol in the MPI library.

Advice to implementors. There are (at least) two apparent options for implementing
the C++ profiling interface: inheritance or caching. An inheritance-based approach
may not be attractive because it may require a virtual inheritance implementation of
the communicator classes. Thus, it is most likely that implementors will cache PMPI

objects on their corresponding MPI objects. The caching scheme is outlined below.

The “real” entry points to each routine can be provided within a namespace PMPI.
The non-profiling version can then be provided within a namespace MPI.
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of the MPI C++ bindings is layered on top of MPI bindings in another language
(such as C), or if the C++ bindings are layered on top of a profiling interface in an-
other language, no extra profiling interface is necessary because the underlying MPI
implementation already meets the MPI profiling interface requirements.

Native C++ MPI implementations that do not have access to other profiling interfaces
must implement an interface that meets the requirements outlined in this section.

High-quality implementations can implement the interface outlined in this section in
order to promote portable C++ profiling libraries. Implementors may wish to provide
an option whether to build the C++ profiling interface or not; C++ implementations
that are already layered on top of bindings in another language or another profiling
interface will have to insert a third layer to implement the C++ profiling interface.
(End of advice to implementors.)

To meet the requirements of the C++ MPI profiling interface, an implementation of
the MPI functions must:

1. Provide a mechanism through which all of the MPI defined functions may be accessed
with a name shift. Thus all of the MPI functions (which normally start with the prefix
“MPI::”) should also be accessible with the prefix “PMPI::.”

2. Ensure that those MPI functions which are not replaced may still be linked into an
executable image without causing name clashes.

3. Document the implementation of different language bindings of the MPI interface if
they are layered on top of each other, so that profiler developer knows whether they
must implement the profile interface for each binding, or can economize by imple-
menting it only for the lowest level routines.

4. Where the implementation of different language bindings is done through a layered
approach (e.g., the C++ binding is a set of “wrapper” functions which call the C
implementation), ensure that these wrapper functions are separable from the rest of
the library.

This is necessary to allow a separate profiling library to be correctly implemented,
since (at least with Unix linker semantics) the profiling library must contain these
wrapper functions if it is to perform as expected. This requirement allows the author
of the profiling library to extract these functions from the original MPI library and add
them into the profiling library without bringing along any other unnecessary code.

5. Provide a no-op routine MPI::Pcontrol in the MPI library.

Advice to implementors. There are (at least) two apparent options for implementing
the C++ profiling interface: inheritance or caching. An inheritance-based approach
may not be attractive because it may require a virtual inheritance implementation of
the communicator classes. Thus, it is most likely that implementors will cache PMPI

objects on their corresponding MPI objects. The caching scheme is outlined below.

The “real” entry points to each routine can be provided within a namespace PMPI.
The non-profiling version can then be provided within a namespace MPI.
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Caching instances of PMPI objects in the MPI handles provides the “has a” relationship
that is necessary to implement the profiling scheme.

Each instance of an MPI object simply “wraps up” an instance of a PMPI object. MPI
objects can then perform profiling actions before invoking the corresponding function
in their internal PMPI object.

The key to making the profiling work by simply re-linking programs is by having
a header file that declares all the MPI functions. The functions must be defined
elsewhere, and compiled into a library. MPI constants should be declared extern in
the MPI namespace. For example, the following is an excerpt from a sample mpi.h

file:

Example 16.6 Sample mpi.h file.

namespace PMPI {

class Comm {

public:

int Get_size() const;

};

// etc.

};

namespace MPI {

public:

class Comm {

public:

int Get_size() const;

private:

PMPI::Comm pmpi_comm;

};

};

Note that all constructors, the assignment operator, and the destructor in the MPI

class will need to initialize/destroy the internal PMPI object as appropriate.

The definitions of the functions must be in separate object files; the PMPI class member
functions and the non-profiling versions of the MPI class member functions can be
compiled into libmpi.a, while the profiling versions can be compiled into libpmpi.a.
Note that the PMPI class member functions and the MPI constants must be in different
object files than the non-profiling MPI class member functions in the libmpi.a library
to prevent multiple definitions of MPI class member function names when linking both
libmpi.a and libpmpi.a. For example:

Example 16.7 pmpi.cc, to be compiled into libmpi.a.

int PMPI::Comm::Get_size() const

{

// Implementation of MPI_COMM_SIZE

}
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in their internal PMPI object.

The key to making the profiling work by simply re-linking programs is by having
a header file that declares all the MPI functions. The functions must be defined
elsewhere, and compiled into a library. MPI constants should be declared extern in
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};
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class will need to initialize/destroy the internal PMPI object as appropriate.
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to prevent multiple definitions of MPI class member function names when linking both
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Example 16.8 constants.cc, to be compiled into libmpi.a.

const MPI::Intracomm MPI::COMM_WORLD;

Example 16.9 mpi_no_profile.cc, to be compiled into libmpi.a.

int MPI::Comm::Get_size() const

{

return pmpi_comm.Get_size();

}

Example 16.10 mpi_profile.cc, to be compiled into libpmpi.a.

int MPI::Comm::Get_size() const

{

// Do profiling stuff

int ret = pmpi_comm.Get_size();

// More profiling stuff

return ret;

}

(End of advice to implementors.)

16.2 Fortran Support

16.2.1 Overview

Fortran 90 is the current international Fortran standard. MPI-2 Fortran bindings are Fortran
90 bindings that in most cases are “Fortran 77 friendly.” That is, with few exceptions (e.g.,
KIND-parameterized types, and the mpi module, both of which can be avoided) Fortran 77
compilers should be able to compile MPI programs.

Rationale. Fortran 90 contains numerous features designed to make it a more “mod-
ern” language than Fortran 77. It seems natural that MPI should be able to take
advantage of these new features with a set of bindings tailored to Fortran 90. MPI
does not (yet) use many of these features because of a number of technical difficulties.
(End of rationale.)

MPI defines two levels of Fortran support, described in Sections 16.2.3 and 16.2.4.
A third level of Fortran support is envisioned, but is deferred to future standardization
efforts. In the rest of this section, “Fortran” shall refer to Fortran 90 (or its successor)
unless qualified.

1. Basic Fortran Support An implementation with this level of Fortran support pro-
vides the original Fortran bindings specified in MPI-1, with small additional require-
ments specified in Section 16.2.3.
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Example 16.8 constants.cc, to be compiled into libmpi.a.

const MPI::Intracomm MPI::COMM_WORLD;
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}

Example 16.10 mpi_profile.cc, to be compiled into libpmpi.a.
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}
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2. Extended Fortran Support An implementation with this level of Fortran sup-
port provides Basic Fortran Support plus additional features that specifically support
Fortran 90, as described in Section 16.2.4.

A compliant MPI-2 implementation providing a Fortran interface must provide Ex-
tended Fortran Support unless the target compiler does not support modules or KIND-
parameterized types.

16.2.2 Problems With Fortran Bindings for MPI

This section discusses a number of problems that may arise when using MPI in a Fortran
program. It is intended as advice to users, and clarifies how MPI interacts with Fortran. It
does not add to the standard, but is intended to clarify the standard.

As noted in the original MPI specification, the interface violates the Fortran standard
in several ways. While these cause few problems for Fortran 77 programs, they become
more significant for Fortran 90 programs, so that users must exercise care when using new
Fortran 90 features. The violations were originally adopted and have been retained because
they are important for the usability of MPI. The rest of this section describes the potential
problems in detail. It supersedes and replaces the discussion of Fortran bindings in the
original MPI specification (for Fortran 90, not Fortran 77).

The following MPI features are inconsistent with Fortran 90.

1. An MPI subroutine with a choice argument may be called with different argument
types.

2. An MPI subroutine with an assumed-size dummy argument may be passed an actual
scalar argument.

3. Many MPI routines assume that actual arguments are passed by address and that
arguments are not copied on entrance to or exit from the subroutine.

4. An MPI implementation may read or modify user data (e.g., communication buffers
used by nonblocking communications) concurrently with a user program that is exe-
cuting outside of MPI calls.

5. Several named “constants,” such as MPI_BOTTOM, MPI_IN_PLACE,
MPI_STATUS_IGNORE, MPI_STATUSES_IGNORE, MPI_ERRCODES_IGNORE,
MPI_ARGV_NULL, and MPI_ARGVS_NULL are not ordinary Fortran constants and re-
quire a special implementation. See Section 2.5.4 on page 14 for more information.

6. The memory allocation routine MPI_ALLOC_MEM can’t be usefully used in Fortran
without a language extension that allows the allocated memory to be associated with
a Fortran variable.

MPI-1 contained several routines that take address-sized information as input or return
address-sized information as output. In C such arguments were of type MPI_Aint and in
Fortran of type INTEGER. On machines where integers are smaller than addresses, these
routines can lose information. In MPI-2 the use of these functions has been deprecated and
they have been replaced by routines taking INTEGER arguments of KIND=MPI_ADDRESS_KIND.
A number of new MPI-2 functions also take INTEGER arguments of non-default KIND. See
Section 2.6 on page 15 and Section 4.1.1 on page 79 for more information.
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Problems Due to Strong Typing

All MPI functions with choice arguments associate actual arguments of different Fortran
datatypes with the same dummy argument. This is not allowed by Fortran 77, and in
Fortran 90 is technically only allowed if the function is overloaded with a different function
for each type. In C, the use of void* formal arguments avoids these problems.

The following code fragment is technically illegal and may generate a compile-time
error.

integer i(5)

real x(5)

...

call mpi_send(x, 5, MPI_REAL, ...)

call mpi_send(i, 5, MPI_INTEGER, ...)

In practice, it is rare for compilers to do more than issue a warning, though there is concern
that Fortran 90 compilers are more likely to return errors.

It is also technically illegal in Fortran to pass a scalar actual argument to an array
dummy argument. Thus the following code fragment may generate an error since the buf
argument to MPI_SEND is declared as an assumed-size array <type> buf(*).

integer a

call mpi_send(a, 1, MPI_INTEGER, ...)

Advice to users. In the event that you run into one of the problems related to type
checking, you may be able to work around it by using a compiler flag, by compiling
separately, or by using an MPI implementation with Extended Fortran Support as de-
scribed in Section 16.2.4. An alternative that will usually work with variables local to a
routine but not with arguments to a function or subroutine is to use the EQUIVALENCE
statement to create another variable with a type accepted by the compiler. (End of
advice to users.)

Problems Due to Data Copying and Sequence Association

Implicit in MPI is the idea of a contiguous chunk of memory accessible through a linear
address space. MPI copies data to and from this memory. An MPI program specifies the
location of data by providing memory addresses and offsets. In the C language, sequence
association rules plus pointers provide all the necessary low-level structure.

In Fortran 90, user data is not necessarily stored contiguously. For example, the array
section A(1:N:2) involves only the elements of A with indices 1, 3, 5, ... . The same is true
for a pointer array whose target is such a section. Most compilers ensure that an array that
is a dummy argument is held in contiguous memory if it is declared with an explicit shape
(e.g., B(N)) or is of assumed size (e.g., B(*)). If necessary, they do this by making a copy
of the array into contiguous memory. Both Fortran 77 and Fortran 90 are carefully worded
to allow such copying to occur, but few Fortran 77 compilers do it.1

Because MPI dummy buffer arguments are assumed-size arrays, this leads to a serious
problem for a non-blocking call: the compiler copies the temporary array back on return
but MPI continues to copy data to the memory that held it. For example, consider the
following code fragment:

1Technically, the Fortran standards are worded to allow non-contiguous storage of any array data.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

16.2. FORTRAN SUPPORT 463

Problems Due to Strong Typing

All MPI functions with choice arguments associate actual arguments of different Fortran
datatypes with the same dummy argument. This is not allowed by Fortran 77, and in
Fortran 90 is technically only allowed if the function is overloaded with a different function
for each type. In C, the use of void* formal arguments avoids these problems.

The following code fragment is technically illegal and may generate a compile-time
error.

integer i(5)

real x(5)

...

call mpi_send(x, 5, MPI_REAL, ...)

call mpi_send(i, 5, MPI_INTEGER, ...)

In practice, it is rare for compilers to do more than issue a warning, though there is concern
that Fortran 90 compilers are more likely to return errors.

It is also technically illegal in Fortran to pass a scalar actual argument to an array
dummy argument. Thus the following code fragment may generate an error since the buf
argument to MPI_SEND is declared as an assumed-size array <type> buf(*).

integer a

call mpi_send(a, 1, MPI_INTEGER, ...)

Advice to users. In the event that you run into one of the problems related to type
checking, you may be able to work around it by using a compiler flag, by compiling
separately, or by using an MPI implementation with Extended Fortran Support as de-
scribed in Section 16.2.4. An alternative that will usually work with variables local to a
routine but not with arguments to a function or subroutine is to use the EQUIVALENCE
statement to create another variable with a type accepted by the compiler. (End of
advice to users.)

Problems Due to Data Copying and Sequence Association

Implicit in MPI is the idea of a contiguous chunk of memory accessible through a linear
address space. MPI copies data to and from this memory. An MPI program specifies the
location of data by providing memory addresses and offsets. In the C language, sequence
association rules plus pointers provide all the necessary low-level structure.

In Fortran 90, user data is not necessarily stored contiguously. For example, the array
section A(1:N:2) involves only the elements of A with indices 1, 3, 5, ... . The same is true
for a pointer array whose target is such a section. Most compilers ensure that an array that
is a dummy argument is held in contiguous memory if it is declared with an explicit shape
(e.g., B(N)) or is of assumed size (e.g., B(*)). If necessary, they do this by making a copy
of the array into contiguous memory. Both Fortran 77 and Fortran 90 are carefully worded
to allow such copying to occur, but few Fortran 77 compilers do it.1

Because MPI dummy buffer arguments are assumed-size arrays, this leads to a serious
problem for a non-blocking call: the compiler copies the temporary array back on return
but MPI continues to copy data to the memory that held it. For example, consider the
following code fragment:

1Technically, the Fortran standards are worded to allow non-contiguous storage of any array data.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



464 CHAPTER 16. LANGUAGE BINDINGS

real a(100)

call MPI_IRECV(a(1:100:2), MPI_REAL, 50, ...)

Since the first dummy argument to MPI_IRECV is an assumed-size array (<type> buf(*)),
the array section a(1:100:2) is copied to a temporary before being passed to MPI_IRECV,
so that it is contiguous in memory. MPI_IRECV returns immediately, and data is copied
from the temporary back into the array a. Sometime later, MPI may write to the address of
the deallocated temporary. Copying is also a problem for MPI_ISEND since the temporary
array may be deallocated before the data has all been sent from it.

Most Fortran 90 compilers do not make a copy if the actual argument is the whole of
an explicit-shape or assumed-size array or is a ‘simple’ section such as A(1:N) of such an
array. (We define ‘simple’ more fully in the next paragraph.) Also, many compilers treat
allocatable arrays the same as they treat explicit-shape arrays in this regard (though we
know of one that does not). However, the same is not true for assumed-shape and pointer
arrays; since they may be discontiguous, copying is often done. It is this copying that causes
problems for MPI as described in the previous paragraph.

Our formal definition of a ‘simple’ array section is

name ( [:,]... [<subscript>]:[<subscript>] [,<subscript>]... )

That is, there are zero or more dimensions that are selected in full, then one dimension
selected without a stride, then zero or more dimensions that are selected with a simple
subscript. Examples are

A(1:N), A(:,N), A(:,1:N,1), A(1:6,N), A(:,:,1:N)

Because of Fortran’s column-major ordering, where the first index varies fastest, a simple
section of a contiguous array will also be contiguous.2

The same problem can occur with a scalar argument. Some compilers, even for Fortran
77, make a copy of some scalar dummy arguments within a called procedure. That this can
cause a problem is illustrated by the example

call user1(a,rq)

call MPI_WAIT(rq,status,ierr)

write (*,*) a

subroutine user1(buf,request)

call MPI_IRECV(buf,...,request,...)

end

If a is copied, MPI_IRECV will alter the copy when it completes the communication
and will not alter a itself.

Note that copying will almost certainly occur for an argument that is a non-trivial
expression (one with at least one operator or function call), a section that does not select a
contiguous part of its parent (e.g., A(1:n:2)), a pointer whose target is such a section, or
an assumed-shape array that is (directly or indirectly) associated with such a section.

2To keep the definition of ‘simple’ simple, we have chosen to require all but one of the section subscripts

to be without bounds. A colon without bounds makes it obvious both to the compiler and to the reader

that the whole of the dimension is selected. It would have been possible to allow cases where the whole

dimension is selected with one or two bounds, but this means for the reader that the array declaration or

most recent allocation has to be consulted and for the compiler that a run-time check may be required.
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77, make a copy of some scalar dummy arguments within a called procedure. That this can
cause a problem is illustrated by the example

call user1(a,rq)
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write (*,*) a
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call MPI_IRECV(buf,...,request,...)

end

If a is copied, MPI_IRECV will alter the copy when it completes the communication
and will not alter a itself.

Note that copying will almost certainly occur for an argument that is a non-trivial
expression (one with at least one operator or function call), a section that does not select a
contiguous part of its parent (e.g., A(1:n:2)), a pointer whose target is such a section, or
an assumed-shape array that is (directly or indirectly) associated with such a section.
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If there is a compiler option that inhibits copying of arguments, in either the calling or
called procedure, this should be employed.

If a compiler makes copies in the calling procedure of arguments that are explicit-
shape or assumed-size arrays, simple array sections of such arrays, or scalars, and if there
is no compiler option to inhibit this, then the compiler cannot be used for applications
that use MPI_GET_ADDRESS, or any non-blocking MPI routine. If a compiler copies scalar
arguments in the called procedure and there is no compiler option to inhibit this, then this
compiler cannot be used for applications that use memory references across subroutine calls
as in the example above.

Special Constants

MPI requires a number of special “constants” that cannot be implemented as normal For-
tran constants, including MPI_BOTTOM, MPI_STATUS_IGNORE, MPI_IN_PLACE,
MPI_STATUSES_IGNORE and MPI_ERRCODES_IGNORE. In C, these are implemented as con-
stant pointers, usually as NULL and are used where the function prototype calls for a pointer
to a variable, not the variable itself.

In Fortran the implementation of these special constants may require the use of lan-
guage constructs that are outside the Fortran standard. Using special values for the con-
stants (e.g., by defining them through parameter statements) is not possible because an
implementation cannot distinguish these values from legal data. Typically these constants
are implemented as predefined static variables (e.g., a variable in an MPI-declared COMMON

block), relying on the fact that the target compiler passes data by address. Inside the
subroutine, this address can be extracted by some mechanism outside the Fortran standard
(e.g., by Fortran extensions or by implementing the function in C).

Fortran 90 Derived Types

MPI does not explicitly support passing Fortran 90 derived types to choice dummy argu-
ments. Indeed, for MPI implementations that provide explicit interfaces through the mpi

module a compiler will reject derived type actual arguments at compile time. Even when no
explicit interfaces are given, users should be aware that Fortran 90 provides no guarantee
of sequence association for derived types or arrays of derived types. For instance, an array
of a derived type consisting of two elements may be implemented as an array of the first
elements followed by an array of the second. Use of the SEQUENCE attribute may help here,
somewhat.

The following code fragment shows one possible way to send a derived type in Fortran.
The example assumes that all data is passed by address.

type mytype

integer i

real x

double precision d

end type mytype

type(mytype) foo

integer blocklen(3), type(3)

integer(MPI_ADDRESS_KIND) disp(3), base
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call MPI_GET_ADDRESS(foo%i, disp(1), ierr)

call MPI_GET_ADDRESS(foo%x, disp(2), ierr)

call MPI_GET_ADDRESS(foo%d, disp(3), ierr)

base = disp(1)

disp(1) = disp(1) - base

disp(2) = disp(2) - base

disp(3) = disp(3) - base

blocklen(1) = 1

blocklen(2) = 1

blocklen(3) = 1

type(1) = MPI_INTEGER

type(2) = MPI_REAL

type(3) = MPI_DOUBLE_PRECISION

call MPI_TYPE_CREATE_STRUCT(3, blocklen, disp, type, newtype, ierr)

call MPI_TYPE_COMMIT(newtype, ierr)

! unpleasant to send foo%i instead of foo, but it works for scalar

! entities of type mytype

call MPI_SEND(foo%i, 1, newtype, ...)

A Problem with Register Optimization

MPI provides operations that may be hidden from the user code and run concurrently with
it, accessing the same memory as user code. Examples include the data transfer for an
MPI_IRECV. The optimizer of a compiler will assume that it can recognize periods when a
copy of a variable can be kept in a register without reloading from or storing to memory.
When the user code is working with a register copy of some variable while the hidden
operation reads or writes the memory copy, problems occur. This section discusses register
optimization pitfalls.

When a variable is local to a Fortran subroutine (i.e., not in a module or COMMON

block), the compiler will assume that it cannot be modified by a called subroutine unless it
is an actual argument of the call. In the most common linkage convention, the subroutine
is expected to save and restore certain registers. Thus, the optimizer will assume that a
register which held a valid copy of such a variable before the call will still hold a valid copy
on return.

Normally users are not afflicted with this. But the user should pay attention to this
section if in his/her program a buffer argument to an MPI_SEND, MPI_RECV etc., uses
a name which hides the actual variables involved. MPI_BOTTOM with an MPI_Datatype
containing absolute addresses is one example. Creating a datatype which uses one variable
as an anchor and brings along others by using MPI_GET_ADDRESS to determine their
offsets from the anchor is another. The anchor variable would be the only one mentioned
in the call. Also attention must be paid if MPI operations are used that run in parallel with
the user’s application.
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is expected to save and restore certain registers. Thus, the optimizer will assume that a
register which held a valid copy of such a variable before the call will still hold a valid copy
on return.

Normally users are not afflicted with this. But the user should pay attention to this
section if in his/her program a buffer argument to an MPI_SEND, MPI_RECV etc., uses
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containing absolute addresses is one example. Creating a datatype which uses one variable
as an anchor and brings along others by using MPI_GET_ADDRESS to determine their
offsets from the anchor is another. The anchor variable would be the only one mentioned
in the call. Also attention must be paid if MPI operations are used that run in parallel with
the user’s application.
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Example 16.11 shows what Fortran compilers are allowed to do.

Example 16.11 Fortran 90 register optimization.

This source ... can be compiled as:

call MPI_GET_ADDRESS(buf,bufaddr, call MPI_GET_ADDRESS(buf,...)

ierror)

call MPI_TYPE_CREATE_STRUCT(1,1, call MPI_TYPE_CREATE_STRUCT(...)

bufaddr,

MPI_REAL,type,ierror)

call MPI_TYPE_COMMIT(type,ierror) call MPI_TYPE_COMMIT(...)

val_old = buf register = buf

val_old = register

call MPI_RECV(MPI_BOTTOM,1,type,...) call MPI_RECV(MPI_BOTTOM,...)

val_new = buf val_new = register

The compiler does not invalidate the register because it cannot see that MPI_RECV
changes the value of buf. The access of buf is hidden by the use of MPI_GET_ADDRESS
and MPI_BOTTOM.

Example 16.12 shows extreme, but allowed, possibilities.

Example 16.12 Fortran 90 register optimization – extreme.

Source compiled as or compiled as

call MPI_IRECV(buf,..req) call MPI_IRECV(buf,..req) call MPI_IRECV(buf,..req)

register = buf b1 = buf

call MPI_WAIT(req,..) call MPI_WAIT(req,..) call MPI_WAIT(req,..)

b1 = buf b1 := register

MPI_WAIT on a concurrent thread modifies buf between the invocation of MPI_IRECV
and the finish of MPI_WAIT. But the compiler cannot see any possibility that buf can be
changed after MPI_IRECV has returned, and may schedule the load of buf earlier than
typed in the source. It has no reason to avoid using a register to hold buf across the call to
MPI_WAIT. It also may reorder the instructions as in the case on the right.

To prevent instruction reordering or the allocation of a buffer in a register there are
two possibilities in portable Fortran code:

• The compiler may be prevented from moving a reference to a buffer across a call to
an MPI subroutine by surrounding the call by calls to an external subroutine with
the buffer as an actual argument. Note that if the intent is declared in the external
subroutine, it must be OUT or INOUT. The subroutine itself may have an empty body,
but the compiler does not know this and has to assume that the buffer may be altered.
For example, the above call of MPI_RECV might be replaced by

call DD(buf)

call MPI_RECV(MPI_BOTTOM,...)

call DD(buf)
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and the finish of MPI_WAIT. But the compiler cannot see any possibility that buf can be
changed after MPI_IRECV has returned, and may schedule the load of buf earlier than
typed in the source. It has no reason to avoid using a register to hold buf across the call to
MPI_WAIT. It also may reorder the instructions as in the case on the right.

To prevent instruction reordering or the allocation of a buffer in a register there are
two possibilities in portable Fortran code:

• The compiler may be prevented from moving a reference to a buffer across a call to
an MPI subroutine by surrounding the call by calls to an external subroutine with
the buffer as an actual argument. Note that if the intent is declared in the external
subroutine, it must be OUT or INOUT. The subroutine itself may have an empty body,
but the compiler does not know this and has to assume that the buffer may be altered.
For example, the above call of MPI_RECV might be replaced by
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call MPI_RECV(MPI_BOTTOM,...)
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with the separately compiled

subroutine DD(buf)

integer buf

end

(assuming that buf has type INTEGER). The compiler may be similarly prevented from
moving a reference to a variable across a call to an MPI subroutine.

In the case of a non-blocking call, as in the above call of MPI_WAIT, no reference to
the buffer is permitted until it has been verified that the transfer has been completed.
Therefore, in this case, the extra call ahead of the MPI call is not necessary, i.e., the
call of MPI_WAIT in the example might be replaced by

call MPI_WAIT(req,..)

call DD(buf)

• An alternative is to put the buffer or variable into a module or a common block and
access it through a USE or COMMON statement in each scope where it is referenced,
defined or appears as an actual argument in a call to an MPI routine. The compiler
will then have to assume that the MPI procedure (MPI_RECV in the above example)
may alter the buffer or variable, provided that the compiler cannot analyze that the
MPI procedure does not reference the module or common block.

In the longer term, the attribute VOLATILE is under consideration for Fortran 2000 and
would give the buffer or variable the properties needed, but it would inhibit optimization
of any code containing the buffer or variable.

In C, subroutines which modify variables that are not in the argument list will not cause
register optimization problems. This is because taking pointers to storage objects by using
the & operator and later referencing the objects by way of the pointer is an integral part of
the language. A C compiler understands the implications, so that the problem should not
occur, in general. However, some compilers do offer optional aggressive optimization levels
which may not be safe.

16.2.3 Basic Fortran Support

Because Fortran 90 is (for all practical purposes) a superset of Fortran 77, Fortran 90
(and future) programs can use the original Fortran interface. The following additional
requirements are added:

1. Implementations are required to provide the file mpif.h, as described in the original
MPI-1 specification.

2. mpif.h must be valid and equivalent for both fixed- and free- source form.

Advice to implementors. To make mpif.h compatible with both fixed- and free-source
forms, to allow automatic inclusion by preprocessors, and to allow extended fixed-form
line length, it is recommended that requirement two be met by constructing mpif.h

without any continuation lines. This should be possible because mpif.h contains
only declarations, and because common block declarations can be split among several
lines. To support Fortran 77 as well as Fortran 90, it may be necessary to eliminate
all comments from mpif.h. (End of advice to implementors.)
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Because Fortran 90 is (for all practical purposes) a superset of Fortran 77, Fortran 90
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MPI-1 specification.

2. mpif.h must be valid and equivalent for both fixed- and free- source form.

Advice to implementors. To make mpif.h compatible with both fixed- and free-source
forms, to allow automatic inclusion by preprocessors, and to allow extended fixed-form
line length, it is recommended that requirement two be met by constructing mpif.h

without any continuation lines. This should be possible because mpif.h contains
only declarations, and because common block declarations can be split among several
lines. To support Fortran 77 as well as Fortran 90, it may be necessary to eliminate
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16.2.4 Extended Fortran Support

Implementations with Extended Fortran support must provide:

1. An mpi module

2. A new set of functions to provide additional support for Fortran intrinsic numeric
types, including parameterized types: MPI_SIZEOF, MPI_TYPE_MATCH_SIZE,
MPI_TYPE_CREATE_F90_INTEGER, MPI_TYPE_CREATE_F90_REAL and
MPI_TYPE_CREATE_F90_COMPLEX. Parameterized types are Fortran intrinsic types
which are specified using KIND type parameters. These routines are described in detail
in Section 16.2.5.

Additionally, high-quality implementations should provide a mechanism to prevent fatal
type mismatch errors for MPI routines with choice arguments.

The mpi Module

An MPI implementation must provide a module named mpi that can be USEd in a Fortran
90 program. This module must:

• Define all named MPI constants

• Declare MPI functions that return a value.

An MPI implementation may provide in the mpi module other features that enhance
the usability of MPI while maintaining adherence to the standard. For example, it may:

• Provide interfaces for all or for a subset of MPI routines.

• Provide INTENT information in these interface blocks.

Advice to implementors. The appropriate INTENT may be different from what is
given in the MPI generic interface. Implementations must choose INTENT so that the
function adheres to the MPI standard. (End of advice to implementors.)

Rationale. The intent given by the MPI generic interface is not precisely defined
and does not in all cases correspond to the correct Fortran INTENT. For instance,
receiving into a buffer specified by a datatype with absolute addresses may require
associating MPI_BOTTOM with a dummy OUT argument. Moreover, “constants” such
as MPI_BOTTOM and MPI_STATUS_IGNORE are not constants as defined by Fortran,
but “special addresses” used in a nonstandard way. Finally, the MPI-1 generic intent
is changed in several places by MPI-2. For instance, MPI_IN_PLACE changes the sense
of an OUT argument to be INOUT. (End of rationale.)

Applications may use either the mpi module or the mpif.h include file. An implemen-
tation may require use of the module to prevent type mismatch errors (see below).

Advice to users. It is recommended to use the mpi module even if it is not necessary to
use it to avoid type mismatch errors on a particular system. Using a module provides
several potential advantages over using an include file. (End of advice to users.)

It must be possible to link together routines some of which USE mpi and others of which
INCLUDE mpif.h.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

16.2. FORTRAN SUPPORT 469
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is changed in several places by MPI-2. For instance, MPI_IN_PLACE changes the sense
of an OUT argument to be INOUT. (End of rationale.)

Applications may use either the mpi module or the mpif.h include file. An implemen-
tation may require use of the module to prevent type mismatch errors (see below).

Advice to users. It is recommended to use the mpi module even if it is not necessary to
use it to avoid type mismatch errors on a particular system. Using a module provides
several potential advantages over using an include file. (End of advice to users.)
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No Type Mismatch Problems for Subroutines with Choice Arguments

A high-quality MPI implementation should provide a mechanism to ensure that MPI choice
arguments do not cause fatal compile-time or run-time errors due to type mismatch. An
MPI implementation may require applications to use the mpi module, or require that it be
compiled with a particular compiler flag, in order to avoid type mismatch problems.

Advice to implementors. In the case where the compiler does not generate errors,
nothing needs to be done to the existing interface. In the case where the compiler
may generate errors, a set of overloaded functions may be used. See the paper of M.
Hennecke [26]. Even if the compiler does not generate errors, explicit interfaces for
all routines would be useful for detecting errors in the argument list. Also, explicit
interfaces which give INTENT information can reduce the amount of copying for BUF(*)
arguments. (End of advice to implementors.)

16.2.5 Additional Support for Fortran Numeric Intrinsic Types

The routines in this section are part of Extended Fortran Support described in Section
16.2.4.

MPI provides a small number of named datatypes that correspond to named intrinsic
types supported by C and Fortran. These include MPI_INTEGER, MPI_REAL, MPI_INT,
MPI_DOUBLE, etc., as well as the optional types MPI_REAL4, MPI_REAL8, etc. There is a
one-to-one correspondence between language declarations and MPI types.

Fortran (starting with Fortran 90) provides so-called KIND-parameterized types. These
types are declared using an intrinsic type (one of INTEGER, REAL, COMPLEX, LOGICAL and
CHARACTER) with an optional integer KIND parameter that selects from among one or more
variants. The specific meaning of different KIND values themselves are implementation
dependent and not specified by the language. Fortran provides the KIND selection functions
selected_real_kind for REAL and COMPLEX types, and selected_int_kind for INTEGER

types that allow users to declare variables with a minimum precision or number of digits.
These functions provide a portable way to declare KIND-parameterized REAL, COMPLEX and
INTEGER variables in Fortran. This scheme is backward compatible with Fortran 77. REAL

and INTEGER Fortran variables have a default KIND if none is specified. Fortran DOUBLE
PRECISION variables are of intrinsic type REAL with a non-default KIND. The following
two declarations are equivalent:

double precision x

real(KIND(0.0d0)) x

MPI provides two orthogonal methods to communicate using numeric intrinsic types.
The first method can be used when variables have been declared in a portable way —
using default KIND or using KIND parameters obtained with the selected_int_kind or
selected_real_kind functions. With this method, MPI automatically selects the correct
data size (e.g., 4 or 8 bytes) and provides representation conversion in heterogeneous en-
vironments. The second method gives the user complete control over communication by
exposing machine representations.
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PRECISION variables are of intrinsic type REAL with a non-default KIND. The following
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Parameterized Datatypes with Specified Precision and Exponent Range

MPI provides named datatypes corresponding to standard Fortran 77 numeric types —
MPI_INTEGER, MPI_COMPLEX, MPI_REAL, MPI_DOUBLE_PRECISION and
MPI_DOUBLE_COMPLEX. MPI automatically selects the correct data size and provides rep-
resentation conversion in heterogeneous environments. The mechanism described in this
section extends this model to support portable parameterized numeric types.

The model for supporting portable parameterized types is as follows. Real variables
are declared (perhaps indirectly) using selected_real_kind(p, r) to determine the KIND

parameter, where p is decimal digits of precision and r is an exponent range. Implicitly
MPI maintains a two-dimensional array of predefined MPI datatypes D(p, r). D(p, r) is
defined for each value of (p, r) supported by the compiler, including pairs for which one
value is unspecified. Attempting to access an element of the array with an index (p, r) not
supported by the compiler is erroneous. MPI implicitly maintains a similar array of COMPLEX
datatypes. For integers, there is a similar implicit array related to selected_int_kind and
indexed by the requested number of digits r. Note that the predefined datatypes contained
in these implicit arrays are not the same as the named MPI datatypes MPI_REAL, etc., but
a new set.

Advice to implementors. The above description is for explanatory purposes only. It
is not expected that implementations will have such internal arrays. (End of advice
to implementors.)

Advice to users. selected_real_kind() maps a large number of (p,r) pairs to a
much smaller number of KIND parameters supported by the compiler. KIND parameters
are not specified by the language and are not portable. From the language point of
view intrinsic types of the same base type and KIND parameter are of the same type. In
order to allow interoperability in a heterogeneous environment, MPI is more stringent.
The corresponding MPI datatypes match if and only if they have the same (p,r) value
(REAL and COMPLEX) or r value (INTEGER). Thus MPI has many more datatypes than
there are fundamental language types. (End of advice to users.)

MPI_TYPE_CREATE_F90_REAL(p, r, newtype)

IN p precision, in decimal digits (integer)

IN r decimal exponent range (integer)

OUT newtype the requested MPI datatype (handle)

int MPI_Type_create_f90_real(int p, int r, MPI_Datatype *newtype)

MPI_TYPE_CREATE_F90_REAL(P, R, NEWTYPE, IERROR)

INTEGER P, R, NEWTYPE, IERROR

static MPI::Datatype MPI::Datatype::Create_f90_real(int p, int r)

This function returns a predefined MPI datatype that matches a REAL variable of KIND
selected_real_kind(p, r). In the model described above it returns a handle for the el-
ement D(p, r). Either p or r may be omitted from calls to selected_real_kind(p, r)
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Parameterized Datatypes with Specified Precision and Exponent Range
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MPI_INTEGER, MPI_COMPLEX, MPI_REAL, MPI_DOUBLE_PRECISION and
MPI_DOUBLE_COMPLEX. MPI automatically selects the correct data size and provides rep-
resentation conversion in heterogeneous environments. The mechanism described in this
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The model for supporting portable parameterized types is as follows. Real variables
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parameter, where p is decimal digits of precision and r is an exponent range. Implicitly
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indexed by the requested number of digits r. Note that the predefined datatypes contained
in these implicit arrays are not the same as the named MPI datatypes MPI_REAL, etc., but
a new set.

Advice to implementors. The above description is for explanatory purposes only. It
is not expected that implementations will have such internal arrays. (End of advice
to implementors.)

Advice to users. selected_real_kind() maps a large number of (p,r) pairs to a
much smaller number of KIND parameters supported by the compiler. KIND parameters
are not specified by the language and are not portable. From the language point of
view intrinsic types of the same base type and KIND parameter are of the same type. In
order to allow interoperability in a heterogeneous environment, MPI is more stringent.
The corresponding MPI datatypes match if and only if they have the same (p,r) value
(REAL and COMPLEX) or r value (INTEGER). Thus MPI has many more datatypes than
there are fundamental language types. (End of advice to users.)

MPI_TYPE_CREATE_F90_REAL(p, r, newtype)

IN p precision, in decimal digits (integer)

IN r decimal exponent range (integer)

OUT newtype the requested MPI datatype (handle)

int MPI_Type_create_f90_real(int p, int r, MPI_Datatype *newtype)

MPI_TYPE_CREATE_F90_REAL(P, R, NEWTYPE, IERROR)

INTEGER P, R, NEWTYPE, IERROR

static MPI::Datatype MPI::Datatype::Create_f90_real(int p, int r)

This function returns a predefined MPI datatype that matches a REAL variable of KIND
selected_real_kind(p, r). In the model described above it returns a handle for the el-
ement D(p, r). Either p or r may be omitted from calls to selected_real_kind(p, r)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



472 CHAPTER 16. LANGUAGE BINDINGS

(but not both). Analogously, either p or r may be set to MPI_UNDEFINED. In communica-
tion, an MPI datatype A returned by MPI_TYPE_CREATE_F90_REAL matches a datatype
B if and only if B was returned by MPI_TYPE_CREATE_F90_REAL called with the same
values for p and r or B is a duplicate of such a datatype. Restrictions on using the returned
datatype with the “external32” data representation are given on page 474.

It is erroneous to supply values for p and r not supported by the compiler.

MPI_TYPE_CREATE_F90_COMPLEX(p, r, newtype)

IN p precision, in decimal digits (integer)

IN r decimal exponent range (integer)

OUT newtype the requested MPI datatype (handle)

int MPI_Type_create_f90_complex(int p, int r, MPI_Datatype *newtype)

MPI_TYPE_CREATE_F90_COMPLEX(P, R, NEWTYPE, IERROR)

INTEGER P, R, NEWTYPE, IERROR

static MPI::Datatype MPI::Datatype::Create_f90_complex(int p, int r)

This function returns a predefined MPI datatype that matches a
COMPLEX variable of KIND selected_real_kind(p, r). Either p or r may be omitted from
calls to selected_real_kind(p, r) (but not both). Analogously, either p or r may be set
to MPI_UNDEFINED. Matching rules for datatypes created by this function are analogous to
the matching rules for datatypes created by MPI_TYPE_CREATE_F90_REAL. Restrictions
on using the returned datatype with the “external32” data representation are given on page
474.

It is erroneous to supply values for p and r not supported by the compiler.

MPI_TYPE_CREATE_F90_INTEGER(r, newtype)

IN r decimal exponent range, i.e., number of decimal digits

(integer)

OUT newtype the requested MPI datatype (handle)

int MPI_Type_create_f90_integer(int r, MPI_Datatype *newtype)

MPI_TYPE_CREATE_F90_INTEGER(R, NEWTYPE, IERROR)

INTEGER R, NEWTYPE, IERROR

static MPI::Datatype MPI::Datatype::Create_f90_integer(int r)

This function returns a predefined MPI datatype that matches a INTEGER variable of
KIND selected_int_kind(r). Matching rules for datatypes created by this function are
analogous to the matching rules for datatypes created by MPI_TYPE_CREATE_F90_REAL.
Restrictions on using the returned datatype with the “external32” data representation are
given on page 474.

It is erroneous to supply a value for r that is not supported by the compiler.
Example:
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(but not both). Analogously, either p or r may be set to MPI_UNDEFINED. In communica-
tion, an MPI datatype A returned by MPI_TYPE_CREATE_F90_REAL matches a datatype
B if and only if B was returned by MPI_TYPE_CREATE_F90_REAL called with the same
values for p and r or B is a duplicate of such a datatype. Restrictions on using the returned
datatype with the “external32” data representation are given on page 474.

It is erroneous to supply values for p and r not supported by the compiler.

MPI_TYPE_CREATE_F90_COMPLEX(p, r, newtype)

IN p precision, in decimal digits (integer)

IN r decimal exponent range (integer)

OUT newtype the requested MPI datatype (handle)

int MPI_Type_create_f90_complex(int p, int r, MPI_Datatype *newtype)

MPI_TYPE_CREATE_F90_COMPLEX(P, R, NEWTYPE, IERROR)

INTEGER P, R, NEWTYPE, IERROR

static MPI::Datatype MPI::Datatype::Create_f90_complex(int p, int r)

This function returns a predefined MPI datatype that matches a
COMPLEX variable of KIND selected_real_kind(p, r). Either p or r may be omitted from
calls to selected_real_kind(p, r) (but not both). Analogously, either p or r may be set
to MPI_UNDEFINED. Matching rules for datatypes created by this function are analogous to
the matching rules for datatypes created by MPI_TYPE_CREATE_F90_REAL. Restrictions
on using the returned datatype with the “external32” data representation are given on page
474.

It is erroneous to supply values for p and r not supported by the compiler.

MPI_TYPE_CREATE_F90_INTEGER(r, newtype)

IN r decimal exponent range, i.e., number of decimal digits

(integer)

OUT newtype the requested MPI datatype (handle)

int MPI_Type_create_f90_integer(int r, MPI_Datatype *newtype)

MPI_TYPE_CREATE_F90_INTEGER(R, NEWTYPE, IERROR)

INTEGER R, NEWTYPE, IERROR

static MPI::Datatype MPI::Datatype::Create_f90_integer(int r)

This function returns a predefined MPI datatype that matches a INTEGER variable of
KIND selected_int_kind(r). Matching rules for datatypes created by this function are
analogous to the matching rules for datatypes created by MPI_TYPE_CREATE_F90_REAL.
Restrictions on using the returned datatype with the “external32” data representation are
given on page 474.

It is erroneous to supply a value for r that is not supported by the compiler.
Example:
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integer longtype, quadtype

integer, parameter :: long = selected_int_kind(15)

integer(long) ii(10)

real(selected_real_kind(30)) x(10)

call MPI_TYPE_CREATE_F90_INTEGER(15, longtype, ierror)

call MPI_TYPE_CREATE_F90_REAL(30, MPI_UNDEFINED, quadtype, ierror)

...

call MPI_SEND(ii, 10, longtype, ...)

call MPI_SEND(x, 10, quadtype, ...)

Advice to users. The datatypes returned by the above functions are predefined
datatypes. They cannot be freed; they do not need to be committed; they can be
used with predefined reduction operations. There are two situations in which they
behave differently syntactically, but not semantically, from the MPI named predefined
datatypes.

1. MPI_TYPE_GET_ENVELOPE returns special combiners that allow a program to
retrieve the values of p and r.

2. Because the datatypes are not named, they cannot be used as compile-time
initializers or otherwise accessed before a call to one of the
MPI_TYPE_CREATE_F90_ routines.

If a variable was declared specifying a non-default KIND value that was not obtained
with selected_real_kind() or selected_int_kind(), the only way to obtain a
matching MPI datatype is to use the size-based mechanism described in the next
section.

(End of advice to users.)

Advice to implementors. An application may often repeat a call to
MPI_TYPE_CREATE_F90_xxxx with the same combination of (xxxx,p,r). The appli-
cation is not allowed to free the returned predefined, unnamed datatype handles. To
prevent the creation of a potentially huge amount of handles, a high quality MPI imple-
mentation should return the same datatype handle for the same (REAL/COMPLEX/
INTEGER,p,r) combination. Checking for the combination (p,r) in the preceding call
to MPI_TYPE_CREATE_F90_xxxx and using a hash-table to find formerly generated
handles should limit the overhead of finding a previously generated datatype with
same combination of (xxxx,p,r). (End of advice to implementors.)

Rationale. The MPI_TYPE_CREATE_F90_REAL/COMPLEX/INTEGER interface
needs as input the original range and precision values to be able to define useful
and compiler-independent external (Section 13.5.2 on page 414) or user-defined (Sec-
tion 13.5.3 on page 415) data representations, and in order to be able to perform
automatic and efficient data conversions in a heterogeneous environment. (End of
rationale.)
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integer longtype, quadtype

integer, parameter :: long = selected_int_kind(15)
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call MPI_TYPE_CREATE_F90_INTEGER(15, longtype, ierror)

call MPI_TYPE_CREATE_F90_REAL(30, MPI_UNDEFINED, quadtype, ierror)

...

call MPI_SEND(ii, 10, longtype, ...)

call MPI_SEND(x, 10, quadtype, ...)

Advice to users. The datatypes returned by the above functions are predefined
datatypes. They cannot be freed; they do not need to be committed; they can be
used with predefined reduction operations. There are two situations in which they
behave differently syntactically, but not semantically, from the MPI named predefined
datatypes.

1. MPI_TYPE_GET_ENVELOPE returns special combiners that allow a program to
retrieve the values of p and r.

2. Because the datatypes are not named, they cannot be used as compile-time
initializers or otherwise accessed before a call to one of the
MPI_TYPE_CREATE_F90_ routines.

If a variable was declared specifying a non-default KIND value that was not obtained
with selected_real_kind() or selected_int_kind(), the only way to obtain a
matching MPI datatype is to use the size-based mechanism described in the next
section.

(End of advice to users.)

Advice to implementors. An application may often repeat a call to
MPI_TYPE_CREATE_F90_xxxx with the same combination of (xxxx,p,r). The appli-
cation is not allowed to free the returned predefined, unnamed datatype handles. To
prevent the creation of a potentially huge amount of handles, a high quality MPI imple-
mentation should return the same datatype handle for the same (REAL/COMPLEX/
INTEGER,p,r) combination. Checking for the combination (p,r) in the preceding call
to MPI_TYPE_CREATE_F90_xxxx and using a hash-table to find formerly generated
handles should limit the overhead of finding a previously generated datatype with
same combination of (xxxx,p,r). (End of advice to implementors.)

Rationale. The MPI_TYPE_CREATE_F90_REAL/COMPLEX/INTEGER interface
needs as input the original range and precision values to be able to define useful
and compiler-independent external (Section 13.5.2 on page 414) or user-defined (Sec-
tion 13.5.3 on page 415) data representations, and in order to be able to perform
automatic and efficient data conversions in a heterogeneous environment. (End of
rationale.)
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We now specify how the datatypes described in this section behave when used with the
“external32” external data representation described in Section 13.5.2 on page 414.

The external32 representation specifies data formats for integer and floating point val-
ues. Integer values are represented in two’s complement big-endian format. Floating point
values are represented by one of three IEEE formats. These are the IEEE “Single,” “Dou-
ble” and “Double Extended” formats, requiring 4, 8 and 16 bytes of storage, respectively.
For the IEEE “Double Extended” formats, MPI specifies a Format Width of 16 bytes, with
15 exponent bits, bias = +10383, 112 fraction bits, and an encoding analogous to the
“Double” format.

The external32 representations of the datatypes returned by
MPI_TYPE_CREATE_F90_REAL/COMPLEX/INTEGER are given by the following rules.
For MPI_TYPE_CREATE_F90_REAL:

if (p > 33) or (r > 4931) then external32 representation

is undefined

else if (p > 15) or (r > 307) then external32_size = 16

else if (p > 6) or (r > 37) then external32_size = 8

else external32_size = 4

For MPI_TYPE_CREATE_F90_COMPLEX: twice the size as for MPI_TYPE_CREATE_F90_REAL.
For MPI_TYPE_CREATE_F90_INTEGER:

if (r > 38) then external32 representation is undefined

else if (r > 18) then external32_size = 16

else if (r > 9) then external32_size = 8

else if (r > 4) then external32_size = 4

else if (r > 2) then external32_size = 2

else external32_size = 1

If the external32 representation of a datatype is undefined, the result of using the datatype
directly or indirectly (i.e., as part of another datatype or through a duplicated datatype)
in operations that require the external32 representation is undefined. These operations
include MPI_PACK_EXTERNAL, MPI_UNPACK_EXTERNAL and many
MPI_FILE functions, when the “external32” data representation is used. The ranges for
which the external32 representation is undefined are reserved for future standardization.

Support for Size-specific MPI Datatypes

MPI provides named datatypes corresponding to optional Fortran 77 numeric types that
contain explicit byte lengths — MPI_REAL4, MPI_INTEGER8, etc. This section describes a
mechanism that generalizes this model to support all Fortran numeric intrinsic types.

We assume that for each typeclass (integer, real, complex) and each word size there is
a unique machine representation. For every pair (typeclass, n) supported by a compiler,
MPI must provide a named size-specific datatype. The name of this datatype is of the form
MPI_<TYPE>n in C and Fortran and of the form MPI::<TYPE>n in C++ where
<TYPE> is one of REAL, INTEGER and COMPLEX, and n is the length in bytes of the machine
representation. This datatype locally matches all variables of type (typeclass, n). The list
of names for such types includes:

MPI_REAL4
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We now specify how the datatypes described in this section behave when used with the
“external32” external data representation described in Section 13.5.2 on page 414.

The external32 representation specifies data formats for integer and floating point val-
ues. Integer values are represented in two’s complement big-endian format. Floating point
values are represented by one of three IEEE formats. These are the IEEE “Single,” “Dou-
ble” and “Double Extended” formats, requiring 4, 8 and 16 bytes of storage, respectively.
For the IEEE “Double Extended” formats, MPI specifies a Format Width of 16 bytes, with
15 exponent bits, bias = +10383, 112 fraction bits, and an encoding analogous to the
“Double” format.

The external32 representations of the datatypes returned by
MPI_TYPE_CREATE_F90_REAL/COMPLEX/INTEGER are given by the following rules.
For MPI_TYPE_CREATE_F90_REAL:

if (p > 33) or (r > 4931) then external32 representation

is undefined

else if (p > 15) or (r > 307) then external32_size = 16

else if (p > 6) or (r > 37) then external32_size = 8

else external32_size = 4

For MPI_TYPE_CREATE_F90_COMPLEX: twice the size as for MPI_TYPE_CREATE_F90_REAL.
For MPI_TYPE_CREATE_F90_INTEGER:

if (r > 38) then external32 representation is undefined

else if (r > 18) then external32_size = 16

else if (r > 9) then external32_size = 8

else if (r > 4) then external32_size = 4

else if (r > 2) then external32_size = 2

else external32_size = 1

If the external32 representation of a datatype is undefined, the result of using the datatype
directly or indirectly (i.e., as part of another datatype or through a duplicated datatype)
in operations that require the external32 representation is undefined. These operations
include MPI_PACK_EXTERNAL, MPI_UNPACK_EXTERNAL and many
MPI_FILE functions, when the “external32” data representation is used. The ranges for
which the external32 representation is undefined are reserved for future standardization.

Support for Size-specific MPI Datatypes

MPI provides named datatypes corresponding to optional Fortran 77 numeric types that
contain explicit byte lengths — MPI_REAL4, MPI_INTEGER8, etc. This section describes a
mechanism that generalizes this model to support all Fortran numeric intrinsic types.

We assume that for each typeclass (integer, real, complex) and each word size there is
a unique machine representation. For every pair (typeclass, n) supported by a compiler,
MPI must provide a named size-specific datatype. The name of this datatype is of the form
MPI_<TYPE>n in C and Fortran and of the form MPI::<TYPE>n in C++ where
<TYPE> is one of REAL, INTEGER and COMPLEX, and n is the length in bytes of the machine
representation. This datatype locally matches all variables of type (typeclass, n). The list
of names for such types includes:
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MPI_REAL8

MPI_REAL16

MPI_COMPLEX8

MPI_COMPLEX16

MPI_COMPLEX32

MPI_INTEGER1

MPI_INTEGER2

MPI_INTEGER4

MPI_INTEGER8

MPI_INTEGER16

One datatype is required for each representation supported by the compiler. To be backward
compatible with the interpretation of these types in MPI-1, we assume that the nonstandard
declarations REAL*n, INTEGER*n, always create a variable whose representation is of size n.
All these datatypes are predefined.

The following functions allow a user to obtain a size-specific MPI datatype for any
intrinsic Fortran type.

MPI_SIZEOF(x, size)

IN x a Fortran variable of numeric intrinsic type (choice)

OUT size size of machine representation of that type (integer)

MPI_SIZEOF(X, SIZE, IERROR)

<type> X

INTEGER SIZE, IERROR

This function returns the size in bytes of the machine representation of the given
variable. It is a generic Fortran routine and has a Fortran binding only.

Advice to users. This function is similar to the C and C++ sizeof operator but
behaves slightly differently. If given an array argument, it returns the size of the base
element, not the size of the whole array. (End of advice to users.)

Rationale. This function is not available in other languages because it would not be
useful. (End of rationale.)

MPI_TYPE_MATCH_SIZE(typeclass, size, type)

IN typeclass generic type specifier (integer)

IN size size, in bytes, of representation (integer)

OUT type datatype with correct type, size (handle)

int MPI_Type_match_size(int typeclass, int size, MPI_Datatype *type)

MPI_TYPE_MATCH_SIZE(TYPECLASS, SIZE, TYPE, IERROR)

INTEGER TYPECLASS, SIZE, TYPE, IERROR
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One datatype is required for each representation supported by the compiler. To be backward
compatible with the interpretation of these types in MPI-1, we assume that the nonstandard
declarations REAL*n, INTEGER*n, always create a variable whose representation is of size n.
All these datatypes are predefined.

The following functions allow a user to obtain a size-specific MPI datatype for any
intrinsic Fortran type.

MPI_SIZEOF(x, size)

IN x a Fortran variable of numeric intrinsic type (choice)

OUT size size of machine representation of that type (integer)

MPI_SIZEOF(X, SIZE, IERROR)

<type> X

INTEGER SIZE, IERROR

This function returns the size in bytes of the machine representation of the given
variable. It is a generic Fortran routine and has a Fortran binding only.

Advice to users. This function is similar to the C and C++ sizeof operator but
behaves slightly differently. If given an array argument, it returns the size of the base
element, not the size of the whole array. (End of advice to users.)

Rationale. This function is not available in other languages because it would not be
useful. (End of rationale.)

MPI_TYPE_MATCH_SIZE(typeclass, size, type)

IN typeclass generic type specifier (integer)

IN size size, in bytes, of representation (integer)

OUT type datatype with correct type, size (handle)

int MPI_Type_match_size(int typeclass, int size, MPI_Datatype *type)

MPI_TYPE_MATCH_SIZE(TYPECLASS, SIZE, TYPE, IERROR)

INTEGER TYPECLASS, SIZE, TYPE, IERROR
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static MPI::Datatype MPI::Datatype::Match_size(int typeclass, int size)

typeclass is one of MPI_TYPECLASS_REAL, MPI_TYPECLASS_INTEGER and
MPI_TYPECLASS_COMPLEX, corresponding to the desired typeclass. The function returns
an MPI datatype matching a local variable of type (typeclass, size).

This function returns a reference (handle) to one of the predefined named datatypes, not
a duplicate. This type cannot be freed. MPI_TYPE_MATCH_SIZE can be used to obtain a
size-specific type that matches a Fortran numeric intrinsic type by first calling MPI_SIZEOF
in order to compute the variable size, and then calling MPI_TYPE_MATCH_SIZE to find a
suitable datatype. In C and C++, one can use the C function sizeof(), instead of
MPI_SIZEOF. In addition, for variables of default kind the variable’s size can be computed
by a call to MPI_TYPE_GET_EXTENT, if the typeclass is known. It is erroneous to specify
a size not supported by the compiler.

Rationale. This is a convenience function. Without it, it can be tedious to find the
correct named type. See note to implementors below. (End of rationale.)

Advice to implementors. This function could be implemented as a series of tests.

int MPI_Type_match_size(int typeclass, int size, MPI_Datatype *rtype)

{

switch(typeclass) {

case MPI_TYPECLASS_REAL: switch(size) {

case 4: *rtype = MPI_REAL4; return MPI_SUCCESS;

case 8: *rtype = MPI_REAL8; return MPI_SUCCESS;

default: error(...);

}

case MPI_TYPECLASS_INTEGER: switch(size) {

case 4: *rtype = MPI_INTEGER4; return MPI_SUCCESS;

case 8: *rtype = MPI_INTEGER8; return MPI_SUCCESS;

default: error(...); }

... etc. ...

}

}

(End of advice to implementors.)

Communication With Size-specific Types

The usual type matching rules apply to size-specific datatypes: a value sent with datatype
MPI_<TYPE>n can be received with this same datatype on another process. Most modern
computers use 2’s complement for integers and IEEE format for floating point. Thus, com-
munication using these size-specific datatypes will not entail loss of precision or truncation
errors.

Advice to users. Care is required when communicating in a heterogeneous environ-
ment. Consider the following code:

real(selected_real_kind(5)) x(100)
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static MPI::Datatype MPI::Datatype::Match_size(int typeclass, int size)

typeclass is one of MPI_TYPECLASS_REAL, MPI_TYPECLASS_INTEGER and
MPI_TYPECLASS_COMPLEX, corresponding to the desired typeclass. The function returns
an MPI datatype matching a local variable of type (typeclass, size).

This function returns a reference (handle) to one of the predefined named datatypes, not
a duplicate. This type cannot be freed. MPI_TYPE_MATCH_SIZE can be used to obtain a
size-specific type that matches a Fortran numeric intrinsic type by first calling MPI_SIZEOF
in order to compute the variable size, and then calling MPI_TYPE_MATCH_SIZE to find a
suitable datatype. In C and C++, one can use the C function sizeof(), instead of
MPI_SIZEOF. In addition, for variables of default kind the variable’s size can be computed
by a call to MPI_TYPE_GET_EXTENT, if the typeclass is known. It is erroneous to specify
a size not supported by the compiler.

Rationale. This is a convenience function. Without it, it can be tedious to find the
correct named type. See note to implementors below. (End of rationale.)

Advice to implementors. This function could be implemented as a series of tests.

int MPI_Type_match_size(int typeclass, int size, MPI_Datatype *rtype)

{

switch(typeclass) {

case MPI_TYPECLASS_REAL: switch(size) {

case 4: *rtype = MPI_REAL4; return MPI_SUCCESS;

case 8: *rtype = MPI_REAL8; return MPI_SUCCESS;

default: error(...);

}

case MPI_TYPECLASS_INTEGER: switch(size) {

case 4: *rtype = MPI_INTEGER4; return MPI_SUCCESS;

case 8: *rtype = MPI_INTEGER8; return MPI_SUCCESS;

default: error(...); }

... etc. ...

}

}

(End of advice to implementors.)

Communication With Size-specific Types

The usual type matching rules apply to size-specific datatypes: a value sent with datatype
MPI_<TYPE>n can be received with this same datatype on another process. Most modern
computers use 2’s complement for integers and IEEE format for floating point. Thus, com-
munication using these size-specific datatypes will not entail loss of precision or truncation
errors.

Advice to users. Care is required when communicating in a heterogeneous environ-
ment. Consider the following code:

real(selected_real_kind(5)) x(100)
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call MPI_SIZEOF(x, size, ierror)

call MPI_TYPE_MATCH_SIZE(MPI_TYPECLASS_REAL, size, xtype, ierror)

if (myrank .eq. 0) then

... initialize x ...

call MPI_SEND(x, xtype, 100, 1, ...)

else if (myrank .eq. 1) then

call MPI_RECV(x, xtype, 100, 0, ...)

endif

This may not work in a heterogeneous environment if the value of size is not the
same on process 1 and process 0. There should be no problem in a homogeneous
environment. To communicate in a heterogeneous environment, there are at least four
options. The first is to declare variables of default type and use the MPI datatypes
for these types, e.g., declare a variable of type REAL and use MPI_REAL. The second
is to use selected_real_kind or selected_int_kind and with the functions of the
previous section. The third is to declare a variable that is known to be the same
size on all architectures (e.g., selected_real_kind(12) on almost all compilers will
result in an 8-byte representation). The fourth is to carefully check representation
size before communication. This may require explicit conversion to a variable of size
that can be communicated and handshaking between sender and receiver to agree on
a size.

Note finally that using the “external32” representation for I/O requires explicit at-
tention to the representation sizes. Consider the following code:

real(selected_real_kind(5)) x(100)

call MPI_SIZEOF(x, size, ierror)

call MPI_TYPE_MATCH_SIZE(MPI_TYPECLASS_REAL, size, xtype, ierror)

if (myrank .eq. 0) then

call MPI_FILE_OPEN(MPI_COMM_SELF, ’foo’, &

MPI_MODE_CREATE+MPI_MODE_WRONLY, &

MPI_INFO_NULL, fh, ierror)

call MPI_FILE_SET_VIEW(fh, 0, xtype, xtype, ’external32’, &

MPI_INFO_NULL, ierror)

call MPI_FILE_WRITE(fh, x, 100, xtype, status, ierror)

call MPI_FILE_CLOSE(fh, ierror)

endif

call MPI_BARRIER(MPI_COMM_WORLD, ierror)

if (myrank .eq. 1) then

call MPI_FILE_OPEN(MPI_COMM_SELF, ’foo’, MPI_MODE_RDONLY, &

MPI_INFO_NULL, fh, ierror)

call MPI_FILE_SET_VIEW(fh, 0, xtype, xtype, ’external32’, &

MPI_INFO_NULL, ierror)

call MPI_FILE_WRITE(fh, x, 100, xtype, status, ierror)

call MPI_FILE_CLOSE(fh, ierror)

endif
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call MPI_SIZEOF(x, size, ierror)

call MPI_TYPE_MATCH_SIZE(MPI_TYPECLASS_REAL, size, xtype, ierror)

if (myrank .eq. 0) then

... initialize x ...

call MPI_SEND(x, xtype, 100, 1, ...)

else if (myrank .eq. 1) then

call MPI_RECV(x, xtype, 100, 0, ...)

endif

This may not work in a heterogeneous environment if the value of size is not the
same on process 1 and process 0. There should be no problem in a homogeneous
environment. To communicate in a heterogeneous environment, there are at least four
options. The first is to declare variables of default type and use the MPI datatypes
for these types, e.g., declare a variable of type REAL and use MPI_REAL. The second
is to use selected_real_kind or selected_int_kind and with the functions of the
previous section. The third is to declare a variable that is known to be the same
size on all architectures (e.g., selected_real_kind(12) on almost all compilers will
result in an 8-byte representation). The fourth is to carefully check representation
size before communication. This may require explicit conversion to a variable of size
that can be communicated and handshaking between sender and receiver to agree on
a size.

Note finally that using the “external32” representation for I/O requires explicit at-
tention to the representation sizes. Consider the following code:

real(selected_real_kind(5)) x(100)

call MPI_SIZEOF(x, size, ierror)

call MPI_TYPE_MATCH_SIZE(MPI_TYPECLASS_REAL, size, xtype, ierror)

if (myrank .eq. 0) then

call MPI_FILE_OPEN(MPI_COMM_SELF, ’foo’, &

MPI_MODE_CREATE+MPI_MODE_WRONLY, &

MPI_INFO_NULL, fh, ierror)

call MPI_FILE_SET_VIEW(fh, 0, xtype, xtype, ’external32’, &

MPI_INFO_NULL, ierror)

call MPI_FILE_WRITE(fh, x, 100, xtype, status, ierror)

call MPI_FILE_CLOSE(fh, ierror)

endif

call MPI_BARRIER(MPI_COMM_WORLD, ierror)

if (myrank .eq. 1) then

call MPI_FILE_OPEN(MPI_COMM_SELF, ’foo’, MPI_MODE_RDONLY, &

MPI_INFO_NULL, fh, ierror)

call MPI_FILE_SET_VIEW(fh, 0, xtype, xtype, ’external32’, &

MPI_INFO_NULL, ierror)

call MPI_FILE_WRITE(fh, x, 100, xtype, status, ierror)

call MPI_FILE_CLOSE(fh, ierror)

endif
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If processes 0 and 1 are on different machines, this code may not work as expected if
the size is different on the two machines. (End of advice to users.)

16.3 Language Interoperability

16.3.1 Introduction

It is not uncommon for library developers to use one language to develop an applications
library that may be called by an application program written in a different language. MPI
currently supports ISO (previously ANSI) C, C++, and Fortran bindings. It should be
possible for applications in any of the supported languages to call MPI-related functions in
another language.

Moreover, MPI allows the development of client-server code, with MPI communication
used between a parallel client and a parallel server. It should be possible to code the server
in one language and the clients in another language. To do so, communications should be
possible between applications written in different languages.

There are several issues that need to be addressed in order to achieve interoperability.

Initialization We need to specify how the MPI environment is initialized for all languages.

Interlanguage passing of MPI opaque objects We need to specify how MPI object han-
dles are passed between languages. We also need to specify what happens when an
MPI object is accessed in one language, to retrieve information (e.g., attributes) set
in another language.

Interlanguage communication We need to specify how messages sent in one language
can be received in another language.

It is highly desirable that the solution for interlanguage interoperability be extendable
to new languages, should MPI bindings be defined for such languages.

16.3.2 Assumptions

We assume that conventions exist for programs written in one language to call routines
written in another language. These conventions specify how to link routines in different
languages into one program, how to call functions in a different language, how to pass ar-
guments between languages, and the correspondence between basic data types in different
languages. In general, these conventions will be implementation dependent. Furthermore,
not every basic datatype may have a matching type in other languages. For example,
C/C++ character strings may not be compatible with Fortran CHARACTER variables. How-
ever, we assume that a Fortran INTEGER, as well as a (sequence associated) Fortran array
of INTEGERs, can be passed to a C or C++ program. We also assume that Fortran, C, and
C++ have address-sized integers. This does not mean that the default-size integers are the
same size as default-sized pointers, but only that there is some way to hold (and pass) a
C address in a Fortran integer. It is also assumed that INTEGER(KIND=MPI_OFFSET_KIND)
can be passed from Fortran to C as MPI_Offset.
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If processes 0 and 1 are on different machines, this code may not work as expected if
the size is different on the two machines. (End of advice to users.)

16.3 Language Interoperability

16.3.1 Introduction

It is not uncommon for library developers to use one language to develop an applications
library that may be called by an application program written in a different language. MPI
currently supports ISO (previously ANSI) C, C++, and Fortran bindings. It should be
possible for applications in any of the supported languages to call MPI-related functions in
another language.

Moreover, MPI allows the development of client-server code, with MPI communication
used between a parallel client and a parallel server. It should be possible to code the server
in one language and the clients in another language. To do so, communications should be
possible between applications written in different languages.

There are several issues that need to be addressed in order to achieve interoperability.

Initialization We need to specify how the MPI environment is initialized for all languages.

Interlanguage passing of MPI opaque objects We need to specify how MPI object han-
dles are passed between languages. We also need to specify what happens when an
MPI object is accessed in one language, to retrieve information (e.g., attributes) set
in another language.

Interlanguage communication We need to specify how messages sent in one language
can be received in another language.

It is highly desirable that the solution for interlanguage interoperability be extendable
to new languages, should MPI bindings be defined for such languages.

16.3.2 Assumptions

We assume that conventions exist for programs written in one language to call routines
written in another language. These conventions specify how to link routines in different
languages into one program, how to call functions in a different language, how to pass ar-
guments between languages, and the correspondence between basic data types in different
languages. In general, these conventions will be implementation dependent. Furthermore,
not every basic datatype may have a matching type in other languages. For example,
C/C++ character strings may not be compatible with Fortran CHARACTER variables. How-
ever, we assume that a Fortran INTEGER, as well as a (sequence associated) Fortran array
of INTEGERs, can be passed to a C or C++ program. We also assume that Fortran, C, and
C++ have address-sized integers. This does not mean that the default-size integers are the
same size as default-sized pointers, but only that there is some way to hold (and pass) a
C address in a Fortran integer. It is also assumed that INTEGER(KIND=MPI_OFFSET_KIND)
can be passed from Fortran to C as MPI_Offset.
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16.3.3 Initialization

A call to MPI_INIT or MPI_INIT_THREAD, from any language, initializes MPI for execution
in all languages.

Advice to users. Certain implementations use the (inout) argc, argv arguments of
the C/C++ version of MPI_INIT in order to propagate values for argc and argv to
all executing processes. Use of the Fortran version of MPI_INIT to initialize MPI may
result in a loss of this ability. (End of advice to users.)

The function MPI_INITIALIZED returns the same answer in all languages.
The function MPI_FINALIZE finalizes the MPI environments for all languages.
The function MPI_FINALIZED returns the same answer in all languages.
The function MPI_ABORT kills processes, irrespective of the language used by the

caller or by the processes killed.
The MPI environment is initialized in the same manner for all languages by

MPI_INIT. E.g., MPI_COMM_WORLD carries the same information regardless of language:
same processes, same environmental attributes, same error handlers.

Information can be added to info objects in one language and retrieved in another.

Advice to users. The use of several languages in one MPI program may require the
use of special options at compile and/or link time. (End of advice to users.)

Advice to implementors. Implementations may selectively link language specific MPI
libraries only to codes that need them, so as not to increase the size of binaries for codes
that use only one language. The MPI initialization code need perform initialization for
a language only if that language library is loaded. (End of advice to implementors.)

16.3.4 Transfer of Handles

Handles are passed between Fortran and C or C++ by using an explicit C wrapper to
convert Fortran handles to C handles. There is no direct access to C or C++ handles in
Fortran. Handles are passed between C and C++ using overloaded C++ operators called
from C++ code. There is no direct access to C++ objects from C.

The type definition MPI_Fint is provided in C/C++ for an integer of the size that
matches a Fortran INTEGER; usually, MPI_Fint will be equivalent to int.

The following functions are provided in C to convert from a Fortran communicator han-
dle (which is an integer) to a C communicator handle, and vice versa. See also Section 2.6.5
on page 21.

MPI_Comm MPI_Comm_f2c(MPI_Fint comm)

If comm is a valid Fortran handle to a communicator, then MPI_Comm_f2c returns a
valid C handle to that same communicator; if comm = MPI_COMM_NULL (Fortran value),
then MPI_Comm_f2c returns a null C handle; if comm is an invalid Fortran handle, then
MPI_Comm_f2c returns an invalid C handle.

MPI_Fint MPI_Comm_c2f(MPI_Comm comm)

The function MPI_Comm_c2f translates a C communicator handle into a Fortran handle
to the same communicator; it maps a null handle into a null handle and an invalid handle
into an invalid handle.
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16.3.3 Initialization

A call to MPI_INIT or MPI_INIT_THREAD, from any language, initializes MPI for execution
in all languages.

Advice to users. Certain implementations use the (inout) argc, argv arguments of
the C/C++ version of MPI_INIT in order to propagate values for argc and argv to
all executing processes. Use of the Fortran version of MPI_INIT to initialize MPI may
result in a loss of this ability. (End of advice to users.)

The function MPI_INITIALIZED returns the same answer in all languages.
The function MPI_FINALIZE finalizes the MPI environments for all languages.
The function MPI_FINALIZED returns the same answer in all languages.
The function MPI_ABORT kills processes, irrespective of the language used by the

caller or by the processes killed.
The MPI environment is initialized in the same manner for all languages by

MPI_INIT. E.g., MPI_COMM_WORLD carries the same information regardless of language:
same processes, same environmental attributes, same error handlers.

Information can be added to info objects in one language and retrieved in another.

Advice to users. The use of several languages in one MPI program may require the
use of special options at compile and/or link time. (End of advice to users.)

Advice to implementors. Implementations may selectively link language specific MPI
libraries only to codes that need them, so as not to increase the size of binaries for codes
that use only one language. The MPI initialization code need perform initialization for
a language only if that language library is loaded. (End of advice to implementors.)

16.3.4 Transfer of Handles

Handles are passed between Fortran and C or C++ by using an explicit C wrapper to
convert Fortran handles to C handles. There is no direct access to C or C++ handles in
Fortran. Handles are passed between C and C++ using overloaded C++ operators called
from C++ code. There is no direct access to C++ objects from C.

The type definition MPI_Fint is provided in C/C++ for an integer of the size that
matches a Fortran INTEGER; usually, MPI_Fint will be equivalent to int.

The following functions are provided in C to convert from a Fortran communicator han-
dle (which is an integer) to a C communicator handle, and vice versa. See also Section 2.6.5
on page 21.

MPI_Comm MPI_Comm_f2c(MPI_Fint comm)

If comm is a valid Fortran handle to a communicator, then MPI_Comm_f2c returns a
valid C handle to that same communicator; if comm = MPI_COMM_NULL (Fortran value),
then MPI_Comm_f2c returns a null C handle; if comm is an invalid Fortran handle, then
MPI_Comm_f2c returns an invalid C handle.

MPI_Fint MPI_Comm_c2f(MPI_Comm comm)

The function MPI_Comm_c2f translates a C communicator handle into a Fortran handle
to the same communicator; it maps a null handle into a null handle and an invalid handle
into an invalid handle.
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Similar functions are provided for the other types of opaque objects.

MPI_Datatype MPI_Type_f2c(MPI_Fint datatype)

MPI_Fint MPI_Type_c2f(MPI_Datatype datatype)

MPI_Group MPI_Group_f2c(MPI_Fint group)

MPI_Fint MPI_Group_c2f(MPI_Group group)

MPI_Request MPI_Request_f2c(MPI_Fint request)

MPI_Fint MPI_Request_c2f(MPI_Request request)

MPI_File MPI_File_f2c(MPI_Fint file)

MPI_Fint MPI_File_c2f(MPI_File file)

MPI_Win MPI_Win_f2c(MPI_Fint win)

MPI_Fint MPI_Win_c2f(MPI_Win win)

MPI_Op MPI_Op_f2c(MPI_Fint op)

MPI_Fint MPI_Op_c2f(MPI_Op op)

MPI_Info MPI_Info_f2c(MPI_Fint info)

MPI_Fint MPI_Info_c2f(MPI_Info info)

MPI_Errhandler MPI_Errhandler_f2c(MPI_Fint errhandler)

MPI_Fint MPI_Errhandler_c2f(MPI_Errhandler errhandler)

Example 16.13 The example below illustrates how the Fortran MPI function
MPI_TYPE_COMMIT can be implemented by wrapping the C MPI function
MPI_Type_commit with a C wrapper to do handle conversions. In this example a Fortran-C
interface is assumed where a Fortran function is all upper case when referred to from C and
arguments are passed by addresses.

! FORTRAN PROCEDURE

SUBROUTINE MPI_TYPE_COMMIT( DATATYPE, IERR)

INTEGER DATATYPE, IERR

CALL MPI_X_TYPE_COMMIT(DATATYPE, IERR)

RETURN

END

/* C wrapper */

void MPI_X_TYPE_COMMIT( MPI_Fint *f_handle, MPI_Fint *ierr)

{

MPI_Datatype datatype;

datatype = MPI_Type_f2c( *f_handle);

*ierr = (MPI_Fint)MPI_Type_commit( &datatype);
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Similar functions are provided for the other types of opaque objects.

MPI_Datatype MPI_Type_f2c(MPI_Fint datatype)

MPI_Fint MPI_Type_c2f(MPI_Datatype datatype)

MPI_Group MPI_Group_f2c(MPI_Fint group)

MPI_Fint MPI_Group_c2f(MPI_Group group)

MPI_Request MPI_Request_f2c(MPI_Fint request)

MPI_Fint MPI_Request_c2f(MPI_Request request)

MPI_File MPI_File_f2c(MPI_Fint file)

MPI_Fint MPI_File_c2f(MPI_File file)

MPI_Win MPI_Win_f2c(MPI_Fint win)

MPI_Fint MPI_Win_c2f(MPI_Win win)

MPI_Op MPI_Op_f2c(MPI_Fint op)

MPI_Fint MPI_Op_c2f(MPI_Op op)

MPI_Info MPI_Info_f2c(MPI_Fint info)

MPI_Fint MPI_Info_c2f(MPI_Info info)

MPI_Errhandler MPI_Errhandler_f2c(MPI_Fint errhandler)

MPI_Fint MPI_Errhandler_c2f(MPI_Errhandler errhandler)

Example 16.13 The example below illustrates how the Fortran MPI function
MPI_TYPE_COMMIT can be implemented by wrapping the C MPI function
MPI_Type_commit with a C wrapper to do handle conversions. In this example a Fortran-C
interface is assumed where a Fortran function is all upper case when referred to from C and
arguments are passed by addresses.

! FORTRAN PROCEDURE

SUBROUTINE MPI_TYPE_COMMIT( DATATYPE, IERR)

INTEGER DATATYPE, IERR

CALL MPI_X_TYPE_COMMIT(DATATYPE, IERR)

RETURN

END

/* C wrapper */

void MPI_X_TYPE_COMMIT( MPI_Fint *f_handle, MPI_Fint *ierr)

{

MPI_Datatype datatype;

datatype = MPI_Type_f2c( *f_handle);

*ierr = (MPI_Fint)MPI_Type_commit( &datatype);
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*f_handle = MPI_Type_c2f(datatype);

return;

}

The same approach can be used for all other MPI functions. The call to MPI_xxx_f2c
(resp. MPI_xxx_c2f) can be omitted when the handle is an OUT (resp. IN) argument, rather
than INOUT.

Rationale. The design here provides a convenient solution for the prevalent case,
where a C wrapper is used to allow Fortran code to call a C library, or C code to
call a Fortran library. The use of C wrappers is much more likely than the use of
Fortran wrappers, because it is much more likely that a variable of type INTEGER can
be passed to C, than a C handle can be passed to Fortran.

Returning the converted value as a function value rather than through the argument
list allows the generation of efficient inlined code when these functions are simple
(e.g., the identity). The conversion function in the wrapper does not catch an invalid
handle argument. Instead, an invalid handle is passed below to the library function,
which, presumably, checks its input arguments. (End of rationale.)

C and C++ The C++ language interface provides the functions listed below for mixed-
language interoperability. The token <CLASS> is used below to indicate any valid MPI
opaque handle name (e.g., Group), except where noted. For the case where the C++ class
corresponding to <CLASS> has derived classes, functions are also provided for converting
between the derived classes and the C MPI_<CLASS>.

The following function allows assignment from a C MPI handle to a C++ MPI handle.

MPI::<CLASS>& MPI::<CLASS>::operator=(const MPI_<CLASS>& data)

The constructor below creates a C++ MPI object from a C MPI handle. This allows
the automatic promotion of a C MPI handle to a C++ MPI handle.

MPI::<CLASS>::<CLASS>(const MPI_<CLASS>& data)

Example 16.14 In order for a C program to use a C++ library, the C++ library must
export a C interface that provides appropriate conversions before invoking the underlying
C++ library call. This example shows a C interface function that invokes a C++ library
call with a C communicator; the communicator is automatically promoted to a C++ handle
when the underlying C++ function is invoked.

// C++ library function prototype

void cpp_lib_call(MPI::Comm cpp_comm);

// Exported C function prototype

extern "C" {

void c_interface(MPI_Comm c_comm);

}

void c_interface(MPI_Comm c_comm)

{
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*f_handle = MPI_Type_c2f(datatype);

return;

}

The same approach can be used for all other MPI functions. The call to MPI_xxx_f2c
(resp. MPI_xxx_c2f) can be omitted when the handle is an OUT (resp. IN) argument, rather
than INOUT.

Rationale. The design here provides a convenient solution for the prevalent case,
where a C wrapper is used to allow Fortran code to call a C library, or C code to
call a Fortran library. The use of C wrappers is much more likely than the use of
Fortran wrappers, because it is much more likely that a variable of type INTEGER can
be passed to C, than a C handle can be passed to Fortran.

Returning the converted value as a function value rather than through the argument
list allows the generation of efficient inlined code when these functions are simple
(e.g., the identity). The conversion function in the wrapper does not catch an invalid
handle argument. Instead, an invalid handle is passed below to the library function,
which, presumably, checks its input arguments. (End of rationale.)

C and C++ The C++ language interface provides the functions listed below for mixed-
language interoperability. The token <CLASS> is used below to indicate any valid MPI
opaque handle name (e.g., Group), except where noted. For the case where the C++ class
corresponding to <CLASS> has derived classes, functions are also provided for converting
between the derived classes and the C MPI_<CLASS>.

The following function allows assignment from a C MPI handle to a C++ MPI handle.

MPI::<CLASS>& MPI::<CLASS>::operator=(const MPI_<CLASS>& data)

The constructor below creates a C++ MPI object from a C MPI handle. This allows
the automatic promotion of a C MPI handle to a C++ MPI handle.

MPI::<CLASS>::<CLASS>(const MPI_<CLASS>& data)

Example 16.14 In order for a C program to use a C++ library, the C++ library must
export a C interface that provides appropriate conversions before invoking the underlying
C++ library call. This example shows a C interface function that invokes a C++ library
call with a C communicator; the communicator is automatically promoted to a C++ handle
when the underlying C++ function is invoked.

// C++ library function prototype

void cpp_lib_call(MPI::Comm cpp_comm);

// Exported C function prototype

extern "C" {

void c_interface(MPI_Comm c_comm);

}

void c_interface(MPI_Comm c_comm)

{

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



482 CHAPTER 16. LANGUAGE BINDINGS

// the MPI_Comm (c_comm) is automatically promoted to MPI::Comm

cpp_lib_call(c_comm);

}

The following function allows conversion from C++ objects to C MPI handles. In this
case, the casting operator is overloaded to provide the functionality.

MPI::<CLASS>::operator MPI_<CLASS>() const

Example 16.15 A C library routine is called from a C++ program. The C library routine
is prototyped to take an MPI_Comm as an argument.

// C function prototype

extern "C" {

void c_lib_call(MPI_Comm c_comm);

}

void cpp_function()

{

// Create a C++ communicator, and initialize it with a dup of

// MPI::COMM_WORLD

MPI::Intracomm cpp_comm(MPI::COMM_WORLD.Dup());

c_lib_call(cpp_comm);

}

Rationale. Providing conversion from C to C++ via constructors and from C++
to C via casting allows the compiler to make automatic conversions. Calling C from
C++ becomes trivial, as does the provision of a C or Fortran interface to a C++
library. (End of rationale.)

Advice to users. Note that the casting and promotion operators return new handles
by value. Using these new handles as INOUT parameters will affect the internal MPI
object, but will not affect the original handle from which it was cast. (End of advice
to users.)

It is important to note that all C++ objects and their corresponding C handles can be
used interchangeably by an application. For example, an application can cache an attribute
on MPI_COMM_WORLD and later retrieve it from MPI::COMM_WORLD.

16.3.5 Status

The following two procedures are provided in C to convert from a Fortran status (which is
an array of integers) to a C status (which is a structure), and vice versa. The conversion
occurs on all the information in status, including that which is hidden. That is, no status
information is lost in the conversion.

int MPI_Status_f2c(MPI_Fint *f_status, MPI_Status *c_status)

If f_status is a valid Fortran status, but not the Fortran value of MPI_STATUS_IGNORE

or MPI_STATUSES_IGNORE, then MPI_Status_f2c returns in c_status a valid C status with
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// the MPI_Comm (c_comm) is automatically promoted to MPI::Comm

cpp_lib_call(c_comm);

}

The following function allows conversion from C++ objects to C MPI handles. In this
case, the casting operator is overloaded to provide the functionality.

MPI::<CLASS>::operator MPI_<CLASS>() const

Example 16.15 A C library routine is called from a C++ program. The C library routine
is prototyped to take an MPI_Comm as an argument.

// C function prototype

extern "C" {

void c_lib_call(MPI_Comm c_comm);

}

void cpp_function()

{

// Create a C++ communicator, and initialize it with a dup of

// MPI::COMM_WORLD

MPI::Intracomm cpp_comm(MPI::COMM_WORLD.Dup());

c_lib_call(cpp_comm);

}

Rationale. Providing conversion from C to C++ via constructors and from C++
to C via casting allows the compiler to make automatic conversions. Calling C from
C++ becomes trivial, as does the provision of a C or Fortran interface to a C++
library. (End of rationale.)

Advice to users. Note that the casting and promotion operators return new handles
by value. Using these new handles as INOUT parameters will affect the internal MPI
object, but will not affect the original handle from which it was cast. (End of advice
to users.)

It is important to note that all C++ objects and their corresponding C handles can be
used interchangeably by an application. For example, an application can cache an attribute
on MPI_COMM_WORLD and later retrieve it from MPI::COMM_WORLD.

16.3.5 Status

The following two procedures are provided in C to convert from a Fortran status (which is
an array of integers) to a C status (which is a structure), and vice versa. The conversion
occurs on all the information in status, including that which is hidden. That is, no status
information is lost in the conversion.

int MPI_Status_f2c(MPI_Fint *f_status, MPI_Status *c_status)

If f_status is a valid Fortran status, but not the Fortran value of MPI_STATUS_IGNORE

or MPI_STATUSES_IGNORE, then MPI_Status_f2c returns in c_status a valid C status with
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the same content. If f_status is the Fortran value of MPI_STATUS_IGNORE or
MPI_STATUSES_IGNORE, or if f_status is not a valid Fortran status, then the call is erroneous.

The C status has the same source, tag and error code values as the Fortran status,
and returns the same answers when queried for count, elements, and cancellation. The
conversion function may be called with a Fortran status argument that has an undefined
error field, in which case the value of the error field in the C status argument is undefined.

Two global variables of type MPI_Fint*, MPI_F_STATUS_IGNORE and
MPI_F_STATUSES_IGNORE are declared in mpi.h. They can be used to test, in C, whether
f_status is the Fortran value of MPI_STATUS_IGNORE or MPI_STATUSES_IGNORE, respec-
tively. These are global variables, not C constant expressions and cannot be used in places
where C requires constant expressions. Their value is defined only between the calls to
MPI_INIT and MPI_FINALIZE and should not be changed by user code.

To do the conversion in the other direction, we have the following:
int MPI_Status_c2f(MPI_Status *c_status, MPI_Fint *f_status)

This call converts a C status into a Fortran status, and has a behavior similar to
MPI_Status_f2c. That is, the value of c_status must not be either MPI_STATUS_IGNORE or
MPI_STATUSES_IGNORE.

Advice to users. There is not a separate conversion function for arrays of statuses,
since one can simply loop through the array, converting each status. (End of advice
to users.)

Rationale. The handling of MPI_STATUS_IGNORE is required in order to layer libraries
with only a C wrapper: if the Fortran call has passed MPI_STATUS_IGNORE, then the
C wrapper must handle this correctly. Note that this constant need not have the
same value in Fortran and C. If MPI_Status_f2c were to handle MPI_STATUS_IGNORE,
then the type of its result would have to be MPI_Status**, which was considered an
inferior solution. (End of rationale.)

16.3.6 MPI Opaque Objects

Unless said otherwise, opaque objects are “the same” in all languages: they carry the same
information, and have the same meaning in both languages. The mechanism described
in the previous section can be used to pass references to MPI objects from language to
language. An object created in one language can be accessed, modified or freed in another
language.

We examine below in more detail, issues that arise for each type of MPI object.

Datatypes

Datatypes encode the same information in all languages. E.g., a datatype accessor like
MPI_TYPE_GET_EXTENT will return the same information in all languages. If a datatype
defined in one language is used for a communication call in another language, then the
message sent will be identical to the message that would be sent from the first language:
the same communication buffer is accessed, and the same representation conversion is per-
formed, if needed. All predefined datatypes can be used in datatype constructors in any
language. If a datatype is committed, it can be used for communication in any language.
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the same content. If f_status is the Fortran value of MPI_STATUS_IGNORE or
MPI_STATUSES_IGNORE, or if f_status is not a valid Fortran status, then the call is erroneous.

The C status has the same source, tag and error code values as the Fortran status,
and returns the same answers when queried for count, elements, and cancellation. The
conversion function may be called with a Fortran status argument that has an undefined
error field, in which case the value of the error field in the C status argument is undefined.

Two global variables of type MPI_Fint*, MPI_F_STATUS_IGNORE and
MPI_F_STATUSES_IGNORE are declared in mpi.h. They can be used to test, in C, whether
f_status is the Fortran value of MPI_STATUS_IGNORE or MPI_STATUSES_IGNORE, respec-
tively. These are global variables, not C constant expressions and cannot be used in places
where C requires constant expressions. Their value is defined only between the calls to
MPI_INIT and MPI_FINALIZE and should not be changed by user code.

To do the conversion in the other direction, we have the following:
int MPI_Status_c2f(MPI_Status *c_status, MPI_Fint *f_status)

This call converts a C status into a Fortran status, and has a behavior similar to
MPI_Status_f2c. That is, the value of c_status must not be either MPI_STATUS_IGNORE or
MPI_STATUSES_IGNORE.

Advice to users. There is not a separate conversion function for arrays of statuses,
since one can simply loop through the array, converting each status. (End of advice
to users.)

Rationale. The handling of MPI_STATUS_IGNORE is required in order to layer libraries
with only a C wrapper: if the Fortran call has passed MPI_STATUS_IGNORE, then the
C wrapper must handle this correctly. Note that this constant need not have the
same value in Fortran and C. If MPI_Status_f2c were to handle MPI_STATUS_IGNORE,
then the type of its result would have to be MPI_Status**, which was considered an
inferior solution. (End of rationale.)

16.3.6 MPI Opaque Objects

Unless said otherwise, opaque objects are “the same” in all languages: they carry the same
information, and have the same meaning in both languages. The mechanism described
in the previous section can be used to pass references to MPI objects from language to
language. An object created in one language can be accessed, modified or freed in another
language.

We examine below in more detail, issues that arise for each type of MPI object.

Datatypes

Datatypes encode the same information in all languages. E.g., a datatype accessor like
MPI_TYPE_GET_EXTENT will return the same information in all languages. If a datatype
defined in one language is used for a communication call in another language, then the
message sent will be identical to the message that would be sent from the first language:
the same communication buffer is accessed, and the same representation conversion is per-
formed, if needed. All predefined datatypes can be used in datatype constructors in any
language. If a datatype is committed, it can be used for communication in any language.
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The function MPI_GET_ADDRESS returns the same value in all languages. Note that
we do not require that the constant MPI_BOTTOM have the same value in all languages (see
16.3.9, page 488).

Example 16.16

! FORTRAN CODE

REAL R(5)

INTEGER TYPE, IERR, AOBLEN(1), AOTYPE(1)

INTEGER (KIND=MPI_ADDRESS_KIND) AODISP(1)

! create an absolute datatype for array R

AOBLEN(1) = 5

CALL MPI_GET_ADDRESS( R, AODISP(1), IERR)

AOTYPE(1) = MPI_REAL

CALL MPI_TYPE_CREATE_STRUCT(1, AOBLEN,AODISP,AOTYPE, TYPE, IERR)

CALL C_ROUTINE(TYPE)

/* C code */

void C_ROUTINE(MPI_Fint *ftype)

{

int count = 5;

int lens[2] = {1,1};

MPI_Aint displs[2];

MPI_Datatype types[2], newtype;

/* create an absolute datatype for buffer that consists */

/* of count, followed by R(5) */

MPI_Get_address(&count, &displs[0]);

displs[1] = 0;

types[0] = MPI_INT;

types[1] = MPI_Type_f2c(*ftype);

MPI_Type_create_struct(2, lens, displs, types, &newtype);

MPI_Type_commit(&newtype);

MPI_Send(MPI_BOTTOM, 1, newtype, 1, 0, MPI_COMM_WORLD);

/* the message sent contains an int count of 5, followed */

/* by the 5 REAL entries of the Fortran array R. */

}

Advice to implementors. The following implementation can be used: MPI addresses,
as returned by MPI_GET_ADDRESS, will have the same value in all languages. One
obvious choice is that MPI addresses be identical to regular addresses. The address
is stored in the datatype, when datatypes with absolute addresses are constructed.
When a send or receive operation is performed, then addresses stored in a datatype
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The function MPI_GET_ADDRESS returns the same value in all languages. Note that
we do not require that the constant MPI_BOTTOM have the same value in all languages (see
16.3.9, page 488).

Example 16.16

! FORTRAN CODE

REAL R(5)

INTEGER TYPE, IERR, AOBLEN(1), AOTYPE(1)

INTEGER (KIND=MPI_ADDRESS_KIND) AODISP(1)

! create an absolute datatype for array R

AOBLEN(1) = 5

CALL MPI_GET_ADDRESS( R, AODISP(1), IERR)

AOTYPE(1) = MPI_REAL

CALL MPI_TYPE_CREATE_STRUCT(1, AOBLEN,AODISP,AOTYPE, TYPE, IERR)

CALL C_ROUTINE(TYPE)

/* C code */

void C_ROUTINE(MPI_Fint *ftype)

{

int count = 5;

int lens[2] = {1,1};

MPI_Aint displs[2];

MPI_Datatype types[2], newtype;

/* create an absolute datatype for buffer that consists */

/* of count, followed by R(5) */

MPI_Get_address(&count, &displs[0]);

displs[1] = 0;

types[0] = MPI_INT;

types[1] = MPI_Type_f2c(*ftype);

MPI_Type_create_struct(2, lens, displs, types, &newtype);

MPI_Type_commit(&newtype);

MPI_Send(MPI_BOTTOM, 1, newtype, 1, 0, MPI_COMM_WORLD);

/* the message sent contains an int count of 5, followed */

/* by the 5 REAL entries of the Fortran array R. */

}

Advice to implementors. The following implementation can be used: MPI addresses,
as returned by MPI_GET_ADDRESS, will have the same value in all languages. One
obvious choice is that MPI addresses be identical to regular addresses. The address
is stored in the datatype, when datatypes with absolute addresses are constructed.
When a send or receive operation is performed, then addresses stored in a datatype
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are interpreted as displacements that are all augmented by a base address. This base
address is (the address of) buf, or zero, if buf = MPI_BOTTOM. Thus, if MPI_BOTTOM

is zero then a send or receive call with buf = MPI_BOTTOM is implemented exactly
as a call with a regular buffer argument: in both cases the base address is buf. On the
other hand, if MPI_BOTTOM is not zero, then the implementation has to be slightly
different. A test is performed to check whether buf = MPI_BOTTOM. If true, then
the base address is zero, otherwise it is buf. In particular, if MPI_BOTTOM does
not have the same value in Fortran and C/C++, then an additional test for buf =
MPI_BOTTOM is needed in at least one of the languages.

It may be desirable to use a value other than zero for MPI_BOTTOM even in C/C++,
so as to distinguish it from a NULL pointer. If MPI_BOTTOM = c then one can still
avoid the test buf = MPI_BOTTOM, by using the displacement from MPI_BOTTOM,
i.e., the regular address - c, as the MPI address returned by MPI_GET_ADDRESS and
stored in absolute datatypes. (End of advice to implementors.)

Callback Functions

MPI calls may associate callback functions with MPI objects: error handlers are associ-
ated with communicators and files, attribute copy and delete functions are associated with
attribute keys, reduce operations are associated with operation objects, etc. In a multilan-
guage environment, a function passed in an MPI call in one language may be invoked by an
MPI call in another language. MPI implementations must make sure that such invocation
will use the calling convention of the language the function is bound to.

Advice to implementors. Callback functions need to have a language tag. This
tag is set when the callback function is passed in by the library function (which is
presumably different for each language), and is used to generate the right calling
sequence when the callback function is invoked. (End of advice to implementors.)

Error Handlers

Advice to implementors. Error handlers, have, in C and C++, a “stdargs” argu-
ment list. It might be useful to provide to the handler information on the language
environment where the error occurred. (End of advice to implementors.)

Reduce Operations

Advice to users. Reduce operations receive as one of their arguments the datatype
of the operands. Thus, one can define “polymorphic” reduce operations that work for
C, C++, and Fortran datatypes. (End of advice to users.)

Addresses

Some of the datatype accessors and constructors have arguments of type MPI_Aint (in C)
or MPI::Aint in C++, to hold addresses. The corresponding arguments, in Fortran, have
type INTEGER. This causes Fortran and C/C++ to be incompatible, in an environment
where addresses have 64 bits, but Fortran INTEGERs have 32 bits.

This is a problem, irrespective of interlanguage issues. Suppose that a Fortran pro-
cess has an address space of ≥ 4 GB. What should be the value returned in Fortran by
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are interpreted as displacements that are all augmented by a base address. This base
address is (the address of) buf, or zero, if buf = MPI_BOTTOM. Thus, if MPI_BOTTOM

is zero then a send or receive call with buf = MPI_BOTTOM is implemented exactly
as a call with a regular buffer argument: in both cases the base address is buf. On the
other hand, if MPI_BOTTOM is not zero, then the implementation has to be slightly
different. A test is performed to check whether buf = MPI_BOTTOM. If true, then
the base address is zero, otherwise it is buf. In particular, if MPI_BOTTOM does
not have the same value in Fortran and C/C++, then an additional test for buf =
MPI_BOTTOM is needed in at least one of the languages.

It may be desirable to use a value other than zero for MPI_BOTTOM even in C/C++,
so as to distinguish it from a NULL pointer. If MPI_BOTTOM = c then one can still
avoid the test buf = MPI_BOTTOM, by using the displacement from MPI_BOTTOM,
i.e., the regular address - c, as the MPI address returned by MPI_GET_ADDRESS and
stored in absolute datatypes. (End of advice to implementors.)

Callback Functions

MPI calls may associate callback functions with MPI objects: error handlers are associ-
ated with communicators and files, attribute copy and delete functions are associated with
attribute keys, reduce operations are associated with operation objects, etc. In a multilan-
guage environment, a function passed in an MPI call in one language may be invoked by an
MPI call in another language. MPI implementations must make sure that such invocation
will use the calling convention of the language the function is bound to.

Advice to implementors. Callback functions need to have a language tag. This
tag is set when the callback function is passed in by the library function (which is
presumably different for each language), and is used to generate the right calling
sequence when the callback function is invoked. (End of advice to implementors.)

Error Handlers

Advice to implementors. Error handlers, have, in C and C++, a “stdargs” argu-
ment list. It might be useful to provide to the handler information on the language
environment where the error occurred. (End of advice to implementors.)

Reduce Operations

Advice to users. Reduce operations receive as one of their arguments the datatype
of the operands. Thus, one can define “polymorphic” reduce operations that work for
C, C++, and Fortran datatypes. (End of advice to users.)

Addresses

Some of the datatype accessors and constructors have arguments of type MPI_Aint (in C)
or MPI::Aint in C++, to hold addresses. The corresponding arguments, in Fortran, have
type INTEGER. This causes Fortran and C/C++ to be incompatible, in an environment
where addresses have 64 bits, but Fortran INTEGERs have 32 bits.

This is a problem, irrespective of interlanguage issues. Suppose that a Fortran pro-
cess has an address space of ≥ 4 GB. What should be the value returned in Fortran by
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MPI_ADDRESS, for a variable with an address above 232? The design described here ad-
dresses this issue, while maintaining compatibility with current Fortran codes.

The constant MPI_ADDRESS_KIND is defined so that, in Fortran 90,
INTEGER(KIND=MPI_ADDRESS_KIND)) is an address sized integer type (typically, but not
necessarily, the size of an INTEGER(KIND=MPI_ADDRESS_KIND) is 4 on 32 bit address ma-
chines and 8 on 64 bit address machines). Similarly, the constant MPI_INTEGER_KIND is
defined so that INTEGER(KIND=MPI_INTEGER_KIND) is a default size INTEGER.

There are seven functions that have address arguments: MPI_TYPE_HVECTOR,
MPI_TYPE_HINDEXED, MPI_TYPE_STRUCT, MPI_ADDRESS, MPI_TYPE_EXTENT
MPI_TYPE_LB and MPI_TYPE_UB.

Four new functions are provided to supplement the first four functions in this list.
These functions are described in Section 4.1.1 on page 79. The remaining three functions
are supplemented by the new function MPI_TYPE_GET_EXTENT, described in that same
section. The new functions have the same functionality as the old functions in C/C++,
or on Fortran systems where default INTEGERs are address sized. In Fortran, they accept
arguments of type INTEGER(KIND=MPI_ADDRESS_KIND), wherever arguments of type
MPI_Aint and MPI::Aint are used in C and C++. On Fortran 77 systems that do not support
the Fortran 90 KIND notation, and where addresses are 64 bits whereas default INTEGERs
are 32 bits, these arguments will be of an appropriate integer type. The old functions will
continue to be provided, for backward compatibility. However, users are encouraged to
switch to the new functions, in Fortran, so as to avoid problems on systems with an address
range > 232, and to provide compatibility across languages.

16.3.7 Attributes

Attribute keys can be allocated in one language and freed in another. Similarly, attribute
values can be set in one language and accessed in another. To achieve this, attribute keys
will be allocated in an integer range that is valid all languages. The same holds true for
system-defined attribute values (such as MPI_TAG_UB, MPI_WTIME_IS_GLOBAL, etc.)

Attribute keys declared in one language are associated with copy and delete functions in
that language (the functions provided by the MPI_{TYPE,COMM,WIN}_CREATE_KEYVAL
call). When a communicator is duplicated, for each attribute, the corresponding copy
function is called, using the right calling convention for the language of that function; and
similarly, for the delete callback function.

Advice to implementors. This requires that attributes be tagged either as “C,”
“C++” or “Fortran,” and that the language tag be checked in order to use the right
calling convention for the callback function. (End of advice to implementors.)

The attribute manipulation functions described in Section 6.7 on page 221 define at-
tributes arguments to be of type void* in C, and of type INTEGER, in Fortran. On some
systems, INTEGERs will have 32 bits, while C/C++ pointers will have 64 bits. This is a
problem if communicator attributes are used to move information from a Fortran caller to
a C/C++ callee, or vice-versa.

MPI will store, internally, address sized attributes. If Fortran INTEGERs are smaller,
then the Fortran function MPI_ATTR_GET will return the least significant part of the
attribute word; the Fortran function MPI_ATTR_PUT will set the least significant part of
the attribute word, which will be sign extended to the entire word. (These two functions may
be invoked explicitly by user code, or implicitly, by attribute copying callback functions.)
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MPI_ADDRESS, for a variable with an address above 232? The design described here ad-
dresses this issue, while maintaining compatibility with current Fortran codes.

The constant MPI_ADDRESS_KIND is defined so that, in Fortran 90,
INTEGER(KIND=MPI_ADDRESS_KIND)) is an address sized integer type (typically, but not
necessarily, the size of an INTEGER(KIND=MPI_ADDRESS_KIND) is 4 on 32 bit address ma-
chines and 8 on 64 bit address machines). Similarly, the constant MPI_INTEGER_KIND is
defined so that INTEGER(KIND=MPI_INTEGER_KIND) is a default size INTEGER.

There are seven functions that have address arguments: MPI_TYPE_HVECTOR,
MPI_TYPE_HINDEXED, MPI_TYPE_STRUCT, MPI_ADDRESS, MPI_TYPE_EXTENT
MPI_TYPE_LB and MPI_TYPE_UB.

Four new functions are provided to supplement the first four functions in this list.
These functions are described in Section 4.1.1 on page 79. The remaining three functions
are supplemented by the new function MPI_TYPE_GET_EXTENT, described in that same
section. The new functions have the same functionality as the old functions in C/C++,
or on Fortran systems where default INTEGERs are address sized. In Fortran, they accept
arguments of type INTEGER(KIND=MPI_ADDRESS_KIND), wherever arguments of type
MPI_Aint and MPI::Aint are used in C and C++. On Fortran 77 systems that do not support
the Fortran 90 KIND notation, and where addresses are 64 bits whereas default INTEGERs
are 32 bits, these arguments will be of an appropriate integer type. The old functions will
continue to be provided, for backward compatibility. However, users are encouraged to
switch to the new functions, in Fortran, so as to avoid problems on systems with an address
range > 232, and to provide compatibility across languages.

16.3.7 Attributes

Attribute keys can be allocated in one language and freed in another. Similarly, attribute
values can be set in one language and accessed in another. To achieve this, attribute keys
will be allocated in an integer range that is valid all languages. The same holds true for
system-defined attribute values (such as MPI_TAG_UB, MPI_WTIME_IS_GLOBAL, etc.)

Attribute keys declared in one language are associated with copy and delete functions in
that language (the functions provided by the MPI_{TYPE,COMM,WIN}_CREATE_KEYVAL
call). When a communicator is duplicated, for each attribute, the corresponding copy
function is called, using the right calling convention for the language of that function; and
similarly, for the delete callback function.

Advice to implementors. This requires that attributes be tagged either as “C,”
“C++” or “Fortran,” and that the language tag be checked in order to use the right
calling convention for the callback function. (End of advice to implementors.)

The attribute manipulation functions described in Section 6.7 on page 221 define at-
tributes arguments to be of type void* in C, and of type INTEGER, in Fortran. On some
systems, INTEGERs will have 32 bits, while C/C++ pointers will have 64 bits. This is a
problem if communicator attributes are used to move information from a Fortran caller to
a C/C++ callee, or vice-versa.

MPI will store, internally, address sized attributes. If Fortran INTEGERs are smaller,
then the Fortran function MPI_ATTR_GET will return the least significant part of the
attribute word; the Fortran function MPI_ATTR_PUT will set the least significant part of
the attribute word, which will be sign extended to the entire word. (These two functions may
be invoked explicitly by user code, or implicitly, by attribute copying callback functions.)
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As for addresses, new functions are provided that manipulate Fortran address sized
attributes, and have the same functionality as the old functions in C/C++. These functions
are described in Section 6.7, page 221. Users are encouraged to use these new functions.

MPI supports two types of attributes: address-valued (pointer) attributes, and integer
valued attributes. C and C++ attribute functions put and get address valued attributes.
Fortran attribute functions put and get integer valued attributes. When an integer valued
attribute is accessed from C or C++, then MPI_xxx_get_attr will return the address of (a
pointer to) the integer valued attribute. When an address valued attribute is accessed from
Fortran, then MPI_xxx_GET_ATTR will convert the address into an integer and return the
result of this conversion. This conversion is lossless if new style attribute functions are
used, and an integer of kind MPI_ADDRESS_KIND is returned. The conversion may cause
truncation if deprecated attribute functions are used.

Example 16.17 A. C to Fortran

C code

static int i = 5;

void *p;

p = &i;

MPI_Comm_put_attr(..., p);

....

Fortran code

INTEGER(kind = MPI_ADDRESS_KIND) val

CALL MPI_COMM_GET_ATTR(...,val,...)

IF(val.NE.address_of_i) THEN CALL ERROR

B. Fortran to C

Fortran code

INTEGER(kind=MPI_ADDRESS_KIND) val

val = 55555

CALL MPI_COMM_PUT_ATTR(...,val,ierr)

C code

int *p;

MPI_Comm_get_attr(...,&p, ...);

if (*p != 55555) error();

The predefined MPI attributes can be integer valued or address valued. Predefined
integer valued attributes, such as MPI_TAG_UB, behave as if they were put by a Fortran
call, i.e., in Fortran, MPI_COMM_GET_ATTR(MPI_COMM_WORLD, MPI_TAG_UB, val,
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As for addresses, new functions are provided that manipulate Fortran address sized
attributes, and have the same functionality as the old functions in C/C++. These functions
are described in Section 6.7, page 221. Users are encouraged to use these new functions.

MPI supports two types of attributes: address-valued (pointer) attributes, and integer
valued attributes. C and C++ attribute functions put and get address valued attributes.
Fortran attribute functions put and get integer valued attributes. When an integer valued
attribute is accessed from C or C++, then MPI_xxx_get_attr will return the address of (a
pointer to) the integer valued attribute. When an address valued attribute is accessed from
Fortran, then MPI_xxx_GET_ATTR will convert the address into an integer and return the
result of this conversion. This conversion is lossless if new style attribute functions are
used, and an integer of kind MPI_ADDRESS_KIND is returned. The conversion may cause
truncation if deprecated attribute functions are used.

Example 16.17 A. C to Fortran

C code

static int i = 5;

void *p;

p = &i;

MPI_Comm_put_attr(..., p);

....

Fortran code

INTEGER(kind = MPI_ADDRESS_KIND) val

CALL MPI_COMM_GET_ATTR(...,val,...)

IF(val.NE.address_of_i) THEN CALL ERROR

B. Fortran to C

Fortran code

INTEGER(kind=MPI_ADDRESS_KIND) val

val = 55555

CALL MPI_COMM_PUT_ATTR(...,val,ierr)

C code

int *p;

MPI_Comm_get_attr(...,&p, ...);

if (*p != 55555) error();

The predefined MPI attributes can be integer valued or address valued. Predefined
integer valued attributes, such as MPI_TAG_UB, behave as if they were put by a Fortran
call, i.e., in Fortran, MPI_COMM_GET_ATTR(MPI_COMM_WORLD, MPI_TAG_UB, val,
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flag, ierr) will return in val the upper bound for tag value; in C,
MPI_Comm_get_attr(MPI_COMM_WORLD, MPI_TAG_UB, &p, &flag) will return in p a
pointer to an int containing the upper bound for tag value.

Address valued predefined attributes, such as MPI_WIN_BASE behave as if they were
put by a C call, i.e., in Fortran, MPI_WIN_GET_ATTR(win, MPI_WIN_BASE, val, flag,
ierror) will return in val the base address of the window, converted to an integer. In C,
MPI_Win_get_attr(win, MPI_WIN_BASE, &p, &flag) will return in p a pointer to the window
base, cast to (void *).

Rationale. The design is consistent with the behavior specified for predefined at-
tributes, and ensures that no information is lost when attributes are passed from
language to language. (End of rationale.)

Advice to implementors. Implementations should tag attributes either as address
attributes or as integer attributes, according to whether they were set in C or in
Fortran. Thus, the right choice can be made when the attribute is retrieved. (End of
advice to implementors.)

16.3.8 Extra State

Extra-state should not be modified by the copy or delete callback functions. (This is obvious
from the C binding, but not obvious from the Fortran binding). However, these functions
may update state that is indirectly accessed via extra-state. E.g., in C, extra-state can be
a pointer to a data structure that is modified by the copy or callback functions; in Fortran,
extra-state can be an index into an entry in a COMMON array that is modified by the copy
or callback functions. In a multithreaded environment, users should be aware that distinct
threads may invoke the same callback function concurrently: if this function modifies state
associated with extra-state, then mutual exclusion code must be used to protect updates
and accesses to the shared state.

16.3.9 Constants

MPI constants have the same value in all languages, unless specified otherwise. This does not
apply to constant handles (MPI_INT, MPI_COMM_WORLD, MPI_ERRORS_RETURN, MPI_SUM,
etc.) These handles need to be converted, as explained in Section 16.3.4. Constants that
specify maximum lengths of strings (see Section A.1.1 for a listing) have a value one less in
Fortran than C/C++ since in C/C++ the length includes the null terminating character.
Thus, these constants represent the amount of space which must be allocated to hold the
largest possible such string, rather than the maximum number of printable characters the
string could contain.

Advice to users. This definition means that it is safe in C/C++ to allocate a buffer
to receive a string using a declaration like

char name [MPI_MAX_OBJECT_NAME];

(End of advice to users.)
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flag, ierr) will return in val the upper bound for tag value; in C,
MPI_Comm_get_attr(MPI_COMM_WORLD, MPI_TAG_UB, &p, &flag) will return in p a
pointer to an int containing the upper bound for tag value.

Address valued predefined attributes, such as MPI_WIN_BASE behave as if they were
put by a C call, i.e., in Fortran, MPI_WIN_GET_ATTR(win, MPI_WIN_BASE, val, flag,
ierror) will return in val the base address of the window, converted to an integer. In C,
MPI_Win_get_attr(win, MPI_WIN_BASE, &p, &flag) will return in p a pointer to the window
base, cast to (void *).

Rationale. The design is consistent with the behavior specified for predefined at-
tributes, and ensures that no information is lost when attributes are passed from
language to language. (End of rationale.)

Advice to implementors. Implementations should tag attributes either as address
attributes or as integer attributes, according to whether they were set in C or in
Fortran. Thus, the right choice can be made when the attribute is retrieved. (End of
advice to implementors.)

16.3.8 Extra State

Extra-state should not be modified by the copy or delete callback functions. (This is obvious
from the C binding, but not obvious from the Fortran binding). However, these functions
may update state that is indirectly accessed via extra-state. E.g., in C, extra-state can be
a pointer to a data structure that is modified by the copy or callback functions; in Fortran,
extra-state can be an index into an entry in a COMMON array that is modified by the copy
or callback functions. In a multithreaded environment, users should be aware that distinct
threads may invoke the same callback function concurrently: if this function modifies state
associated with extra-state, then mutual exclusion code must be used to protect updates
and accesses to the shared state.

16.3.9 Constants

MPI constants have the same value in all languages, unless specified otherwise. This does not
apply to constant handles (MPI_INT, MPI_COMM_WORLD, MPI_ERRORS_RETURN, MPI_SUM,
etc.) These handles need to be converted, as explained in Section 16.3.4. Constants that
specify maximum lengths of strings (see Section A.1.1 for a listing) have a value one less in
Fortran than C/C++ since in C/C++ the length includes the null terminating character.
Thus, these constants represent the amount of space which must be allocated to hold the
largest possible such string, rather than the maximum number of printable characters the
string could contain.

Advice to users. This definition means that it is safe in C/C++ to allocate a buffer
to receive a string using a declaration like

char name [MPI_MAX_OBJECT_NAME];

(End of advice to users.)
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Also constant “addresses,” i.e., special values for reference arguments that are not han-
dles, such as MPI_BOTTOM or MPI_STATUS_IGNORE may have different values in different
languages.

Rationale. The current MPI standard specifies that MPI_BOTTOM can be used in
initialization expressions in C, but not in Fortran. Since Fortran does not normally
support call by value, then MPI_BOTTOM must be in Fortran the name of a predefined
static variable, e.g., a variable in an MPI declared COMMON block. On the other hand,
in C, it is natural to take MPI_BOTTOM = 0 (Caveat: Defining MPI_BOTTOM = 0
implies that NULL pointer cannot be distinguished from MPI_BOTTOM; it may be that
MPI_BOTTOM = 1 is better . . . ) Requiring that the Fortran and C values be the same
will complicate the initialization process. (End of rationale.)

16.3.10 Interlanguage Communication

The type matching rules for communications in MPI are not changed: the datatype specifi-
cation for each item sent should match, in type signature, the datatype specification used to
receive this item (unless one of the types is MPI_PACKED). Also, the type of a message item
should match the type declaration for the corresponding communication buffer location,
unless the type is MPI_BYTE or MPI_PACKED. Interlanguage communication is allowed if it
complies with these rules.

Example 16.18 In the example below, a Fortran array is sent from Fortran and received
in C.

! FORTRAN CODE

REAL R(5)

INTEGER TYPE, IERR, MYRANK, AOBLEN(1), AOTYPE(1)

INTEGER (KIND=MPI_ADDRESS_KIND) AODISP(1)

! create an absolute datatype for array R

AOBLEN(1) = 5

CALL MPI_GET_ADDRESS( R, AODISP(1), IERR)

AOTYPE(1) = MPI_REAL

CALL MPI_TYPE_CREATE_STRUCT(1, AOBLEN,AODISP,AOTYPE, TYPE, IERR)

CALL MPI_TYPE_COMMIT(TYPE, IERR)

CALL MPI_COMM_RANK( MPI_COMM_WORLD, MYRANK, IERR)

IF (MYRANK.EQ.0) THEN

CALL MPI_SEND( MPI_BOTTOM, 1, TYPE, 1, 0, MPI_COMM_WORLD, IERR)

ELSE

CALL C_ROUTINE(TYPE)

END IF

/* C code */

void C_ROUTINE(MPI_Fint *fhandle)
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Also constant “addresses,” i.e., special values for reference arguments that are not han-
dles, such as MPI_BOTTOM or MPI_STATUS_IGNORE may have different values in different
languages.

Rationale. The current MPI standard specifies that MPI_BOTTOM can be used in
initialization expressions in C, but not in Fortran. Since Fortran does not normally
support call by value, then MPI_BOTTOM must be in Fortran the name of a predefined
static variable, e.g., a variable in an MPI declared COMMON block. On the other hand,
in C, it is natural to take MPI_BOTTOM = 0 (Caveat: Defining MPI_BOTTOM = 0
implies that NULL pointer cannot be distinguished from MPI_BOTTOM; it may be that
MPI_BOTTOM = 1 is better . . . ) Requiring that the Fortran and C values be the same
will complicate the initialization process. (End of rationale.)

16.3.10 Interlanguage Communication

The type matching rules for communications in MPI are not changed: the datatype specifi-
cation for each item sent should match, in type signature, the datatype specification used to
receive this item (unless one of the types is MPI_PACKED). Also, the type of a message item
should match the type declaration for the corresponding communication buffer location,
unless the type is MPI_BYTE or MPI_PACKED. Interlanguage communication is allowed if it
complies with these rules.

Example 16.18 In the example below, a Fortran array is sent from Fortran and received
in C.

! FORTRAN CODE

REAL R(5)

INTEGER TYPE, IERR, MYRANK, AOBLEN(1), AOTYPE(1)

INTEGER (KIND=MPI_ADDRESS_KIND) AODISP(1)

! create an absolute datatype for array R

AOBLEN(1) = 5

CALL MPI_GET_ADDRESS( R, AODISP(1), IERR)

AOTYPE(1) = MPI_REAL

CALL MPI_TYPE_CREATE_STRUCT(1, AOBLEN,AODISP,AOTYPE, TYPE, IERR)

CALL MPI_TYPE_COMMIT(TYPE, IERR)

CALL MPI_COMM_RANK( MPI_COMM_WORLD, MYRANK, IERR)

IF (MYRANK.EQ.0) THEN

CALL MPI_SEND( MPI_BOTTOM, 1, TYPE, 1, 0, MPI_COMM_WORLD, IERR)

ELSE

CALL C_ROUTINE(TYPE)

END IF

/* C code */

void C_ROUTINE(MPI_Fint *fhandle)
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{

MPI_Datatype type;

MPI_Status status;

type = MPI_Type_f2c(*fhandle);

MPI_Recv( MPI_BOTTOM, 1, type, 0, 0, MPI_COMM_WORLD, &status);

}

MPI implementors may weaken these type matching rules, and allow messages to be
sent with Fortran types and received with C types, and vice versa, when those types match.
I.e., if the Fortran type INTEGER is identical to the C type int, then an MPI implementation
may allow data to be sent with datatype MPI_INTEGER and be received with datatype
MPI_INT. However, such code is not portable.
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{

MPI_Datatype type;

MPI_Status status;

type = MPI_Type_f2c(*fhandle);

MPI_Recv( MPI_BOTTOM, 1, type, 0, 0, MPI_COMM_WORLD, &status);

}

MPI implementors may weaken these type matching rules, and allow messages to be
sent with Fortran types and received with C types, and vice versa, when those types match.
I.e., if the Fortran type INTEGER is identical to the C type int, then an MPI implementation
may allow data to be sent with datatype MPI_INTEGER and be received with datatype
MPI_INT. However, such code is not portable.
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Annex A

Language Bindings Summary

In this section we summarize the specific bindings for C, Fortran, and C++. First we
present the constants, type definitions, info values and keys. Then we present the routine
prototypes separately for each binding. Listings are alphabetical within chapter.

A.1 Defined Values and Handles

A.1.1 Defined Constants

The C and Fortran name is listed in the left column and the C++ name is listed in the
middle or right column.

Return Codes

C++ type: const int

(or unnamed enum)

MPI_SUCCESS MPI::SUCCESS

MPI_ERR_BUFFER MPI::ERR_BUFFER

MPI_ERR_COUNT MPI::ERR_COUNT

MPI_ERR_TYPE MPI::ERR_TYPE

MPI_ERR_TAG MPI::ERR_TAG

MPI_ERR_COMM MPI::ERR_COMM

MPI_ERR_RANK MPI::ERR_RANK

MPI_ERR_REQUEST MPI::ERR_REQUEST

MPI_ERR_ROOT MPI::ERR_ROOT

MPI_ERR_GROUP MPI::ERR_GROUP

MPI_ERR_OP MPI::ERR_OP

MPI_ERR_TOPOLOGY MPI::ERR_TOPOLOGY

MPI_ERR_DIMS MPI::ERR_DIMS

MPI_ERR_ARG MPI::ERR_ARG

MPI_ERR_UNKNOWN MPI::ERR_UNKNOWN

MPI_ERR_TRUNCATE MPI::ERR_TRUNCATE

MPI_ERR_OTHER MPI::ERR_OTHER

MPI_ERR_INTERN MPI::ERR_INTERN

MPI_ERR_PENDING MPI::ERR_PENDING

MPI_ERR_IN_STATUS MPI::ERR_IN_STATUS
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Return Codes (continued)

MPI_ERR_ACCESS MPI::ERR_ACCESS

MPI_ERR_AMODE MPI::ERR_AMODE

MPI_ERR_ASSERT MPI::ERR_ASSERT

MPI_ERR_BAD_FILE MPI::ERR_BAD_FILE

MPI_ERR_BASE MPI::ERR_BASE

MPI_ERR_CONVERSION MPI::ERR_CONVERSION

MPI_ERR_DISP MPI::ERR_DISP

MPI_ERR_DUP_DATAREP MPI::ERR_DUP_DATAREP

MPI_ERR_FILE_EXISTS MPI::ERR_FILE_EXISTS

MPI_ERR_FILE_IN_USE MPI::ERR_FILE_IN_USE

MPI_ERR_FILE MPI::ERR_FILE

MPI_ERR_INFO_KEY MPI::ERR_INFO_VALUE

MPI_ERR_INFO_NOKEY MPI::ERR_INFO_NOKEY

MPI_ERR_INFO_VALUE MPI::ERR_INFO_KEY

MPI_ERR_INFO MPI::ERR_INFO

MPI_ERR_IO MPI::ERR_IO

MPI_ERR_KEYVAL MPI::ERR_KEYVAL

MPI_ERR_LOCKTYPE MPI::ERR_LOCKTYPE

MPI_ERR_NAME MPI::ERR_NAME

MPI_ERR_NO_MEM MPI::ERR_NO_MEM

MPI_ERR_NOT_SAME MPI::ERR_NOT_SAME

MPI_ERR_NO_SPACE MPI::ERR_NO_SPACE

MPI_ERR_NO_SUCH_FILE MPI::ERR_NO_SUCH_FILE

MPI_ERR_PORT MPI::ERR_PORT

MPI_ERR_QUOTA MPI::ERR_QUOTA

MPI_ERR_READ_ONLY MPI::ERR_READ_ONLY

MPI_ERR_RMA_CONFLICT MPI::ERR_RMA_CONFLICT

MPI_ERR_RMA_SYNC MPI::ERR_RMA_SYNC

MPI_ERR_SERVICE MPI::ERR_SERVICE

MPI_ERR_SIZE MPI::ERR_SIZE

MPI_ERR_SPAWN MPI::ERR_SPAWN

MPI_ERR_UNSUPPORTED_DATAREP MPI::ERR_UNSUPPORTED_DATAREP

MPI_ERR_UNSUPPORTED_OPERATION MPI::ERR_UNSUPPORTED_OPERATION

MPI_ERR_WIN MPI::ERR_WIN

MPI_ERR_LASTCODE MPI::ERR_LASTCODE
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Return Codes (continued)
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Assorted Constants

C/Fortran name C++ name C++ type

MPI_BOTTOM MPI::BOTTOM void * const

MPI_PROC_NULL MPI::PROC_NULL const int

MPI_ANY_SOURCE MPI::ANY_SOURCE (or unnamed enum)

MPI_ANY_TAG MPI::ANY_TAG

MPI_UNDEFINED MPI::UNDEFINED

MPI_BSEND_OVERHEAD MPI::BSEND_OVERHEAD

MPI_KEYVAL_INVALID MPI::KEYVAL_INVALID

MPI_IN_PLACE MPI::IN_PLACE

MPI_LOCK_EXCLUSIVE MPI::LOCK_EXCLUSIVE

MPI_LOCK_SHARED MPI::LOCK_SHARED

MPI_ROOT MPI::ROOT

Status size and reserved index values (Fortran only)

MPI_STATUS_SIZE Not defined for C++
MPI_SOURCE Not defined for C++
MPI_TAG Not defined for C++
MPI_ERROR Not defined for C++

Variable Address Size (Fortran only)

MPI_ADDRESS_KIND Not defined for C++
MPI_INTEGER_KIND Not defined for C++
MPI_OFFSET_KIND Not defined for C++

Error-handling specifiers

C++ type: MPI::Errhandler

MPI_ERRORS_ARE_FATAL MPI::ERRORS_ARE_FATAL

MPI_ERRORS_RETURN MPI::ERRORS_RETURN

MPI::ERRORS_THROW_EXCEPTIONS

Maximum Sizes for Strings

C/Fortran name C++ name C++ type

MPI_MAX_PROCESSOR_NAME MPI::MAX_PROCESSOR_NAME const int

MPI_MAX_ERROR_STRING MPI::MAX_ERROR_STRING (or unnamed enum)

MPI_MAX_DATAREP_STRING MPI::MAX_DATAREP_STRING

MPI_MAX_INFO_KEY MPI::MAX_INFO_KEY

MPI_MAX_INFO_VAL MPI::MAX_INFO_VAL

MPI_MAX_OBJECT_NAME MPI::MAX_OBJECT_NAME

MPI_MAX_PORT_NAME MPI::MAX_PORT_NAME
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Named Predefined Datatypes C/C++ types

C++ type: MPI::Datatype

MPI_CHAR signed char

(treated as printable character)
MPI::CHAR char

(treated as printable character)
MPI_SHORT MPI::SHORT signed short int

MPI_INT MPI::INT signed int

MPI_LONG MPI::LONG signed long

MPI_LONG_LONG_INT MPI::LONG_LONG_INT signed long long

MPI_LONG_LONG MPI::LONG_LONG long long (synonym)
MPI_SIGNED_CHAR MPI::SIGNED_CHAR signed char

(treated as integral value)
MPI_UNSIGNED_CHAR MPI::UNSIGNED_CHAR unsigned char

(treated as integral value)
MPI_UNSIGNED_SHORT MPI::UNSIGNED_SHORT unsigned short

MPI_UNSIGNED MPI::UNSIGNED unsigned int

MPI_UNSIGNED_LONG MPI::UNSIGNED_LONG unsigned long

MPI_UNSIGNED_LONG_LONG MPI::UNSIGNED_LONG_LONG unsigned long long

MPI_FLOAT MPI::FLOAT float

MPI_DOUBLE MPI::DOUBLE double

MPI_LONG_DOUBLE MPI::LONG_DOUBLE long double

MPI_WCHAR MPI::WCHAR wchar_t

(defined in <stddef.h>)
(treated as printable character)

MPI_BYTE MPI::BYTE (any C/C++ type)
MPI_PACKED MPI::PACKED (any C/C++ type)

C and C++ (no Fortran) Named Predefined Datatypes Fortran types

MPI_Fint MPI::Fint INTEGER

Named Predefined Datatypes Fortran types

C++ type: MPI::Datatype

MPI_INTEGER MPI::INTEGER INTEGER

MPI_REAL MPI::REAL REAL

MPI_DOUBLE_PRECISION MPI::DOUBLE_PRECISION DOUBLE PRECISION

MPI_COMPLEX MPI::F_COMPLEX COMPLEX

MPI_LOGICAL MPI::LOGICAL LOGICAL

MPI_CHARACTER MPI::CHARACTER CHARACTER(1)

MPI_BYTE MPI::BYTE (any Fortran type)

MPI_PACKED MPI::PACKED (any Fortran type)
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C++-Only Named Predefined Datatypes C++ types

C++ type: MPI::Datatype

MPI::BOOL bool

MPI::COMPLEX Complex<float>

MPI::DOUBLE_COMPLEX Complex<double>

MPI::LONG_DOUBLE_COMPLEX Complex<long double>

Optional datatypes (Fortran) Fortran types

C++ type: MPI::Datatype

MPI_DOUBLE_COMPLEX MPI::DOUBLE_COMPLEX DOUBLE COMPLEX

MPI_INTEGER1 MPI::INTEGER1 INTEGER*1

MPI_INTEGER2 MPI::INTEGER2 INTEGER*8

MPI_INTEGER4 MPI::INTEGER4 INTEGER*4

MPI_INTEGER8 MPI::INTEGER8 INTEGER*8

MPI_REAL2 MPI::REAL2 REAL*2

MPI_REAL4 MPI::REAL4 REAL*4

MPI_REAL8 MPI::REAL8 REAL*8

Datatypes for reduction functions (C and C++)

C++ type: MPI::Datatype

MPI_FLOAT_INT MPI::FLOAT_INT

MPI_DOUBLE_INT MPI::DOUBLE_INT

MPI_LONG_INT MPI::LONG_INT

MPI_2INT MPI::TWOINT

MPI_SHORT_INT MPI::SHORT_INT

MPI_LONG_DOUBLE_INT MPI::LONG_DOUBLE_INT

Datatypes for reduction functions (Fortran)

C++ type: MPI::Datatype

MPI_2REAL MPI::TWOREAL

MPI_2DOUBLE_PRECISION MPI::TWODOUBLE_PRECISION

MPI_2INTEGER MPI::TWOINTEGER

Special datatypes for constructing derived datatypes

C++ type: MPI::Datatype

MPI_UB MPI::UB

MPI_LB MPI::LB

Reserved communicators

C++ type: MPI::Intracomm

MPI_COMM_WORLD MPI::COMM_WORLD

MPI_COMM_SELF MPI::COMM_SELF
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Results of communicator and group comparisons

C++ type: const int

(or unnamed enum)

MPI_IDENT MPI::IDENT

MPI_CONGRUENT MPI::CONGRUENT

MPI_SIMILAR MPI::SIMILAR

MPI_UNEQUAL MPI::UNEQUAL

Environmental inquiry keys

C++ type: const int

(or unnamed enum)

MPI_TAG_UB MPI::TAG_UB

MPI_IO MPI::IO

MPI_HOST MPI::HOST

MPI_WTIME_IS_GLOBAL MPI::WTIME_IS_GLOBAL

Collective Operations

C++ type: const MPI::Op

MPI_MAX MPI::MAX

MPI_MIN MPI::MIN

MPI_SUM MPI::SUM

MPI_PROD MPI::PROD

MPI_MAXLOC MPI::MAXLOC

MPI_MINLOC MPI::MINLOC

MPI_BAND MPI::BAND

MPI_BOR MPI::BOR

MPI_BXOR MPI::BXOR

MPI_LAND MPI::LAND

MPI_LOR MPI::LOR

MPI_LXOR MPI::LXOR

MPI_REPLACE MPI::REPLACE

Null Handles

C/Fortran name C++ name C++ type

MPI_GROUP_NULL MPI::GROUP_NULL const MPI::Group

MPI_COMM_NULL MPI::COMM_NULL 1)
MPI_DATATYPE_NULL MPI::DATATYPE_NULL const MPI::Datatype

MPI_REQUEST_NULL MPI::REQUEST_NULL const MPI::Request

MPI_OP_NULL MPI::OP_NULL const MPI::Op

MPI_ERRHANDLER_NULL MPI::ERRHANDLER_NULL const MPI::Errhandler

MPI_FILE_NULL MPI::FILE_NULL

MPI_INFO_NULL MPI::INFO_NULL

MPI_WIN_NULL MPI::WIN_NULL
1) C++ type: See Section 16.1.7 on page 455 regarding

class hierarchy and the specific type of MPI::COMM_NULL
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MPI_ERRHANDLER_NULL MPI::ERRHANDLER_NULL const MPI::Errhandler

MPI_FILE_NULL MPI::FILE_NULL

MPI_INFO_NULL MPI::INFO_NULL

MPI_WIN_NULL MPI::WIN_NULL
1) C++ type: See Section 16.1.7 on page 455 regarding

class hierarchy and the specific type of MPI::COMM_NULL
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Empty group

C++ type: const MPI::Group

MPI_GROUP_EMPTY MPI::GROUP_EMPTY

Topologies

C++ type: const int

(or unnamed enum)

MPI_GRAPH MPI::GRAPH

MPI_CART MPI::CART

Predefined functions

C/Fortran name C++ name C++ type

MPI_NULL_COPY_FN MPI::NULL_COPY_FN MPI::Copy_function

MPI_DUP_FN MPI::DUP_FN MPI::Copy_function

MPI_NULL_DELETE_FN MPI::NULL_DELETE_FN MPI::Delete_function

Predefined Attribute Keys

MPI_APPNUM MPI::APPNUM

MPI_LASTUSEDCODE MPI::LASTUSEDCODE

MPI_UNIVERSE_SIZE MPI::UNIVERSE_SIZE

MPI_WIN_BASE MPI::WIN_BASE

MPI_WIN_DISP_UNIT MPI::WIN_DISP_UNIT

MPI_WIN_SIZE MPI::WIN_SIZE

Mode Constants

MPI_MODE_APPEND MPI::MODE_APPEND

MPI_MODE_CREATE MPI::MODE_CREATE

MPI_MODE_DELETE_ON_CLOSE MPI::MODE_DELETE_ON_CLOSE

MPI_MODE_EXCL MPI::MODE_EXCL

MPI_MODE_NOCHECK MPI::MODE_NOCHECK

MPI_MODE_NOPRECEDE MPI::MODE_NOPRECEDE

MPI_MODE_NOPUT MPI::MODE_NOPUT

MPI_MODE_NOSTORE MPI::MODE_NOSTORE

MPI_MODE_NOSUCCEED MPI::MODE_NOSUCCEED

MPI_MODE_RDONLY MPI::MODE_RDONLY

MPI_MODE_RDWR MPI::MODE_RDWR

MPI_MODE_SEQUENTIAL MPI::MODE_SEQUENTIAL

MPI_MODE_UNIQUE_OPEN MPI::MODE_UNIQUE_OPEN

MPI_MODE_WRONLY MPI::MODE_WRONLY
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Empty group

C++ type: const MPI::Group

MPI_GROUP_EMPTY MPI::GROUP_EMPTY

Topologies

C++ type: const int

(or unnamed enum)

MPI_GRAPH MPI::GRAPH

MPI_CART MPI::CART

Predefined functions

C/Fortran name C++ name C++ type

MPI_NULL_COPY_FN MPI::NULL_COPY_FN MPI::Copy_function

MPI_DUP_FN MPI::DUP_FN MPI::Copy_function

MPI_NULL_DELETE_FN MPI::NULL_DELETE_FN MPI::Delete_function

Predefined Attribute Keys

MPI_APPNUM MPI::APPNUM

MPI_LASTUSEDCODE MPI::LASTUSEDCODE

MPI_UNIVERSE_SIZE MPI::UNIVERSE_SIZE

MPI_WIN_BASE MPI::WIN_BASE

MPI_WIN_DISP_UNIT MPI::WIN_DISP_UNIT

MPI_WIN_SIZE MPI::WIN_SIZE

Mode Constants

MPI_MODE_APPEND MPI::MODE_APPEND

MPI_MODE_CREATE MPI::MODE_CREATE

MPI_MODE_DELETE_ON_CLOSE MPI::MODE_DELETE_ON_CLOSE

MPI_MODE_EXCL MPI::MODE_EXCL

MPI_MODE_NOCHECK MPI::MODE_NOCHECK

MPI_MODE_NOPRECEDE MPI::MODE_NOPRECEDE

MPI_MODE_NOPUT MPI::MODE_NOPUT

MPI_MODE_NOSTORE MPI::MODE_NOSTORE

MPI_MODE_NOSUCCEED MPI::MODE_NOSUCCEED

MPI_MODE_RDONLY MPI::MODE_RDONLY

MPI_MODE_RDWR MPI::MODE_RDWR

MPI_MODE_SEQUENTIAL MPI::MODE_SEQUENTIAL

MPI_MODE_UNIQUE_OPEN MPI::MODE_UNIQUE_OPEN

MPI_MODE_WRONLY MPI::MODE_WRONLY
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Datatype Decoding Constants

MPI_COMBINER_CONTIGUOUS MPI::COMBINER_CONTIGUOUS

MPI_COMBINER_DARRAY MPI::COMBINER_DARRAY

MPI_COMBINER_DUP MPI::COMBINER_DUP

MPI_COMBINER_F90_COMPLEX MPI::COMBINER_F90_COMPLEX

MPI_COMBINER_F90_INTEGER MPI::COMBINER_F90_INTEGER

MPI_COMBINER_F90_REAL MPI::COMBINER_F90_REAL

MPI_COMBINER_HINDEXED_INTEGER MPI::COMBINER_HINDEXED_INTEGER

MPI_COMBINER_HINDEXED MPI::COMBINER_HINDEXED

MPI_COMBINER_HVECTOR_INTEGER MPI::COMBINER_HVECTOR_INTEGER

MPI_COMBINER_HVECTOR MPI::COMBINER_HVECTOR

MPI_COMBINER_INDEXED_BLOCK MPI::COMBINER_INDEXED_BLOCK

MPI_COMBINER_INDEXED MPI::COMBINER_INDEXED

MPI_COMBINER_NAMED MPI::COMBINER_NAMED

MPI_COMBINER_RESIZED MPI::COMBINER_RESIZED

MPI_COMBINER_STRUCT_INTEGER MPI::COMBINER_STRUCT_INTEGER

MPI_COMBINER_STRUCT MPI::COMBINER_STRUCT

MPI_COMBINER_SUBARRAY MPI::COMBINER_SUBARRAY

MPI_COMBINER_VECTOR MPI::COMBINER_VECTOR

Threads Constants

MPI_THREAD_FUNNELED MPI::THREAD_FUNNELED

MPI_THREAD_MULTIPLE MPI::THREAD_MULTIPLE

MPI_THREAD_SERIALIZED MPI::THREAD_SERIALIZED

MPI_THREAD_SINGLE MPI::THREAD_SINGLE

File Operation Constants

MPI_DISPLACEMENT_CURRENT MPI::DISPLACEMENT_CURRENT

MPI_DISTRIBUTE_BLOCK MPI::DISTRIBUTE_BLOCK

MPI_DISTRIBUTE_CYCLIC MPI::DISTRIBUTE_CYCLIC

MPI_DISTRIBUTE_DFLT_DARG MPI::DISTRIBUTE_DFLT_DARG

MPI_DISTRIBUTE_NONE MPI::DISTRIBUTE_NONE

MPI_ORDER_C MPI::ORDER_C

MPI_ORDER_FORTRAN MPI::ORDER_FORTRAN

MPI_SEEK_CUR MPI::SEEK_CUR

MPI_SEEK_END MPI::SEEK_END

MPI_SEEK_SET MPI::SEEK_SET

F90 Datatype Matching Constants

MPI_TYPECLASS_COMPLEX MPI::TYPECLASS_COMPLEX

MPI_TYPECLASS_INTEGER MPI::TYPECLASS_INTEGER

MPI_TYPECLASS_REAL MPI::TYPECLASS_REAL

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

498 ANNEX A. LANGUAGE BINDINGS SUMMARY

Datatype Decoding Constants

MPI_COMBINER_CONTIGUOUS MPI::COMBINER_CONTIGUOUS

MPI_COMBINER_DARRAY MPI::COMBINER_DARRAY

MPI_COMBINER_DUP MPI::COMBINER_DUP

MPI_COMBINER_F90_COMPLEX MPI::COMBINER_F90_COMPLEX

MPI_COMBINER_F90_INTEGER MPI::COMBINER_F90_INTEGER

MPI_COMBINER_F90_REAL MPI::COMBINER_F90_REAL

MPI_COMBINER_HINDEXED_INTEGER MPI::COMBINER_HINDEXED_INTEGER

MPI_COMBINER_HINDEXED MPI::COMBINER_HINDEXED

MPI_COMBINER_HVECTOR_INTEGER MPI::COMBINER_HVECTOR_INTEGER

MPI_COMBINER_HVECTOR MPI::COMBINER_HVECTOR

MPI_COMBINER_INDEXED_BLOCK MPI::COMBINER_INDEXED_BLOCK

MPI_COMBINER_INDEXED MPI::COMBINER_INDEXED

MPI_COMBINER_NAMED MPI::COMBINER_NAMED

MPI_COMBINER_RESIZED MPI::COMBINER_RESIZED

MPI_COMBINER_STRUCT_INTEGER MPI::COMBINER_STRUCT_INTEGER

MPI_COMBINER_STRUCT MPI::COMBINER_STRUCT

MPI_COMBINER_SUBARRAY MPI::COMBINER_SUBARRAY

MPI_COMBINER_VECTOR MPI::COMBINER_VECTOR

Threads Constants

MPI_THREAD_FUNNELED MPI::THREAD_FUNNELED

MPI_THREAD_MULTIPLE MPI::THREAD_MULTIPLE

MPI_THREAD_SERIALIZED MPI::THREAD_SERIALIZED

MPI_THREAD_SINGLE MPI::THREAD_SINGLE

File Operation Constants

MPI_DISPLACEMENT_CURRENT MPI::DISPLACEMENT_CURRENT

MPI_DISTRIBUTE_BLOCK MPI::DISTRIBUTE_BLOCK

MPI_DISTRIBUTE_CYCLIC MPI::DISTRIBUTE_CYCLIC

MPI_DISTRIBUTE_DFLT_DARG MPI::DISTRIBUTE_DFLT_DARG

MPI_DISTRIBUTE_NONE MPI::DISTRIBUTE_NONE

MPI_ORDER_C MPI::ORDER_C

MPI_ORDER_FORTRAN MPI::ORDER_FORTRAN

MPI_SEEK_CUR MPI::SEEK_CUR

MPI_SEEK_END MPI::SEEK_END

MPI_SEEK_SET MPI::SEEK_SET

F90 Datatype Matching Constants

MPI_TYPECLASS_COMPLEX MPI::TYPECLASS_COMPLEX

MPI_TYPECLASS_INTEGER MPI::TYPECLASS_INTEGER

MPI_TYPECLASS_REAL MPI::TYPECLASS_REAL
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Handles to Assorted Structures in C and C++ (no Fortran)

MPI_File MPI::File

MPI_Info MPI::Info

MPI_Win MPI::Win

Constants Specifying Empty or Ignored Input

MPI_ARGVS_NULL MPI::ARGVS_NULL

MPI_ARGV_NULL MPI::ARGV_NULL

MPI_ERRCODES_IGNORE Not defined for C++
MPI_STATUSES_IGNORE Not defined for C++
MPI_STATUS_IGNORE Not defined for C++

C Constants Specifying Ignored Input (no C++ or Fortran)

MPI_F_STATUSES_IGNORE Not defined for C++
MPI_F_STATUS_IGNORE Not defined for C++

C and C++ preprocessor Constants and Fortran Parameters

MPI_SUBVERSION

MPI_VERSION

A.1.2 Types

The following are defined C type definitions, included in the file mpi.h.

/* C opaque types */

MPI_Aint

MPI_Fint

MPI_Offset

MPI_Status

/* C handles to assorted structures */

MPI_Comm

MPI_Datatype

MPI_Errhandler

MPI_File

MPI_Group

MPI_Info

MPI_Op

MPI_Request

MPI_Win

// C++ opaque types (all within the MPI namespace)

MPI::Aint

MPI::Offset

MPI::Status
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Handles to Assorted Structures in C and C++ (no Fortran)

MPI_File MPI::File

MPI_Info MPI::Info

MPI_Win MPI::Win

Constants Specifying Empty or Ignored Input

MPI_ARGVS_NULL MPI::ARGVS_NULL

MPI_ARGV_NULL MPI::ARGV_NULL

MPI_ERRCODES_IGNORE Not defined for C++
MPI_STATUSES_IGNORE Not defined for C++
MPI_STATUS_IGNORE Not defined for C++

C Constants Specifying Ignored Input (no C++ or Fortran)

MPI_F_STATUSES_IGNORE Not defined for C++
MPI_F_STATUS_IGNORE Not defined for C++

C and C++ preprocessor Constants and Fortran Parameters

MPI_SUBVERSION

MPI_VERSION

A.1.2 Types

The following are defined C type definitions, included in the file mpi.h.

/* C opaque types */

MPI_Aint

MPI_Fint

MPI_Offset

MPI_Status

/* C handles to assorted structures */

MPI_Comm

MPI_Datatype

MPI_Errhandler

MPI_File

MPI_Group

MPI_Info

MPI_Op

MPI_Request

MPI_Win

// C++ opaque types (all within the MPI namespace)

MPI::Aint

MPI::Offset

MPI::Status
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// C++ handles to assorted structures (classes,

// all within the MPI namespace)

MPI::Comm

MPI::Intracomm

MPI::Graphcomm

MPI::Cartcomm

MPI::Intercomm

MPI::Datatype

MPI::Errhandler

MPI::Exception

MPI::File

MPI::Group

MPI::Info

MPI::Op

MPI::Request

MPI::Prequest

MPI::Grequest

MPI::Win

A.1.3 Prototype definitions

The following are defined C typedefs for user-defined functions, also included in the file
mpi.h.

/* prototypes for user-defined functions */

typedef void MPI_User_function(void *invec, void *inoutvec, int *len,

MPI_Datatype *datatype);

typedef int MPI_Comm_copy_attr_function(MPI_Comm oldcomm,

int comm_keyval, void *extra_state, void *attribute_val_in,

void *attribute_val_out, int*flag);

typedef int MPI_Comm_delete_attr_function(MPI_Comm comm,

int comm_keyval, void *attribute_val, void *extra_state);

typedef int MPI_Win_copy_attr_function(MPI_Win oldwin, int win_keyval,

void *extra_state, void *attribute_val_in,

void *attribute_val_out, int *flag);

typedef int MPI_Win_delete_attr_function(MPI_Win win, int win_keyval,

void *attribute_val, void *extra_state);

typedef int MPI_Type_copy_attr_function(MPI_Datatype oldtype,

int type_keyval, void *extra_state,

void *attribute_val_in, void *attribute_val_out, int *flag);

typedef int MPI_Type_delete_attr_function(MPI_Datatype type,

int type_keyval, void *attribute_val, void *extra_state);

typedef void MPI_Comm_errhandler_fn(MPI_Comm *, int *, ...);
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// C++ handles to assorted structures (classes,

// all within the MPI namespace)

MPI::Comm

MPI::Intracomm

MPI::Graphcomm

MPI::Cartcomm

MPI::Intercomm

MPI::Datatype

MPI::Errhandler

MPI::Exception

MPI::File

MPI::Group

MPI::Info

MPI::Op

MPI::Request

MPI::Prequest

MPI::Grequest

MPI::Win

A.1.3 Prototype definitions

The following are defined C typedefs for user-defined functions, also included in the file
mpi.h.

/* prototypes for user-defined functions */

typedef void MPI_User_function(void *invec, void *inoutvec, int *len,

MPI_Datatype *datatype);

typedef int MPI_Comm_copy_attr_function(MPI_Comm oldcomm,

int comm_keyval, void *extra_state, void *attribute_val_in,

void *attribute_val_out, int*flag);

typedef int MPI_Comm_delete_attr_function(MPI_Comm comm,

int comm_keyval, void *attribute_val, void *extra_state);

typedef int MPI_Win_copy_attr_function(MPI_Win oldwin, int win_keyval,

void *extra_state, void *attribute_val_in,

void *attribute_val_out, int *flag);

typedef int MPI_Win_delete_attr_function(MPI_Win win, int win_keyval,

void *attribute_val, void *extra_state);

typedef int MPI_Type_copy_attr_function(MPI_Datatype oldtype,

int type_keyval, void *extra_state,

void *attribute_val_in, void *attribute_val_out, int *flag);

typedef int MPI_Type_delete_attr_function(MPI_Datatype type,

int type_keyval, void *attribute_val, void *extra_state);

typedef void MPI_Comm_errhandler_fn(MPI_Comm *, int *, ...);
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typedef void MPI_Win_errhandler_fn(MPI_Win *, int *, ...);

typedef void MPI_File_errhandler_fn(MPI_File *, int *, ...);

typedef int MPI_Grequest_query_function(void *extra_state,

MPI_Status *status);

typedef int MPI_Grequest_free_function(void *extra_state);

typedef int MPI_Grequest_cancel_function(void *extra_state, int complete);

typedef int MPI_Datarep_extent_function(MPI_Datatype datatype,

MPI_Aint *file_extent, void *extra_state);

typedef int MPI_Datarep_conversion_function(void *userbuf,

MPI_Datatype datatype, int count, void *filebuf,

MPI_Offset position, void *extra_state);

For Fortran, here are examples of how each of the user-defined subroutines should be
declared.

The user-function argument to MPI_OP_CREATE should be declared like this:

SUBROUTINE USER_FUNCTION(INVEC, INOUTVEC, LEN, TYPE)

<type> INVEC(LEN), INOUTVEC(LEN)

INTEGER LEN, TYPE

The copy and delete function arguments to MPI_COMM_KEYVAL_CREATE should be
declared like these:

SUBROUTINE COMM_COPY_ATTR_FN(OLDCOMM, COMM_KEYVAL, EXTRA_STATE,

ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDCOMM, COMM_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT

LOGICAL FLAG

SUBROUTINE COMM_DELETE_ATTR_FN(COMM, COMM_KEYVAL, ATTRIBUTE_VAL,

EXTRA_STATE, IERROR)

INTEGER COMM, COMM_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

The copy and delete function arguments to MPI_WIN_KEYVAL_CREATE should be
declared like these:

SUBROUTINE WIN_COPY_ATTR_FN(OLDWIN, WIN_KEYVAL, EXTRA_STATE,

ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDWIN, WIN_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT

LOGICAL FLAG

SUBROUTINE WIN_DELETE_ATTR_FN(WIN, WIN_KEYVAL, ATTRIBUTE_VAL,

EXTRA_STATE, IERROR)

INTEGER WIN, WIN_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE
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typedef void MPI_Win_errhandler_fn(MPI_Win *, int *, ...);

typedef void MPI_File_errhandler_fn(MPI_File *, int *, ...);

typedef int MPI_Grequest_query_function(void *extra_state,

MPI_Status *status);

typedef int MPI_Grequest_free_function(void *extra_state);

typedef int MPI_Grequest_cancel_function(void *extra_state, int complete);

typedef int MPI_Datarep_extent_function(MPI_Datatype datatype,

MPI_Aint *file_extent, void *extra_state);

typedef int MPI_Datarep_conversion_function(void *userbuf,

MPI_Datatype datatype, int count, void *filebuf,

MPI_Offset position, void *extra_state);

For Fortran, here are examples of how each of the user-defined subroutines should be
declared.

The user-function argument to MPI_OP_CREATE should be declared like this:

SUBROUTINE USER_FUNCTION(INVEC, INOUTVEC, LEN, TYPE)

<type> INVEC(LEN), INOUTVEC(LEN)

INTEGER LEN, TYPE

The copy and delete function arguments to MPI_COMM_KEYVAL_CREATE should be
declared like these:

SUBROUTINE COMM_COPY_ATTR_FN(OLDCOMM, COMM_KEYVAL, EXTRA_STATE,

ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDCOMM, COMM_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT

LOGICAL FLAG

SUBROUTINE COMM_DELETE_ATTR_FN(COMM, COMM_KEYVAL, ATTRIBUTE_VAL,

EXTRA_STATE, IERROR)

INTEGER COMM, COMM_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

The copy and delete function arguments to MPI_WIN_KEYVAL_CREATE should be
declared like these:

SUBROUTINE WIN_COPY_ATTR_FN(OLDWIN, WIN_KEYVAL, EXTRA_STATE,

ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDWIN, WIN_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT

LOGICAL FLAG

SUBROUTINE WIN_DELETE_ATTR_FN(WIN, WIN_KEYVAL, ATTRIBUTE_VAL,

EXTRA_STATE, IERROR)

INTEGER WIN, WIN_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE
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The copy and delete function arguments to MPI_TYPE_KEYVAL_CREATE should be
declared like these:

SUBROUTINE TYPE_COPY_ATTR_FN(OLDTYPE, TYPE_KEYVAL, EXTRA_STATE,

ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDTYPE, TYPE_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE,

ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT

LOGICAL FLAG

SUBROUTINE TYPE_DELETE_ATTR_FN(TYPE, TYPE_KEYVAL, ATTRIBUTE_VAL,

EXTRA_STATE, IERROR)

INTEGER TYPE, TYPE_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

The handler-function argument to MPI_COMM_CREATE_ERRHANDLER should be de-
clared like this:

SUBROUTINE COMM_ERRHANDLER_FN(COMM, ERROR_CODE, ...)

INTEGER COMM, ERROR_CODE

The handler-function argument to MPI_WIN_CREATE_ERRHANDLER should be de-
clared like this:

SUBROUTINE WIN_ERRHANDLER_FN(WIN, ERROR_CODE, ...)

INTEGER WIN, ERROR_CODE

The handler-function argument to MPI_FILE_CREATE_ERRHANDLER should be de-
clared like this:

SUBROUTINE FILE_ERRHANDLER_FN(FILE, ERROR_CODE, ...)

INTEGER FILE, ERROR_CODE

The query, free, and cancel function arguments to MPI_GREQUEST_START should be
declared like these:

SUBROUTINE GREQUEST_QUERY_FUNCTION(EXTRA_STATE, STATUS, IERROR)

INTEGER STATUS(MPI_STATUS_SIZE), IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

SUBROUTINE GREQUEST_FREE_FUNCTION(EXTRA_STATE, IERROR)

INTEGER IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

SUBROUTINE GREQUEST_CANCEL_FUNCTION(EXTRA_STATE, COMPLETE, IERROR)

INTEGER IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

LOGICAL COMPLETE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

502 ANNEX A. LANGUAGE BINDINGS SUMMARY

The copy and delete function arguments to MPI_TYPE_KEYVAL_CREATE should be
declared like these:

SUBROUTINE TYPE_COPY_ATTR_FN(OLDTYPE, TYPE_KEYVAL, EXTRA_STATE,

ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDTYPE, TYPE_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE,

ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT

LOGICAL FLAG

SUBROUTINE TYPE_DELETE_ATTR_FN(TYPE, TYPE_KEYVAL, ATTRIBUTE_VAL,

EXTRA_STATE, IERROR)

INTEGER TYPE, TYPE_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

The handler-function argument to MPI_COMM_CREATE_ERRHANDLER should be de-
clared like this:

SUBROUTINE COMM_ERRHANDLER_FN(COMM, ERROR_CODE, ...)

INTEGER COMM, ERROR_CODE

The handler-function argument to MPI_WIN_CREATE_ERRHANDLER should be de-
clared like this:

SUBROUTINE WIN_ERRHANDLER_FN(WIN, ERROR_CODE, ...)

INTEGER WIN, ERROR_CODE

The handler-function argument to MPI_FILE_CREATE_ERRHANDLER should be de-
clared like this:

SUBROUTINE FILE_ERRHANDLER_FN(FILE, ERROR_CODE, ...)

INTEGER FILE, ERROR_CODE

The query, free, and cancel function arguments to MPI_GREQUEST_START should be
declared like these:

SUBROUTINE GREQUEST_QUERY_FUNCTION(EXTRA_STATE, STATUS, IERROR)

INTEGER STATUS(MPI_STATUS_SIZE), IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

SUBROUTINE GREQUEST_FREE_FUNCTION(EXTRA_STATE, IERROR)

INTEGER IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

SUBROUTINE GREQUEST_CANCEL_FUNCTION(EXTRA_STATE, COMPLETE, IERROR)

INTEGER IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

LOGICAL COMPLETE
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The extend and conversion function arguments to MPI_REGISTER_DATAREP should
be declared like these:

SUBROUTINE DATAREP_EXTENT_FUNCTION(DATATYPE, EXTENT, EXTRA_STATE, IERROR)

INTEGER DATATYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTENT, EXTRA_STATE

SUBROUTINE DATAREP_CONVERSION_FUNCTION(USERBUF, DATATYPE, COUNT, FILEBUF,

POSITION, EXTRA_STATE, IERROR)

<TYPE> USERBUF(*), FILEBUF(*)

INTEGER COUNT, DATATYPE, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) POSITION

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

The following are defined C++ typedefs, also included in the file mpi.h.

namespace MPI {

typedef void User_function(const void* invec, void *inoutvec,

int len, const Datatype& datatype);

typedef int Comm::Copy_attr_function(const Comm& oldcomm,

int comm_keyval, void* extra_state, void* attribute_val_in,

void* attribute_val_out, bool& flag);

typedef int Comm::Delete_attr_function(Comm& comm, int

comm_keyval, void* attribute_val, void* extra_state);

typedef int Win::Copy_attr_function(const Win& oldwin,

int win_keyval, void* extra_state, void* attribute_val_in,

void* attribute_val_out, bool& flag);

typedef int Win::Delete_attr_function(Win& win, int

win_keyval, void* attribute_val, void* extra_state);

typedef int Datatype::Copy_attr_function(const Datatype& oldtype,

int type_keyval, void* extra_state, const void* attribute_val_in,

void* attribute_val_out, bool& flag);

typedef int Datatype::Delete_attr_function(Datatype& type,

int type_keyval, void* attribute_val, void* extra_state);

typedef void Comm::Errhandler_fn(Comm &, int *, ...);

typedef void Win::Errhandler_fn(Win &, int *, ...);

typedef void File::Errhandler_fn(File &, int *, ...);

typedef int Grequest::Query_function(void* extra_state, Status& status);

typedef int Grequest::Free_function(void* extra_state);

typedef int Grequest::Cancel_function(void* extra_state, bool complete);

typedef void Datarep_extent_function(const Datatype& datatype,

Aint& file_extent, void* extra_state);
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typedef void Datarep_conversion_function(void* userbuf, Datatype& datatype,

int count, void* filebuf, Offset position, void* extra_state);

}

A.1.4 Deprecated prototype definitions

The following are defined C typedefs for deprecated user-defined functions, also included in
the file mpi.h.

/* prototypes for user-defined functions */

typedef int MPI_Copy_function(MPI_Comm oldcomm, int keyval,

void *extra_state, void *attribute_val_in,

void *attribute_val_out, int *flag);

typedef int MPI_Delete_function(MPI_Comm comm, int keyval,

void *attribute_val, void *extra_state);

typedef void MPI_Handler_function(MPI_Comm *, int *, ...);

The following are deprecated Fortran user-defined callback subroutine prototypes. The
deprecated copy and delete function arguments to MPI_KEYVAL_CREATE should be de-
clared like these:

SUBROUTINE COPY_FUNCTION(OLDCOMM, KEYVAL, EXTRA_STATE,

ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERR)

INTEGER OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, IERR

LOGICAL FLAG

SUBROUTINE DELETE_FUNCTION(COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERR)

INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERR

The deprecated handler-function for error handlers should be declared like this:

SUBROUTINE HANDLER_FUNCTION(COMM, ERROR_CODE, .....)

INTEGER COMM, ERROR_CODE

A.1.5 Info Keys

access_style

appnum

arch

cb_block_size

cb_buffer_size

cb_nodes

chunked_item

chunked_size

chunked
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void *attribute_val_out, int *flag);
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void *attribute_val, void *extra_state);

typedef void MPI_Handler_function(MPI_Comm *, int *, ...);
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deprecated copy and delete function arguments to MPI_KEYVAL_CREATE should be de-
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file

host

io_node_list

ip_address

ip_port

nb_proc

no_locks

num_io_nodes

path

soft

striping_factor

striping_unit

wdir

A.1.6 Info Values
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random
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read_once
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A.2 C Bindings

A.2.1 Point-to-Point Communication C Bindings

int MPI_Bsend_init(void* buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Bsend(void* buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm)

int MPI_Buffer_attach(void* buffer, int size)

int MPI_Buffer_detach(void* buffer_addr, int* size)

int MPI_Cancel(MPI_Request *request)

int MPI_Get_count(MPI_Status *status, MPI_Datatype datatype, int *count)

int MPI_Ibsend(void* buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Iprobe(int source, int tag, MPI_Comm comm, int *flag,

MPI_Status *status)

int MPI_Irecv(void* buf, int count, MPI_Datatype datatype, int source,

int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Irsend(void* buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Isend(void* buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Issend(void* buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Probe(int source, int tag, MPI_Comm comm, MPI_Status *status)

int MPI_Recv_init(void* buf, int count, MPI_Datatype datatype, int source,

int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Recv(void* buf, int count, MPI_Datatype datatype, int source,

int tag, MPI_Comm comm, MPI_Status *status)

int MPI_Request_free(MPI_Request *request)

int MPI_Request_get_status(MPI_Request request, int *flag,

MPI_Status *status)

int MPI_Rsend_init(void* buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Rsend(void* buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm)

int MPI_Send_init(void* buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm, MPI_Request *request)
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int MPI_Rsend(void* buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm)

int MPI_Send_init(void* buf, int count, MPI_Datatype datatype, int dest,
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int MPI_Sendrecv_replace(void* buf, int count, MPI_Datatype datatype,

int dest, int sendtag, int source, int recvtag, MPI_Comm comm,

MPI_Status *status)

int MPI_Sendrecv(void *sendbuf, int sendcount, MPI_Datatype sendtype,

int dest, int sendtag, void *recvbuf, int recvcount,

MPI_Datatype recvtype, int source, int recvtag, MPI_Comm comm,

MPI_Status *status)

int MPI_Send(void* buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm)

int MPI_Ssend_init(void* buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Ssend(void* buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm)

int MPI_Startall(int count, MPI_Request *array_of_requests)

int MPI_Start(MPI_Request *request)

int MPI_Testall(int count, MPI_Request *array_of_requests, int *flag,

MPI_Status *array_of_statuses)

int MPI_Testany(int count, MPI_Request *array_of_requests, int *index,

int *flag, MPI_Status *status)

int MPI_Test_cancelled(MPI_Status *status, int *flag)

int MPI_Test(MPI_Request *request, int *flag, MPI_Status *status)

int MPI_Testsome(int incount, MPI_Request *array_of_requests,

int *outcount, int *array_of_indices,

MPI_Status *array_of_statuses)

int MPI_Waitall(int count, MPI_Request *array_of_requests,

MPI_Status *array_of_statuses)

int MPI_Waitany(int count, MPI_Request *array_of_requests, int *index,

MPI_Status *status)

int MPI_Wait(MPI_Request *request, MPI_Status *status)

int MPI_Waitsome(int incount, MPI_Request *array_of_requests,

int *outcount, int *array_of_indices,

MPI_Status *array_of_statuses)

A.2.2 Datatypes C Bindings

int MPI_Get_address(void *location, MPI_Aint *address)

int MPI_Get_elements(MPI_Status *status, MPI_Datatype datatype, int *count)

int MPI_Pack_external(char *datarep, void *inbuf, int incount,
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MPI_Datatype array_of_datatypes[])
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int MPI_Type_get_extent(MPI_Datatype datatype, MPI_Aint *lb,

MPI_Aint *extent)

int MPI_Type_get_true_extent(MPI_Datatype datatype, MPI_Aint *true_lb,

MPI_Aint *true_extent)

int MPI_Type_indexed(int count, int *array_of_blocklengths,

int *array_of_displacements, MPI_Datatype oldtype,

MPI_Datatype *newtype)

int MPI_Type_size(MPI_Datatype datatype, int *size)

int MPI_Type_vector(int count, int blocklength, int stride,

MPI_Datatype oldtype, MPI_Datatype *newtype)

int MPI_Unpack_external(char *datarep, void *inbuf, MPI_Aint insize,

MPI_Aint *position, void *outbuf, int outcount,

MPI_Datatype datatype)

int MPI_Unpack(void* inbuf, int insize, int *position, void *outbuf,

int outcount, MPI_Datatype datatype, MPI_Comm comm)

A.2.3 Collective Communication C Bindings

int MPI_Allgather(void* sendbuf, int sendcount, MPI_Datatype sendtype,

void* recvbuf, int recvcount, MPI_Datatype recvtype,

MPI_Comm comm)

int MPI_Allgatherv(void* sendbuf, int sendcount, MPI_Datatype sendtype,

void* recvbuf, int *recvcounts, int *displs,

MPI_Datatype recvtype, MPI_Comm comm)

int MPI_Allreduce(void* sendbuf, void* recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

int MPI_Alltoall(void* sendbuf, int sendcount, MPI_Datatype sendtype,

void* recvbuf, int recvcount, MPI_Datatype recvtype,

MPI_Comm comm)

int MPI_Alltoallv(void* sendbuf, int *sendcounts, int *sdispls,

MPI_Datatype sendtype, void* recvbuf, int *recvcounts,

int *rdispls, MPI_Datatype recvtype, MPI_Comm comm)

int MPI_Alltoallw(void *sendbuf, int sendcounts[], int sdispls[],

MPI_Datatype sendtypes[], void *recvbuf, int recvcounts[],

int rdispls[], MPI_Datatype recvtypes[], MPI_Comm comm)

int MPI_Barrier(MPI_Comm comm )

int MPI_Bcast(void* buffer, int count, MPI_Datatype datatype, int root,

MPI_Comm comm )

int MPI_Exscan(void *sendbuf, void *recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)
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int MPI_Gather(void* sendbuf, int sendcount, MPI_Datatype sendtype,

void* recvbuf, int recvcount, MPI_Datatype recvtype, int root,

MPI_Comm comm)

int MPI_Gatherv(void* sendbuf, int sendcount, MPI_Datatype sendtype,

void* recvbuf, int *recvcounts, int *displs,

MPI_Datatype recvtype, int root, MPI_Comm comm)

int MPI_Op_create(MPI_User_function *function, int commute, MPI_Op *op)

int MPI_op_free( MPI_Op *op)

int MPI_Reduce_scatter(void* sendbuf, void* recvbuf, int *recvcounts,

MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

int MPI_Reduce(void* sendbuf, void* recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)

int MPI_Scan(void* sendbuf, void* recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, MPI_Comm comm )

int MPI_Scatter(void* sendbuf, int sendcount, MPI_Datatype sendtype,

void* recvbuf, int recvcount, MPI_Datatype recvtype, int root,

MPI_Comm comm)

int MPI_Scatterv(void* sendbuf, int *sendcounts, int *displs,

MPI_Datatype sendtype, void* recvbuf, int recvcount,

MPI_Datatype recvtype, int root, MPI_Comm comm)

A.2.4 Groups, Contexts, Communicators, and Caching C Bindings

int MPI_Comm_compare(MPI_Comm comm1,MPI_Comm comm2, int *result)

int MPI_Comm_create_keyval(MPI_Comm_copy_attr_function *comm_copy_attr_fn,

MPI_Comm_delete_attr_function *comm_delete_attr_fn,

int *comm_keyval, void *extra_state)

int MPI_Comm_create(MPI_Comm comm, MPI_Group group, MPI_Comm *newcomm)

int MPI_Comm_delete_attr(MPI_Comm comm, int comm_keyval)

int MPI_COMM_DUP_FN(MPI_Comm oldcomm, int comm_keyval, void *extra_state,

void *attribute_val_in, void *attribute_val_out, int *flag)

int MPI_Comm_dup(MPI_Comm comm, MPI_Comm *newcomm)

int MPI_Comm_free_keyval(int *comm_keyval)

int MPI_Comm_free(MPI_Comm *comm)

int MPI_Comm_get_attr(MPI_Comm comm, int comm_keyval, void *attribute_val,

int *flag)

int MPI_Comm_get_name(MPI_Comm comm, char *comm_name, int *resultlen)

int MPI_Comm_group(MPI_Comm comm, MPI_Group *group)
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int MPI_COMM_NULL_COPY_FN(MPI_Comm oldcomm, int comm_keyval,

void *extra_state, void *attribute_val_in,

void *attribute_val_out, int *flag)

int MPI_COMM_NULL_DELETE_FN(MPI_Comm comm, int comm_keyval, void

*attribute_val, void *extra_state)

int MPI_Comm_rank(MPI_Comm comm, int *rank)

int MPI_Comm_remote_group(MPI_Comm comm, MPI_Group *group)

int MPI_Comm_remote_size(MPI_Comm comm, int *size)

int MPI_Comm_set_attr(MPI_Comm comm, int comm_keyval, void *attribute_val)

int MPI_Comm_set_name(MPI_Comm comm, char *comm_name)

int MPI_Comm_size(MPI_Comm comm, int *size)

int MPI_Comm_split(MPI_Comm comm, int color, int key, MPI_Comm *newcomm)

int MPI_Comm_test_inter(MPI_Comm comm, int *flag)

int MPI_Group_compare(MPI_Group group1,MPI_Group group2, int *result)

int MPI_Group_difference(MPI_Group group1, MPI_Group group2,

MPI_Group *newgroup)

int MPI_Group_excl(MPI_Group group, int n, int *ranks, MPI_Group *newgroup)

int MPI_Group_free(MPI_Group *group)

int MPI_Group_incl(MPI_Group group, int n, int *ranks, MPI_Group *newgroup)

int MPI_Group_intersection(MPI_Group group1, MPI_Group group2,

MPI_Group *newgroup)

int MPI_Group_range_excl(MPI_Group group, int n, int ranges[][3],

MPI_Group *newgroup)

int MPI_Group_range_incl(MPI_Group group, int n, int ranges[][3],

MPI_Group *newgroup)

int MPI_Group_rank(MPI_Group group, int *rank)

int MPI_Group_size(MPI_Group group, int *size)

int MPI_Group_translate_ranks (MPI_Group group1, int n, int *ranks1,

MPI_Group group2, int *ranks2)

int MPI_Group_union(MPI_Group group1, MPI_Group group2,

MPI_Group *newgroup)

int MPI_Intercomm_create(MPI_Comm local_comm, int local_leader,

MPI_Comm peer_comm, int remote_leader, int tag,

MPI_Comm *newintercomm)
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int MPI_Intercomm_merge(MPI_Comm intercomm, int high,

MPI_Comm *newintracomm)

int MPI_Type_create_keyval(MPI_Type_copy_attr_function *type_copy_attr_fn,

MPI_Type_delete_attr_function *type_delete_attr_fn,

int *type_keyval, void *extra_state)

int MPI_Type_delete_attr(MPI_Datatype type, int type_keyval)

int MPI_TYPE_DUP_FN(MPI_Datatype oldtype, int type_keyval,

void *extra_state, void *attribute_val_in,

void *attribute_val_out, int *flag)

int MPI_Type_free_keyval(int *type_keyval)

int MPI_Type_get_attr(MPI_Datatype type, int type_keyval, void

*attribute_val, int *flag)

int MPI_Type_get_name(MPI_Datatype type, char *type_name, int *resultlen)

int MPI_TYPE_NULL_COPY_FN(MPI_Datatype oldtype, int type_keyval,

void *extra_state, void *attribute_val_in,

void *attribute_val_out, int *flag)

int MPI_TYPE_NULL_DELETE_FN(MPI_Datatype type, int type_keyval, void

*attribute_val, void *extra_state)

int MPI_Type_set_attr(MPI_Datatype type, int type_keyval,

void *attribute_val)

int MPI_Type_set_name(MPI_Datatype type, char *type_name)

int MPI_Win_create_keyval(MPI_Win_copy_attr_function *win_copy_attr_fn,

MPI_Win_delete_attr_function *win_delete_attr_fn,

int *win_keyval, void *extra_state)

int MPI_Win_delete_attr(MPI_Win win, int win_keyval)

int MPI_WIN_DUP_FN(MPI_Win oldwin, int win_keyval, void *extra_state,

void *attribute_val_in, void *attribute_val_out, int *flag)

int MPI_Win_free_keyval(int *win_keyval)

int MPI_Win_get_attr(MPI_Win win, int win_keyval, void *attribute_val,

int *flag)

int MPI_Win_get_name(MPI_Win win, char *win_name, int *resultlen)
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A.2.5 Process Topologies C Bindings

int MPI_Cart_coords(MPI_Comm comm, int rank, int maxdims, int *coords)

int MPI_Cart_create(MPI_Comm comm_old, int ndims, int *dims, int *periods,

int reorder, MPI_Comm *comm_cart)

int MPI_Cartdim_get(MPI_Comm comm, int *ndims)

int MPI_Cart_get(MPI_Comm comm, int maxdims, int *dims, int *periods,

int *coords)

int MPI_Cart_map(MPI_Comm comm, int ndims, int *dims, int *periods,

int *newrank)

int MPI_Cart_rank(MPI_Comm comm, int *coords, int *rank)

int MPI_Cart_shift(MPI_Comm comm, int direction, int disp,

int *rank_source, int *rank_dest)

int MPI_Cart_sub(MPI_Comm comm, int *remain_dims, MPI_Comm *newcomm)

int MPI_Dims_create(int nnodes, int ndims, int *dims)

int MPI_Graph_create(MPI_Comm comm_old, int nnodes, int *index, int *edges,

int reorder, MPI_Comm *comm_graph)

int MPI_Graphdims_get(MPI_Comm comm, int *nnodes, int *nedges)

int MPI_Graph_get(MPI_Comm comm, int maxindex, int maxedges, int *index,

int *edges)

int MPI_Graph_map(MPI_Comm comm, int nnodes, int *index, int *edges,

int *newrank)

int MPI_Graph_neighbors_count(MPI_Comm comm, int rank, int *nneighbors)

int MPI_Graph_neighbors(MPI_Comm comm, int rank, int maxneighbors,

int *neighbors)

int MPI_Topo_test(MPI_Comm comm, int *status)

A.2.6 MPI Environmenta Management C Bindings

int MPI_Abort(MPI_Comm comm, int errorcode)

int MPI_Add_error_class(int *errorclass)

int MPI_Add_error_code(int errorclass, int *errorcode)

int MPI_Add_error_string(int errorcode, char *string)

int MPI_Alloc_mem(MPI_Aint size, MPI_Info info, void *baseptr)

int MPI_Comm_call_errhandler(MPI_Comm comm, int errorcode)

int MPI_Comm_create_errhandler(MPI_Comm_errhandler_fn *function,

MPI_Errhandler *errhandler)
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int MPI_Comm_get_errhandler(MPI_Comm comm, MPI_Errhandler *errhandler)

int MPI_Comm_set_errhandler(MPI_Comm comm, MPI_Errhandler errhandler)

int MPI_Errhandler_free(MPI_Errhandler *errhandler)

int MPI_Error_class(int errorcode, int *errorclass)

int MPI_Error_string(int errorcode, char *string, int *resultlen)

int MPI_File_call_errhandler(MPI_File fh, int errorcode)

int MPI_File_create_errhandler(MPI_File_errhandler_fn *function,

MPI_Errhandler *errhandler)

int MPI_File_get_errhandler(MPI_File file, MPI_Errhandler *errhandler)

int MPI_File_set_errhandler(MPI_File file, MPI_Errhandler errhandler)

int MPI_Finalized(int *flag)

int MPI_Finalize(void)

int MPI_Free_mem(void *base)

int MPI_Get_processor_name(char *name, int *resultlen)

int MPI_Get_version(int *version, int *subversion)

int MPI_Initialized(int *flag)

int MPI_Init(int *argc, char ***argv)

int MPI_Win_call_errhandler(MPI_Win win, int errorcode)

int MPI_Win_create_errhandler(MPI_Win_errhandler_fn *function,

MPI_Errhandler *errhandler)

int MPI_Win_get_errhandler(MPI_Win win, MPI_Errhandler *errhandler)

int MPI_Win_set_errhandler(MPI_Win win, MPI_Errhandler errhandler)

double MPI_Wtick(void)

double MPI_Wtime(void)

A.2.7 The Info Object C Bindings

int MPI_Info_create(MPI_Info *info)

int MPI_Info_delete(MPI_Info info, char *key)

int MPI_Info_dup(MPI_Info info, MPI_Info *newinfo)

int MPI_Info_free(MPI_Info *info)

int MPI_Info_get(MPI_Info info, char *key, int valuelen, char *value,

int *flag)

int MPI_Info_get_nkeys(MPI_Info info, int *nkeys)
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int MPI_Info_get_nthkey(MPI_Info info, int n, char *key)

int MPI_Info_get_valuelen(MPI_Info info, char *key, int *valuelen,

int *flag)

int MPI_Info_set(MPI_Info info, char *key, char *value)

A.2.8 Process Creation and Management C Bindings

int MPI_Close_port(char *port_name)

int MPI_Comm_accept(char *port_name, MPI_Info info, int root,

MPI_Comm comm, MPI_Comm *newcomm)

int MPI_Comm_connect(char *port_name, MPI_Info info, int root,

MPI_Comm comm, MPI_Comm *newcomm)

int MPI_Comm_disconnect(MPI_Comm *comm)

int MPI_Comm_get_parent(MPI_Comm *parent)

int MPI_Comm_join(int fd, MPI_Comm *intercomm)

int MPI_Comm_spawn(char *command, char *argv[], int maxprocs, MPI_Info

info, int root, MPI_Comm comm, MPI_Comm *intercomm,

int array_of_errcodes[])

int MPI_Comm_spawn_multiple(int count, char *array_of_commands[],

char **array_of_argv[], int array_of_maxprocs[],

MPI_Info array_of_info[], int root, MPI_Comm comm,

MPI_Comm *intercomm, int array_of_errcodes[])

int MPI_Lookup_name(char *service_name, MPI_Info info, char *port_name)

int MPI_Open_port(MPI_Info info, char *port_name)

int MPI_Publish_name(char *service_name, MPI_Info info, char *port_name)

int MPI_Unpublish_name(char *service_name, MPI_Info info, char *port_name)

A.2.9 One-Sided Communications C Bindings

int MPI_Accumulate(void *origin_addr, int origin_count,

MPI_Datatype origin_datatype, int target_rank,

MPI_Aint target_disp, int target_count,

MPI_Datatype target_datatype, MPI_Op op, MPI_Win win)

int MPI_Get(void *origin_addr, int origin_count, MPI_Datatype

origin_datatype, int target_rank, MPI_Aint target_disp, int

target_count, MPI_Datatype target_datatype, MPI_Win win)

int MPI_Put(void *origin_addr, int origin_count, MPI_Datatype

origin_datatype, int target_rank, MPI_Aint target_disp, int

target_count, MPI_Datatype target_datatype, MPI_Win win)
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int MPI_Win_complete(MPI_Win win)

int MPI_Win_create(void *base, MPI_Aint size, int disp_unit, MPI_Info info,

MPI_Comm comm, MPI_Win *win)

int MPI_Win_fence(int assert, MPI_Win win)

int MPI_Win_free(MPI_Win *win)

int MPI_Win_get_group(MPI_Win win, MPI_Group *group)

int MPI_Win_lock(int lock_type, int rank, int assert, MPI_Win win)

int MPI_Win_post(MPI_Group group, int assert, MPI_Win win)

int MPI_Win_start(MPI_Group group, int assert, MPI_Win win)

int MPI_Win_test(MPI_Win win, int *flag)

int MPI_Win_unlock(int rank, MPI_Win win)

int MPI_Win_wait(MPI_Win win)

A.2.10 External Interfaces C Bindings

int MPI_Grequest_complete(MPI_Request request)

int MPI_Grequest_start(MPI_Grequest_query_function *query_fn,

MPI_Grequest_free_function *free_fn,

MPI_Grequest_cancel_function *cancel_fn, void *extra_state,

MPI_Request *request)

int MPI_Init_thread(int *argc, char *((*argv)[]), int required,

int *provided)

int MPI_Is_thread_main(int *flag)

int MPI_Query_thread(int *provided)

int MPI_Status_set_cancelled(MPI_Status *status, int flag)

int MPI_Status_set_elements(MPI_Status *status, MPI_Datatype datatype,

int count)

A.2.11 I/O C Bindings

int MPI_File_close(MPI_File *fh)

int MPI_File_delete(char *filename, MPI_Info info)

int MPI_File_get_amode(MPI_File fh, int *amode)

int MPI_File_get_atomicity(MPI_File fh, int *flag)

int MPI_File_get_byte_offset(MPI_File fh, MPI_Offset offset,

MPI_Offset *disp)
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int MPI_File_get_group(MPI_File fh, MPI_Group *group)

int MPI_File_get_info(MPI_File fh, MPI_Info *info_used)

int MPI_File_get_position(MPI_File fh, MPI_Offset *offset)

int MPI_File_get_position_shared(MPI_File fh, MPI_Offset *offset)

int MPI_File_get_size(MPI_File fh, MPI_Offset *size)

int MPI_File_get_type_extent(MPI_File fh, MPI_Datatype datatype,

MPI_Aint *extent)

int MPI_File_get_view(MPI_File fh, MPI_Offset *disp, MPI_Datatype *etype,

MPI_Datatype *filetype, char *datarep)

int MPI_File_iread_at(MPI_File fh, MPI_Offset offset, void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

int MPI_File_iread(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

int MPI_File_iread_shared(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

int MPI_File_iwrite_at(MPI_File fh, MPI_Offset offset, void *buf,

int count, MPI_Datatype datatype, MPI_Request *request)

int MPI_File_iwrite(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

int MPI_File_iwrite_shared(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

int MPI_File_open(MPI_Comm comm, char *filename, int amode, MPI_Info info,

MPI_File *fh)

int MPI_File_preallocate(MPI_File fh, MPI_Offset size)

int MPI_File_read_all_begin(MPI_File fh, void *buf, int count,

MPI_Datatype datatype)

int MPI_File_read_all_end(MPI_File fh, void *buf, MPI_Status *status)

int MPI_File_read_all(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

int MPI_File_read_at_all_begin(MPI_File fh, MPI_Offset offset, void *buf,

int count, MPI_Datatype datatype)

int MPI_File_read_at_all_end(MPI_File fh, void *buf, MPI_Status *status)

int MPI_File_read_at_all(MPI_File fh, MPI_Offset offset, void *buf,

int count, MPI_Datatype datatype, MPI_Status *status)

int MPI_File_read_at(MPI_File fh, MPI_Offset offset, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)
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int MPI_File_get_group(MPI_File fh, MPI_Group *group)

int MPI_File_get_info(MPI_File fh, MPI_Info *info_used)

int MPI_File_get_position(MPI_File fh, MPI_Offset *offset)

int MPI_File_get_position_shared(MPI_File fh, MPI_Offset *offset)

int MPI_File_get_size(MPI_File fh, MPI_Offset *size)

int MPI_File_get_type_extent(MPI_File fh, MPI_Datatype datatype,

MPI_Aint *extent)

int MPI_File_get_view(MPI_File fh, MPI_Offset *disp, MPI_Datatype *etype,

MPI_Datatype *filetype, char *datarep)

int MPI_File_iread_at(MPI_File fh, MPI_Offset offset, void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

int MPI_File_iread(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

int MPI_File_iread_shared(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

int MPI_File_iwrite_at(MPI_File fh, MPI_Offset offset, void *buf,

int count, MPI_Datatype datatype, MPI_Request *request)

int MPI_File_iwrite(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

int MPI_File_iwrite_shared(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

int MPI_File_open(MPI_Comm comm, char *filename, int amode, MPI_Info info,

MPI_File *fh)

int MPI_File_preallocate(MPI_File fh, MPI_Offset size)

int MPI_File_read_all_begin(MPI_File fh, void *buf, int count,

MPI_Datatype datatype)

int MPI_File_read_all_end(MPI_File fh, void *buf, MPI_Status *status)

int MPI_File_read_all(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

int MPI_File_read_at_all_begin(MPI_File fh, MPI_Offset offset, void *buf,

int count, MPI_Datatype datatype)

int MPI_File_read_at_all_end(MPI_File fh, void *buf, MPI_Status *status)

int MPI_File_read_at_all(MPI_File fh, MPI_Offset offset, void *buf,

int count, MPI_Datatype datatype, MPI_Status *status)

int MPI_File_read_at(MPI_File fh, MPI_Offset offset, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)
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int MPI_File_read(MPI_File fh, void *buf, int count, MPI_Datatype datatype,

MPI_Status *status)

int MPI_File_read_ordered_begin(MPI_File fh, void *buf, int count,

MPI_Datatype datatype)

int MPI_File_read_ordered_end(MPI_File fh, void *buf, MPI_Status *status)

int MPI_File_read_ordered(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

int MPI_File_read_shared(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

int MPI_File_seek(MPI_File fh, MPI_Offset offset, int whence)

int MPI_File_seek_shared(MPI_File fh, MPI_Offset offset, int whence)

int MPI_File_set_atomicity(MPI_File fh, int flag)

int MPI_File_set_info(MPI_File fh, MPI_Info info)

int MPI_File_set_size(MPI_File fh, MPI_Offset size)

int MPI_File_set_view(MPI_File fh, MPI_Offset disp, MPI_Datatype etype,

MPI_Datatype filetype, char *datarep, MPI_Info info)

int MPI_File_sync(MPI_File fh)

int MPI_File_write_all_begin(MPI_File fh, void *buf, int count,

MPI_Datatype datatype)

int MPI_File_write_all_end(MPI_File fh, void *buf, MPI_Status *status)

int MPI_File_write_all(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

int MPI_File_write_at_all_begin(MPI_File fh, MPI_Offset offset, void *buf,

int count, MPI_Datatype datatype)

int MPI_File_write_at_all_end(MPI_File fh, void *buf, MPI_Status *status)

int MPI_File_write_at_all(MPI_File fh, MPI_Offset offset, void *buf,

int count, MPI_Datatype datatype, MPI_Status *status)

int MPI_File_write_at(MPI_File fh, MPI_Offset offset, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

int MPI_File_write(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

int MPI_File_write_ordered_begin(MPI_File fh, void *buf, int count,

MPI_Datatype datatype)

int MPI_File_write_ordered_end(MPI_File fh, void *buf, MPI_Status *status)

int MPI_File_write_ordered(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)
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int MPI_File_read(MPI_File fh, void *buf, int count, MPI_Datatype datatype,

MPI_Status *status)

int MPI_File_read_ordered_begin(MPI_File fh, void *buf, int count,

MPI_Datatype datatype)

int MPI_File_read_ordered_end(MPI_File fh, void *buf, MPI_Status *status)

int MPI_File_read_ordered(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

int MPI_File_read_shared(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

int MPI_File_seek(MPI_File fh, MPI_Offset offset, int whence)

int MPI_File_seek_shared(MPI_File fh, MPI_Offset offset, int whence)

int MPI_File_set_atomicity(MPI_File fh, int flag)

int MPI_File_set_info(MPI_File fh, MPI_Info info)

int MPI_File_set_size(MPI_File fh, MPI_Offset size)

int MPI_File_set_view(MPI_File fh, MPI_Offset disp, MPI_Datatype etype,

MPI_Datatype filetype, char *datarep, MPI_Info info)

int MPI_File_sync(MPI_File fh)

int MPI_File_write_all_begin(MPI_File fh, void *buf, int count,

MPI_Datatype datatype)

int MPI_File_write_all_end(MPI_File fh, void *buf, MPI_Status *status)

int MPI_File_write_all(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

int MPI_File_write_at_all_begin(MPI_File fh, MPI_Offset offset, void *buf,

int count, MPI_Datatype datatype)

int MPI_File_write_at_all_end(MPI_File fh, void *buf, MPI_Status *status)

int MPI_File_write_at_all(MPI_File fh, MPI_Offset offset, void *buf,

int count, MPI_Datatype datatype, MPI_Status *status)

int MPI_File_write_at(MPI_File fh, MPI_Offset offset, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

int MPI_File_write(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

int MPI_File_write_ordered_begin(MPI_File fh, void *buf, int count,

MPI_Datatype datatype)

int MPI_File_write_ordered_end(MPI_File fh, void *buf, MPI_Status *status)

int MPI_File_write_ordered(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)
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int MPI_File_write_shared(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

int MPI_Register_datarep(char *datarep,

MPI_Datarep_conversion_function *read_conversion_fn,

MPI_Datarep_conversion_function *write_conversion_fn,

MPI_Datarep_extent_function *dtype_file_extent_fn,

void *extra_state)

A.2.12 Language Bindings C Bindings

int MPI_Type_create_f90_complex(int p, int r, MPI_Datatype *newtype)

int MPI_Type_create_f90_integer(int r, MPI_Datatype *newtype)

int MPI_Type_create_f90_real(int p, int r, MPI_Datatype *newtype)

int MPI_Type_match_size(int typeclass, int size, MPI_Datatype *type)

MPI_Fint MPI_Comm_c2f(MPI_Comm comm)

MPI_Comm MPI_Comm_f2c(MPI_Fint comm)

MPI_Fint MPI_Errhandler_c2f(MPI_Errhandler errhandler)

MPI_Errhandler MPI_Errhandler_f2c(MPI_Fint errhandler)

MPI_Fint MPI_File_c2f(MPI_File file)

MPI_File MPI_File_f2c(MPI_Fint file)

MPI_Fint MPI_Group_c2f(MPI_Group group)

MPI_Group MPI_Group_f2c(MPI_Fint group)

MPI_Fint MPI_Info_c2f(MPI_Info info)

MPI_Info MPI_Info_f2c(MPI_Fint info)

MPI_Fint MPI_Op_c2f(MPI_Op op)

MPI_Op MPI_Op_f2c(MPI_Fint op)

MPI_Fint MPI_Request_c2f(MPI_Request request)

MPI_Request MPI_Request_f2c(MPI_Fint request)

int MPI_Status_c2f(MPI_Status *c_status, MPI_Fint *f_status)

int MPI_Status_f2c(MPI_Fint *f_status, MPI_Status *c_status)

MPI_Fint MPI_Type_c2f(MPI_Datatype datatype)

MPI_Datatype MPI_Type_f2c(MPI_Fint datatype)

MPI_Fint MPI_Win_c2f(MPI_Win win)

MPI_Win MPI_Win_f2c(MPI_Fint win)
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int MPI_File_write_shared(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

int MPI_Register_datarep(char *datarep,

MPI_Datarep_conversion_function *read_conversion_fn,

MPI_Datarep_conversion_function *write_conversion_fn,

MPI_Datarep_extent_function *dtype_file_extent_fn,

void *extra_state)

A.2.12 Language Bindings C Bindings

int MPI_Type_create_f90_complex(int p, int r, MPI_Datatype *newtype)

int MPI_Type_create_f90_integer(int r, MPI_Datatype *newtype)

int MPI_Type_create_f90_real(int p, int r, MPI_Datatype *newtype)

int MPI_Type_match_size(int typeclass, int size, MPI_Datatype *type)

MPI_Fint MPI_Comm_c2f(MPI_Comm comm)

MPI_Comm MPI_Comm_f2c(MPI_Fint comm)

MPI_Fint MPI_Errhandler_c2f(MPI_Errhandler errhandler)

MPI_Errhandler MPI_Errhandler_f2c(MPI_Fint errhandler)

MPI_Fint MPI_File_c2f(MPI_File file)

MPI_File MPI_File_f2c(MPI_Fint file)

MPI_Fint MPI_Group_c2f(MPI_Group group)

MPI_Group MPI_Group_f2c(MPI_Fint group)

MPI_Fint MPI_Info_c2f(MPI_Info info)

MPI_Info MPI_Info_f2c(MPI_Fint info)

MPI_Fint MPI_Op_c2f(MPI_Op op)

MPI_Op MPI_Op_f2c(MPI_Fint op)

MPI_Fint MPI_Request_c2f(MPI_Request request)

MPI_Request MPI_Request_f2c(MPI_Fint request)

int MPI_Status_c2f(MPI_Status *c_status, MPI_Fint *f_status)

int MPI_Status_f2c(MPI_Fint *f_status, MPI_Status *c_status)

MPI_Fint MPI_Type_c2f(MPI_Datatype datatype)

MPI_Datatype MPI_Type_f2c(MPI_Fint datatype)

MPI_Fint MPI_Win_c2f(MPI_Win win)

MPI_Win MPI_Win_f2c(MPI_Fint win)
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A.2.13 Profiling Interface C Bindings

int MPI_Pcontrol(const int level, ...)

A.2.14 Deprecated C Bindings

int MPI_Address(void* location, MPI_Aint *address)

int MPI_Attr_delete(MPI_Comm comm, int keyval)

int MPI_Attr_get(MPI_Comm comm, int keyval, void *attribute_val, int *flag)

int MPI_Attr_put(MPI_Comm comm, int keyval, void* attribute_val)

int MPI_DUP_FN(MPI_Comm oldcomm, int keyval, void *extra_state,

void *attribute_val_in, void *attribute_val_out, int *flag)

int MPI_Errhandler_create(MPI_Handler_function *function,

MPI_Errhandler *errhandler)

int MPI_Errhandler_get(MPI_Comm comm, MPI_Errhandler *errhandler)

int MPI_Errhandler_set(MPI_Comm comm, MPI_Errhandler errhandler)

int MPI_Keyval_create(MPI_Copy_function *copy_fn, MPI_Delete_function

*delete_fn, int *keyval, void* extra_state)

int MPI_Keyval_free(int *keyval)

int MPI_NULL_COPY_FN(MPI_Comm oldcomm, int keyval, void *extra_state,

void *attribute_val_in, void *attribute_val_out, int *flag)

int MPI_NULL_DELETE_FN(MPI_Comm comm, int keyval, void *attribute_val,

void *extra_state)

int MPI_Type_extent(MPI_Datatype datatype, MPI_Aint *extent)

int MPI_Type_hindexed(int count, int *array_of_blocklengths,

MPI_Aint *array_of_displacements, MPI_Datatype oldtype,

MPI_Datatype *newtype)

int MPI_Type_hvector(int count, int blocklength, MPI_Aint stride,

MPI_Datatype oldtype, MPI_Datatype *newtype)

int MPI_Type_lb(MPI_Datatype datatype, MPI_Aint* displacement)

int MPI_Type_struct(int count, int *array_of_blocklengths,

MPI_Aint *array_of_displacements,

MPI_Datatype *array_of_types, MPI_Datatype *newtype)

int MPI_Type_ub(MPI_Datatype datatype, MPI_Aint* displacement)
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A.2.13 Profiling Interface C Bindings

int MPI_Pcontrol(const int level, ...)

A.2.14 Deprecated C Bindings

int MPI_Address(void* location, MPI_Aint *address)

int MPI_Attr_delete(MPI_Comm comm, int keyval)

int MPI_Attr_get(MPI_Comm comm, int keyval, void *attribute_val, int *flag)

int MPI_Attr_put(MPI_Comm comm, int keyval, void* attribute_val)

int MPI_DUP_FN(MPI_Comm oldcomm, int keyval, void *extra_state,

void *attribute_val_in, void *attribute_val_out, int *flag)

int MPI_Errhandler_create(MPI_Handler_function *function,

MPI_Errhandler *errhandler)

int MPI_Errhandler_get(MPI_Comm comm, MPI_Errhandler *errhandler)

int MPI_Errhandler_set(MPI_Comm comm, MPI_Errhandler errhandler)

int MPI_Keyval_create(MPI_Copy_function *copy_fn, MPI_Delete_function

*delete_fn, int *keyval, void* extra_state)

int MPI_Keyval_free(int *keyval)

int MPI_NULL_COPY_FN(MPI_Comm oldcomm, int keyval, void *extra_state,

void *attribute_val_in, void *attribute_val_out, int *flag)

int MPI_NULL_DELETE_FN(MPI_Comm comm, int keyval, void *attribute_val,

void *extra_state)

int MPI_Type_extent(MPI_Datatype datatype, MPI_Aint *extent)

int MPI_Type_hindexed(int count, int *array_of_blocklengths,

MPI_Aint *array_of_displacements, MPI_Datatype oldtype,

MPI_Datatype *newtype)

int MPI_Type_hvector(int count, int blocklength, MPI_Aint stride,

MPI_Datatype oldtype, MPI_Datatype *newtype)

int MPI_Type_lb(MPI_Datatype datatype, MPI_Aint* displacement)

int MPI_Type_struct(int count, int *array_of_blocklengths,

MPI_Aint *array_of_displacements,

MPI_Datatype *array_of_types, MPI_Datatype *newtype)

int MPI_Type_ub(MPI_Datatype datatype, MPI_Aint* displacement)
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A.3 Fortran Bindings

A.3.1 Point-to-Point Communication Fortran Bindings

MPI_BSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

MPI_BSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER REQUEST, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_BUFFER_ATTACH(BUFFER, SIZE, IERROR)

<type> BUFFER(*)

INTEGER SIZE, IERROR

MPI_BUFFER_DETACH(BUFFER_ADDR, SIZE, IERROR)

<type> BUFFER_ADDR(*)

INTEGER SIZE, IERROR

MPI_CANCEL(REQUEST, IERROR)

INTEGER REQUEST, IERROR

MPI_GET_COUNT(STATUS, DATATYPE, COUNT, IERROR)

INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR

MPI_IBSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_IPROBE(SOURCE, TAG, COMM, FLAG, STATUS, IERROR)

LOGICAL FLAG

INTEGER SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

MPI_IRECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR

MPI_IRSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_ISEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_ISSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_PROBE(SOURCE, TAG, COMM, STATUS, IERROR)

INTEGER SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

MPI_RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS, IERROR)
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A.3 Fortran Bindings

A.3.1 Point-to-Point Communication Fortran Bindings

MPI_BSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

MPI_BSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER REQUEST, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_BUFFER_ATTACH(BUFFER, SIZE, IERROR)

<type> BUFFER(*)

INTEGER SIZE, IERROR

MPI_BUFFER_DETACH(BUFFER_ADDR, SIZE, IERROR)

<type> BUFFER_ADDR(*)

INTEGER SIZE, IERROR

MPI_CANCEL(REQUEST, IERROR)

INTEGER REQUEST, IERROR

MPI_GET_COUNT(STATUS, DATATYPE, COUNT, IERROR)

INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR

MPI_IBSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_IPROBE(SOURCE, TAG, COMM, FLAG, STATUS, IERROR)

LOGICAL FLAG

INTEGER SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

MPI_IRECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR

MPI_IRSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_ISEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_ISSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_PROBE(SOURCE, TAG, COMM, STATUS, IERROR)

INTEGER SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

MPI_RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS, IERROR)
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<type> BUF(*)

INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE),

IERROR

MPI_RECV_INIT(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR

MPI_REQUEST_FREE(REQUEST, IERROR)

INTEGER REQUEST, IERROR

MPI_REQUEST_GET_STATUS( REQUEST, FLAG, STATUS, IERROR)

INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR

LOGICAL FLAG

MPI_RSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

MPI_RSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

MPI_SEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER REQUEST, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_SENDRECV_REPLACE(BUF, COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG,

COMM, STATUS, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG, COMM,

STATUS(MPI_STATUS_SIZE), IERROR

MPI_SENDRECV(SENDBUF, SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVBUF,

RECVCOUNT, RECVTYPE, SOURCE, RECVTAG, COMM, STATUS, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVCOUNT, RECVTYPE,

SOURCE, RECVTAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

MPI_SSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

MPI_SSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_STARTALL(COUNT, ARRAY_OF_REQUESTS, IERROR)

INTEGER COUNT, ARRAY_OF_REQUESTS(*), IERROR
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<type> BUF(*)

INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE),

IERROR

MPI_RECV_INIT(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR

MPI_REQUEST_FREE(REQUEST, IERROR)

INTEGER REQUEST, IERROR

MPI_REQUEST_GET_STATUS( REQUEST, FLAG, STATUS, IERROR)

INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR

LOGICAL FLAG

MPI_RSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

MPI_RSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

MPI_SEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER REQUEST, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_SENDRECV_REPLACE(BUF, COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG,

COMM, STATUS, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG, COMM,

STATUS(MPI_STATUS_SIZE), IERROR

MPI_SENDRECV(SENDBUF, SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVBUF,

RECVCOUNT, RECVTYPE, SOURCE, RECVTAG, COMM, STATUS, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVCOUNT, RECVTYPE,

SOURCE, RECVTAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

MPI_SSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

MPI_SSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_STARTALL(COUNT, ARRAY_OF_REQUESTS, IERROR)

INTEGER COUNT, ARRAY_OF_REQUESTS(*), IERROR
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MPI_START(REQUEST, IERROR)

INTEGER REQUEST, IERROR

MPI_TESTALL(COUNT, ARRAY_OF_REQUESTS, FLAG, ARRAY_OF_STATUSES, IERROR)

LOGICAL FLAG

INTEGER COUNT, ARRAY_OF_REQUESTS(*),

ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR

MPI_TESTANY(COUNT, ARRAY_OF_REQUESTS, INDEX, FLAG, STATUS, IERROR)

LOGICAL FLAG

INTEGER COUNT, ARRAY_OF_REQUESTS(*), INDEX, STATUS(MPI_STATUS_SIZE),

IERROR

MPI_TEST_CANCELLED(STATUS, FLAG, IERROR)

LOGICAL FLAG

INTEGER STATUS(MPI_STATUS_SIZE), IERROR

MPI_TEST(REQUEST, FLAG, STATUS, IERROR)

LOGICAL FLAG

INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR

MPI_TESTSOME(INCOUNT, ARRAY_OF_REQUESTS, OUTCOUNT, ARRAY_OF_INDICES,

ARRAY_OF_STATUSES, IERROR)

INTEGER INCOUNT, ARRAY_OF_REQUESTS(*), OUTCOUNT, ARRAY_OF_INDICES(*),

ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR

MPI_WAITALL(COUNT, ARRAY_OF_REQUESTS, ARRAY_OF_STATUSES, IERROR)

INTEGER COUNT, ARRAY_OF_REQUESTS(*)

INTEGER ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR

MPI_WAITANY(COUNT, ARRAY_OF_REQUESTS, INDEX, STATUS, IERROR)

INTEGER COUNT, ARRAY_OF_REQUESTS(*), INDEX, STATUS(MPI_STATUS_SIZE),

IERROR

MPI_WAIT(REQUEST, STATUS, IERROR)

INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR

MPI_WAITSOME(INCOUNT, ARRAY_OF_REQUESTS, OUTCOUNT, ARRAY_OF_INDICES,

ARRAY_OF_STATUSES, IERROR)

INTEGER INCOUNT, ARRAY_OF_REQUESTS(*), OUTCOUNT, ARRAY_OF_INDICES(*),

ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR

A.3.2 Datatypes Fortran Bindings

MPI_GET_ADDRESS(LOCATION, ADDRESS, IERROR)

<type> LOCATION(*)

INTEGER IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ADDRESS

MPI_GET_ELEMENTS(STATUS, DATATYPE, COUNT, IERROR)

INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.3. FORTRAN BINDINGS 523

MPI_START(REQUEST, IERROR)

INTEGER REQUEST, IERROR

MPI_TESTALL(COUNT, ARRAY_OF_REQUESTS, FLAG, ARRAY_OF_STATUSES, IERROR)

LOGICAL FLAG

INTEGER COUNT, ARRAY_OF_REQUESTS(*),

ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR

MPI_TESTANY(COUNT, ARRAY_OF_REQUESTS, INDEX, FLAG, STATUS, IERROR)

LOGICAL FLAG

INTEGER COUNT, ARRAY_OF_REQUESTS(*), INDEX, STATUS(MPI_STATUS_SIZE),

IERROR

MPI_TEST_CANCELLED(STATUS, FLAG, IERROR)

LOGICAL FLAG

INTEGER STATUS(MPI_STATUS_SIZE), IERROR

MPI_TEST(REQUEST, FLAG, STATUS, IERROR)

LOGICAL FLAG

INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR

MPI_TESTSOME(INCOUNT, ARRAY_OF_REQUESTS, OUTCOUNT, ARRAY_OF_INDICES,

ARRAY_OF_STATUSES, IERROR)

INTEGER INCOUNT, ARRAY_OF_REQUESTS(*), OUTCOUNT, ARRAY_OF_INDICES(*),

ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR

MPI_WAITALL(COUNT, ARRAY_OF_REQUESTS, ARRAY_OF_STATUSES, IERROR)

INTEGER COUNT, ARRAY_OF_REQUESTS(*)

INTEGER ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR

MPI_WAITANY(COUNT, ARRAY_OF_REQUESTS, INDEX, STATUS, IERROR)

INTEGER COUNT, ARRAY_OF_REQUESTS(*), INDEX, STATUS(MPI_STATUS_SIZE),

IERROR

MPI_WAIT(REQUEST, STATUS, IERROR)

INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR

MPI_WAITSOME(INCOUNT, ARRAY_OF_REQUESTS, OUTCOUNT, ARRAY_OF_INDICES,

ARRAY_OF_STATUSES, IERROR)

INTEGER INCOUNT, ARRAY_OF_REQUESTS(*), OUTCOUNT, ARRAY_OF_INDICES(*),

ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR

A.3.2 Datatypes Fortran Bindings

MPI_GET_ADDRESS(LOCATION, ADDRESS, IERROR)

<type> LOCATION(*)

INTEGER IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ADDRESS

MPI_GET_ELEMENTS(STATUS, DATATYPE, COUNT, IERROR)

INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR
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MPI_PACK_EXTERNAL(DATAREP, INBUF, INCOUNT, DATATYPE, OUTBUF, OUTSIZE,

POSITION, IERROR)

INTEGER INCOUNT, DATATYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) OUTSIZE, POSITION

CHARACTER*(*) DATAREP

<type> INBUF(*), OUTBUF(*)

MPI_PACK_EXTERNAL_SIZE(DATAREP, INCOUNT, DATATYPE, SIZE, IERROR)

INTEGER INCOUNT, DATATYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) SIZE

CHARACTER*(*) DATAREP

MPI_PACK(INBUF, INCOUNT, DATATYPE, OUTBUF, OUTSIZE, POSITION, COMM, IERROR)

<type> INBUF(*), OUTBUF(*)

INTEGER INCOUNT, DATATYPE, OUTSIZE, POSITION, COMM, IERROR

MPI_PACK_SIZE(INCOUNT, DATATYPE, COMM, SIZE, IERROR)

INTEGER INCOUNT, DATATYPE, COMM, SIZE, IERROR

MPI_TYPE_COMMIT(DATATYPE, IERROR)

INTEGER DATATYPE, IERROR

MPI_TYPE_CONTIGUOUS(COUNT, OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_CREATE_DARRAY(SIZE, RANK, NDIMS, ARRAY_OF_GSIZES,

ARRAY_OF_DISTRIBS, ARRAY_OF_DARGS, ARRAY_OF_PSIZES, ORDER,

OLDTYPE, NEWTYPE, IERROR)

INTEGER SIZE, RANK, NDIMS, ARRAY_OF_GSIZES(*), ARRAY_OF_DISTRIBS(*),

ARRAY_OF_DARGS(*), ARRAY_OF_PSIZES(*), ORDER, OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_CREATE_HINDEXED(COUNT, ARRAY_OF_BLOCKLENGTHS,

ARRAY_OF_DISPLACEMENTS, OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), OLDTYPE, NEWTYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF_DISPLACEMENTS(*)

MPI_TYPE_CREATE_HVECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE,

IERROR)

INTEGER COUNT, BLOCKLENGTH, OLDTYPE, NEWTYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) STRIDE

MPI_TYPE_CREATE_INDEXED_BLOCK(COUNT, BLOCKLENGTH, ARRAY_OF_DISPLACEMENTS,

OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, BLOCKLENGTH, ARRAY_OF_DISPLACEMENTS(*), OLDTYPE,

NEWTYPE, IERROR

MPI_TYPE_CREATE_RESIZED(OLDTYPE, LB, EXTENT, NEWTYPE, IERROR)

INTEGER OLDTYPE, NEWTYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) LB, EXTENT

MPI_TYPE_CREATE_STRUCT(COUNT, ARRAY_OF_BLOCKLENGTHS,

ARRAY_OF_DISPLACEMENTS, ARRAY_OF_TYPES, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_TYPES(*), NEWTYPE,
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MPI_PACK_EXTERNAL(DATAREP, INBUF, INCOUNT, DATATYPE, OUTBUF, OUTSIZE,

POSITION, IERROR)

INTEGER INCOUNT, DATATYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) OUTSIZE, POSITION

CHARACTER*(*) DATAREP

<type> INBUF(*), OUTBUF(*)

MPI_PACK_EXTERNAL_SIZE(DATAREP, INCOUNT, DATATYPE, SIZE, IERROR)

INTEGER INCOUNT, DATATYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) SIZE

CHARACTER*(*) DATAREP

MPI_PACK(INBUF, INCOUNT, DATATYPE, OUTBUF, OUTSIZE, POSITION, COMM, IERROR)

<type> INBUF(*), OUTBUF(*)

INTEGER INCOUNT, DATATYPE, OUTSIZE, POSITION, COMM, IERROR

MPI_PACK_SIZE(INCOUNT, DATATYPE, COMM, SIZE, IERROR)

INTEGER INCOUNT, DATATYPE, COMM, SIZE, IERROR

MPI_TYPE_COMMIT(DATATYPE, IERROR)

INTEGER DATATYPE, IERROR

MPI_TYPE_CONTIGUOUS(COUNT, OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_CREATE_DARRAY(SIZE, RANK, NDIMS, ARRAY_OF_GSIZES,

ARRAY_OF_DISTRIBS, ARRAY_OF_DARGS, ARRAY_OF_PSIZES, ORDER,

OLDTYPE, NEWTYPE, IERROR)

INTEGER SIZE, RANK, NDIMS, ARRAY_OF_GSIZES(*), ARRAY_OF_DISTRIBS(*),

ARRAY_OF_DARGS(*), ARRAY_OF_PSIZES(*), ORDER, OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_CREATE_HINDEXED(COUNT, ARRAY_OF_BLOCKLENGTHS,

ARRAY_OF_DISPLACEMENTS, OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), OLDTYPE, NEWTYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF_DISPLACEMENTS(*)

MPI_TYPE_CREATE_HVECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE,

IERROR)

INTEGER COUNT, BLOCKLENGTH, OLDTYPE, NEWTYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) STRIDE

MPI_TYPE_CREATE_INDEXED_BLOCK(COUNT, BLOCKLENGTH, ARRAY_OF_DISPLACEMENTS,

OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, BLOCKLENGTH, ARRAY_OF_DISPLACEMENTS(*), OLDTYPE,

NEWTYPE, IERROR

MPI_TYPE_CREATE_RESIZED(OLDTYPE, LB, EXTENT, NEWTYPE, IERROR)

INTEGER OLDTYPE, NEWTYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) LB, EXTENT

MPI_TYPE_CREATE_STRUCT(COUNT, ARRAY_OF_BLOCKLENGTHS,

ARRAY_OF_DISPLACEMENTS, ARRAY_OF_TYPES, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_TYPES(*), NEWTYPE,
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IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF_DISPLACEMENTS(*)

MPI_TYPE_CREATE_SUBARRAY(NDIMS, ARRAY_OF_SIZES, ARRAY_OF_SUBSIZES,

ARRAY_OF_STARTS, ORDER, OLDTYPE, NEWTYPE, IERROR)

INTEGER NDIMS, ARRAY_OF_SIZES(*), ARRAY_OF_SUBSIZES(*),

ARRAY_OF_STARTS(*), ORDER, OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_DUP(TYPE, NEWTYPE, IERROR)

INTEGER TYPE, NEWTYPE, IERROR

MPI_TYPE_FREE(DATATYPE, IERROR)

INTEGER DATATYPE, IERROR

MPI_TYPE_GET_CONTENTS(DATATYPE, MAX_INTEGERS, MAX_ADDRESSES, MAX_DATATYPES,

ARRAY_OF_INTEGERS, ARRAY_OF_ADDRESSES, ARRAY_OF_DATATYPES,

IERROR)

INTEGER DATATYPE, MAX_INTEGERS, MAX_ADDRESSES, MAX_DATATYPES,

ARRAY_OF_INTEGERS(*), ARRAY_OF_DATATYPES(*), IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF_ADDRESSES(*)

MPI_TYPE_GET_ENVELOPE(DATATYPE, NUM_INTEGERS, NUM_ADDRESSES, NUM_DATATYPES,

COMBINER, IERROR)

INTEGER DATATYPE, NUM_INTEGERS, NUM_ADDRESSES, NUM_DATATYPES, COMBINER,

IERROR

MPI_TYPE_GET_EXTENT(DATATYPE, LB, EXTENT, IERROR)

INTEGER DATATYPE, IERROR

INTEGER(KIND = MPI_ADDRESS_KIND) LB, EXTENT

MPI_TYPE_GET_TRUE_EXTENT(DATATYPE, TRUE_LB, TRUE_EXTENT, IERROR)

INTEGER DATATYPE, IERROR

INTEGER(KIND = MPI_ADDRESS_KIND) TRUE_LB, TRUE_EXTENT

MPI_TYPE_INDEXED(COUNT, ARRAY_OF_BLOCKLENGTHS, ARRAY_OF_DISPLACEMENTS,

OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_DISPLACEMENTS(*),

OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_SIZE(DATATYPE, SIZE, IERROR)

INTEGER DATATYPE, SIZE, IERROR

MPI_TYPE_VECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR

MPI_UNPACK_EXTERNAL(DATAREP, INBUF, INSIZE, POSITION, OUTBUF, OUTCOUNT,

DATATYPE, IERROR)

INTEGER OUTCOUNT, DATATYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) INSIZE, POSITION

CHARACTER*(*) DATAREP

<type> INBUF(*), OUTBUF(*)

MPI_UNPACK(INBUF, INSIZE, POSITION, OUTBUF, OUTCOUNT, DATATYPE, COMM,
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IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF_DISPLACEMENTS(*)

MPI_TYPE_CREATE_SUBARRAY(NDIMS, ARRAY_OF_SIZES, ARRAY_OF_SUBSIZES,

ARRAY_OF_STARTS, ORDER, OLDTYPE, NEWTYPE, IERROR)

INTEGER NDIMS, ARRAY_OF_SIZES(*), ARRAY_OF_SUBSIZES(*),

ARRAY_OF_STARTS(*), ORDER, OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_DUP(TYPE, NEWTYPE, IERROR)

INTEGER TYPE, NEWTYPE, IERROR

MPI_TYPE_FREE(DATATYPE, IERROR)

INTEGER DATATYPE, IERROR

MPI_TYPE_GET_CONTENTS(DATATYPE, MAX_INTEGERS, MAX_ADDRESSES, MAX_DATATYPES,

ARRAY_OF_INTEGERS, ARRAY_OF_ADDRESSES, ARRAY_OF_DATATYPES,

IERROR)

INTEGER DATATYPE, MAX_INTEGERS, MAX_ADDRESSES, MAX_DATATYPES,

ARRAY_OF_INTEGERS(*), ARRAY_OF_DATATYPES(*), IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF_ADDRESSES(*)

MPI_TYPE_GET_ENVELOPE(DATATYPE, NUM_INTEGERS, NUM_ADDRESSES, NUM_DATATYPES,

COMBINER, IERROR)

INTEGER DATATYPE, NUM_INTEGERS, NUM_ADDRESSES, NUM_DATATYPES, COMBINER,

IERROR

MPI_TYPE_GET_EXTENT(DATATYPE, LB, EXTENT, IERROR)

INTEGER DATATYPE, IERROR

INTEGER(KIND = MPI_ADDRESS_KIND) LB, EXTENT

MPI_TYPE_GET_TRUE_EXTENT(DATATYPE, TRUE_LB, TRUE_EXTENT, IERROR)

INTEGER DATATYPE, IERROR

INTEGER(KIND = MPI_ADDRESS_KIND) TRUE_LB, TRUE_EXTENT

MPI_TYPE_INDEXED(COUNT, ARRAY_OF_BLOCKLENGTHS, ARRAY_OF_DISPLACEMENTS,

OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_DISPLACEMENTS(*),

OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_SIZE(DATATYPE, SIZE, IERROR)

INTEGER DATATYPE, SIZE, IERROR

MPI_TYPE_VECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR

MPI_UNPACK_EXTERNAL(DATAREP, INBUF, INSIZE, POSITION, OUTBUF, OUTCOUNT,

DATATYPE, IERROR)

INTEGER OUTCOUNT, DATATYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) INSIZE, POSITION

CHARACTER*(*) DATAREP

<type> INBUF(*), OUTBUF(*)

MPI_UNPACK(INBUF, INSIZE, POSITION, OUTBUF, OUTCOUNT, DATATYPE, COMM,
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IERROR)

<type> INBUF(*), OUTBUF(*)

INTEGER INSIZE, POSITION, OUTCOUNT, DATATYPE, COMM, IERROR

A.3.3 Collective Communication Fortran Bindings

MPI_ALLGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,

COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

MPI_ALLGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,

RECVTYPE, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, COMM,

IERROR

MPI_ALLREDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER COUNT, DATATYPE, OP, COMM, IERROR

MPI_ALLTOALL(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,

COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

MPI_ALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF, RECVCOUNTS,

RDISPLS, RECVTYPE, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(*),

RECVTYPE, COMM, IERROR

MPI_ALLTOALLW(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF, RECVCOUNTS,

RDISPLS, RECVTYPES, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPES(*), RECVCOUNTS(*),

RDISPLS(*), RECVTYPES(*), COMM, IERROR

MPI_BARRIER(COMM, IERROR)

INTEGER COMM, IERROR

MPI_BCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR)

<type> BUFFER(*)

INTEGER COUNT, DATATYPE, ROOT, COMM, IERROR

MPI_EXSCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER COUNT, DATATYPE, OP, COMM, IERROR

MPI_GATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,

ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
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IERROR)

<type> INBUF(*), OUTBUF(*)

INTEGER INSIZE, POSITION, OUTCOUNT, DATATYPE, COMM, IERROR

A.3.3 Collective Communication Fortran Bindings

MPI_ALLGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,

COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

MPI_ALLGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,

RECVTYPE, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, COMM,

IERROR

MPI_ALLREDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER COUNT, DATATYPE, OP, COMM, IERROR

MPI_ALLTOALL(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,

COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

MPI_ALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF, RECVCOUNTS,

RDISPLS, RECVTYPE, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(*),

RECVTYPE, COMM, IERROR

MPI_ALLTOALLW(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF, RECVCOUNTS,

RDISPLS, RECVTYPES, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPES(*), RECVCOUNTS(*),

RDISPLS(*), RECVTYPES(*), COMM, IERROR

MPI_BARRIER(COMM, IERROR)

INTEGER COMM, IERROR

MPI_BCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR)

<type> BUFFER(*)

INTEGER COUNT, DATATYPE, ROOT, COMM, IERROR

MPI_EXSCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER COUNT, DATATYPE, OP, COMM, IERROR

MPI_GATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,

ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
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INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR

MPI_GATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,

RECVTYPE, ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, ROOT,

COMM, IERROR

MPI_OP_CREATE( FUNCTION, COMMUTE, OP, IERROR)

EXTERNAL FUNCTION

LOGICAL COMMUTE

INTEGER OP, IERROR

MPI_OP_FREE( OP, IERROR)

INTEGER OP, IERROR

MPI_REDUCE_SCATTER(SENDBUF, RECVBUF, RECVCOUNTS, DATATYPE, OP, COMM,

IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER RECVCOUNTS(*), DATATYPE, OP, COMM, IERROR

MPI_REDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER COUNT, DATATYPE, OP, ROOT, COMM, IERROR

MPI_SCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER COUNT, DATATYPE, OP, COMM, IERROR

MPI_SCATTER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,

ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR

MPI_SCATTERV(SENDBUF, SENDCOUNTS, DISPLS, SENDTYPE, RECVBUF, RECVCOUNT,

RECVTYPE, ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNTS(*), DISPLS(*), SENDTYPE, RECVCOUNT, RECVTYPE, ROOT,

COMM, IERROR

A.3.4 Groups, Contexts, Communicators, and Caching Fortran Bindings

MPI_COMM_COMPARE(COMM1, COMM2, RESULT, IERROR)

INTEGER COMM1, COMM2, RESULT, IERROR

MPI_COMM_CREATE(COMM, GROUP, NEWCOMM, IERROR)

INTEGER COMM, GROUP, NEWCOMM, IERROR

MPI_COMM_CREATE_KEYVAL(COMM_COPY_ATTR_FN, COMM_DELETE_ATTR_FN, COMM_KEYVAL,

EXTRA_STATE, IERROR)

EXTERNAL COMM_COPY_ATTR_FN, COMM_DELETE_ATTR_FN

INTEGER COMM_KEYVAL, IERROR
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INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR

MPI_GATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,

RECVTYPE, ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, ROOT,

COMM, IERROR

MPI_OP_CREATE( FUNCTION, COMMUTE, OP, IERROR)

EXTERNAL FUNCTION

LOGICAL COMMUTE

INTEGER OP, IERROR

MPI_OP_FREE( OP, IERROR)

INTEGER OP, IERROR

MPI_REDUCE_SCATTER(SENDBUF, RECVBUF, RECVCOUNTS, DATATYPE, OP, COMM,

IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER RECVCOUNTS(*), DATATYPE, OP, COMM, IERROR

MPI_REDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER COUNT, DATATYPE, OP, ROOT, COMM, IERROR

MPI_SCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER COUNT, DATATYPE, OP, COMM, IERROR

MPI_SCATTER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,

ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR

MPI_SCATTERV(SENDBUF, SENDCOUNTS, DISPLS, SENDTYPE, RECVBUF, RECVCOUNT,

RECVTYPE, ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNTS(*), DISPLS(*), SENDTYPE, RECVCOUNT, RECVTYPE, ROOT,

COMM, IERROR

A.3.4 Groups, Contexts, Communicators, and Caching Fortran Bindings

MPI_COMM_COMPARE(COMM1, COMM2, RESULT, IERROR)

INTEGER COMM1, COMM2, RESULT, IERROR

MPI_COMM_CREATE(COMM, GROUP, NEWCOMM, IERROR)

INTEGER COMM, GROUP, NEWCOMM, IERROR

MPI_COMM_CREATE_KEYVAL(COMM_COPY_ATTR_FN, COMM_DELETE_ATTR_FN, COMM_KEYVAL,

EXTRA_STATE, IERROR)

EXTERNAL COMM_COPY_ATTR_FN, COMM_DELETE_ATTR_FN

INTEGER COMM_KEYVAL, IERROR
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INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

MPI_COMM_DELETE_ATTR(COMM, COMM_KEYVAL, IERROR)

INTEGER COMM, COMM_KEYVAL, IERROR

MPI_COMM_DUP(COMM, NEWCOMM, IERROR)

INTEGER COMM, NEWCOMM, IERROR

MPI_COMM_DUP_FN(OLDCOMM, COMM_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDCOMM, COMM_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT

LOGICAL FLAG

MPI_COMM_FREE(COMM, IERROR)

INTEGER COMM, IERROR

MPI_COMM_FREE_KEYVAL(COMM_KEYVAL, IERROR)

INTEGER COMM_KEYVAL, IERROR

MPI_COMM_GET_ATTR(COMM, COMM_KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)

INTEGER COMM, COMM_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

LOGICAL FLAG

MPI_COMM_GET_NAME(COMM, COMM_NAME, RESULTLEN, IERROR)

INTEGER COMM, RESULTLEN, IERROR

CHARACTER*(*) COMM_NAME

MPI_COMM_GROUP(COMM, GROUP, IERROR)

INTEGER COMM, GROUP, IERROR

MPI_COMM_NULL_COPY_FN(OLDCOMM, COMM_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDCOMM, COMM_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT

LOGICAL FLAG

MPI_COMM_NULL_DELETE_FN(COMM, COMM_KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE,

IERROR)

INTEGER COMM, COMM_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

MPI_COMM_RANK(COMM, RANK, IERROR)

INTEGER COMM, RANK, IERROR

MPI_COMM_REMOTE_GROUP(COMM, GROUP, IERROR)

INTEGER COMM, GROUP, IERROR

MPI_COMM_REMOTE_SIZE(COMM, SIZE, IERROR)

INTEGER COMM, SIZE, IERROR
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INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

MPI_COMM_DELETE_ATTR(COMM, COMM_KEYVAL, IERROR)

INTEGER COMM, COMM_KEYVAL, IERROR

MPI_COMM_DUP(COMM, NEWCOMM, IERROR)

INTEGER COMM, NEWCOMM, IERROR

MPI_COMM_DUP_FN(OLDCOMM, COMM_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDCOMM, COMM_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT

LOGICAL FLAG

MPI_COMM_FREE(COMM, IERROR)

INTEGER COMM, IERROR

MPI_COMM_FREE_KEYVAL(COMM_KEYVAL, IERROR)

INTEGER COMM_KEYVAL, IERROR

MPI_COMM_GET_ATTR(COMM, COMM_KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)

INTEGER COMM, COMM_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

LOGICAL FLAG

MPI_COMM_GET_NAME(COMM, COMM_NAME, RESULTLEN, IERROR)

INTEGER COMM, RESULTLEN, IERROR

CHARACTER*(*) COMM_NAME

MPI_COMM_GROUP(COMM, GROUP, IERROR)

INTEGER COMM, GROUP, IERROR

MPI_COMM_NULL_COPY_FN(OLDCOMM, COMM_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDCOMM, COMM_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT

LOGICAL FLAG

MPI_COMM_NULL_DELETE_FN(COMM, COMM_KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE,

IERROR)

INTEGER COMM, COMM_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

MPI_COMM_RANK(COMM, RANK, IERROR)

INTEGER COMM, RANK, IERROR

MPI_COMM_REMOTE_GROUP(COMM, GROUP, IERROR)

INTEGER COMM, GROUP, IERROR

MPI_COMM_REMOTE_SIZE(COMM, SIZE, IERROR)

INTEGER COMM, SIZE, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



A.3. FORTRAN BINDINGS 529

MPI_COMM_SET_ATTR(COMM, COMM_KEYVAL, ATTRIBUTE_VAL, IERROR)

INTEGER COMM, COMM_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

MPI_COMM_SET_NAME(COMM, COMM_NAME, IERROR)

INTEGER COMM, IERROR

CHARACTER*(*) COMM_NAME

MPI_COMM_SIZE(COMM, SIZE, IERROR)

INTEGER COMM, SIZE, IERROR

MPI_COMM_SPLIT(COMM, COLOR, KEY, NEWCOMM, IERROR)

INTEGER COMM, COLOR, KEY, NEWCOMM, IERROR

MPI_COMM_TEST_INTER(COMM, FLAG, IERROR)

INTEGER COMM, IERROR

LOGICAL FLAG

MPI_GROUP_COMPARE(GROUP1, GROUP2, RESULT, IERROR)

INTEGER GROUP1, GROUP2, RESULT, IERROR

MPI_GROUP_DIFFERENCE(GROUP1, GROUP2, NEWGROUP, IERROR)

INTEGER GROUP1, GROUP2, NEWGROUP, IERROR

MPI_GROUP_EXCL(GROUP, N, RANKS, NEWGROUP, IERROR)

INTEGER GROUP, N, RANKS(*), NEWGROUP, IERROR

MPI_GROUP_FREE(GROUP, IERROR)

INTEGER GROUP, IERROR

MPI_GROUP_INCL(GROUP, N, RANKS, NEWGROUP, IERROR)

INTEGER GROUP, N, RANKS(*), NEWGROUP, IERROR

MPI_GROUP_INTERSECTION(GROUP1, GROUP2, NEWGROUP, IERROR)

INTEGER GROUP1, GROUP2, NEWGROUP, IERROR

MPI_GROUP_RANGE_EXCL(GROUP, N, RANGES, NEWGROUP, IERROR)

INTEGER GROUP, N, RANGES(3,*), NEWGROUP, IERROR

MPI_GROUP_RANGE_INCL(GROUP, N, RANGES, NEWGROUP, IERROR)

INTEGER GROUP, N, RANGES(3,*), NEWGROUP, IERROR

MPI_GROUP_RANK(GROUP, RANK, IERROR)

INTEGER GROUP, RANK, IERROR

MPI_GROUP_SIZE(GROUP, SIZE, IERROR)

INTEGER GROUP, SIZE, IERROR

MPI_GROUP_TRANSLATE_RANKS(GROUP1, N, RANKS1, GROUP2, RANKS2, IERROR)

INTEGER GROUP1, N, RANKS1(*), GROUP2, RANKS2(*), IERROR

MPI_GROUP_UNION(GROUP1, GROUP2, NEWGROUP, IERROR)

INTEGER GROUP1, GROUP2, NEWGROUP, IERROR

MPI_INTERCOMM_CREATE(LOCAL_COMM, LOCAL_LEADER, PEER_COMM, REMOTE_LEADER,
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MPI_COMM_SET_ATTR(COMM, COMM_KEYVAL, ATTRIBUTE_VAL, IERROR)

INTEGER COMM, COMM_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

MPI_COMM_SET_NAME(COMM, COMM_NAME, IERROR)

INTEGER COMM, IERROR

CHARACTER*(*) COMM_NAME

MPI_COMM_SIZE(COMM, SIZE, IERROR)

INTEGER COMM, SIZE, IERROR

MPI_COMM_SPLIT(COMM, COLOR, KEY, NEWCOMM, IERROR)

INTEGER COMM, COLOR, KEY, NEWCOMM, IERROR

MPI_COMM_TEST_INTER(COMM, FLAG, IERROR)

INTEGER COMM, IERROR

LOGICAL FLAG

MPI_GROUP_COMPARE(GROUP1, GROUP2, RESULT, IERROR)

INTEGER GROUP1, GROUP2, RESULT, IERROR

MPI_GROUP_DIFFERENCE(GROUP1, GROUP2, NEWGROUP, IERROR)

INTEGER GROUP1, GROUP2, NEWGROUP, IERROR

MPI_GROUP_EXCL(GROUP, N, RANKS, NEWGROUP, IERROR)

INTEGER GROUP, N, RANKS(*), NEWGROUP, IERROR

MPI_GROUP_FREE(GROUP, IERROR)

INTEGER GROUP, IERROR

MPI_GROUP_INCL(GROUP, N, RANKS, NEWGROUP, IERROR)

INTEGER GROUP, N, RANKS(*), NEWGROUP, IERROR

MPI_GROUP_INTERSECTION(GROUP1, GROUP2, NEWGROUP, IERROR)

INTEGER GROUP1, GROUP2, NEWGROUP, IERROR

MPI_GROUP_RANGE_EXCL(GROUP, N, RANGES, NEWGROUP, IERROR)

INTEGER GROUP, N, RANGES(3,*), NEWGROUP, IERROR

MPI_GROUP_RANGE_INCL(GROUP, N, RANGES, NEWGROUP, IERROR)

INTEGER GROUP, N, RANGES(3,*), NEWGROUP, IERROR

MPI_GROUP_RANK(GROUP, RANK, IERROR)

INTEGER GROUP, RANK, IERROR

MPI_GROUP_SIZE(GROUP, SIZE, IERROR)

INTEGER GROUP, SIZE, IERROR

MPI_GROUP_TRANSLATE_RANKS(GROUP1, N, RANKS1, GROUP2, RANKS2, IERROR)

INTEGER GROUP1, N, RANKS1(*), GROUP2, RANKS2(*), IERROR

MPI_GROUP_UNION(GROUP1, GROUP2, NEWGROUP, IERROR)

INTEGER GROUP1, GROUP2, NEWGROUP, IERROR

MPI_INTERCOMM_CREATE(LOCAL_COMM, LOCAL_LEADER, PEER_COMM, REMOTE_LEADER,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



530 ANNEX A. LANGUAGE BINDINGS SUMMARY

TAG, NEWINTERCOMM, IERROR)

INTEGER LOCAL_COMM, LOCAL_LEADER, PEER_COMM, REMOTE_LEADER, TAG,

NEWINTERCOMM, IERROR

MPI_INTERCOMM_MERGE(INTERCOMM, HIGH, INTRACOMM, IERROR)

INTEGER INTERCOMM, INTRACOMM, IERROR

LOGICAL HIGH

MPI_TYPE_CREATE_KEYVAL(TYPE_COPY_ATTR_FN, TYPE_DELETE_ATTR_FN, TYPE_KEYVAL,

EXTRA_STATE, IERROR)

EXTERNAL TYPE_COPY_ATTR_FN, TYPE_DELETE_ATTR_FN

INTEGER TYPE_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

MPI_TYPE_DELETE_ATTR(TYPE, TYPE_KEYVAL, IERROR)

INTEGER TYPE, TYPE_KEYVAL, IERROR

MPI_TYPE_DUP_FN(OLDTYPE, TYPE_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDTYPE, TYPE_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT

LOGICAL FLAG

MPI_TYPE_FREE_KEYVAL(TYPE_KEYVAL, IERROR)

INTEGER TYPE_KEYVAL, IERROR

MPI_TYPE_GET_ATTR(TYPE, TYPE_KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)

INTEGER TYPE, TYPE_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

LOGICAL FLAG

MPI_TYPE_GET_NAME(TYPE, TYPE_NAME, RESULTLEN, IERROR)

INTEGER TYPE, RESULTLEN, IERROR

CHARACTER*(*) TYPE_NAME

MPI_TYPE_NULL_COPY_FN(OLDTYPE, TYPE_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDTYPE, TYPE_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT

LOGICAL FLAG

MPI_TYPE_NULL_DELETE_FN(TYPE, TYPE_KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE,

IERROR)

INTEGER TYPE, TYPE_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

MPI_TYPE_SET_ATTR(TYPE, TYPE_KEYVAL, ATTRIBUTE_VAL, IERROR)

INTEGER TYPE, TYPE_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

MPI_TYPE_SET_NAME(TYPE, TYPE_NAME, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

530 ANNEX A. LANGUAGE BINDINGS SUMMARY

TAG, NEWINTERCOMM, IERROR)

INTEGER LOCAL_COMM, LOCAL_LEADER, PEER_COMM, REMOTE_LEADER, TAG,

NEWINTERCOMM, IERROR

MPI_INTERCOMM_MERGE(INTERCOMM, HIGH, INTRACOMM, IERROR)

INTEGER INTERCOMM, INTRACOMM, IERROR

LOGICAL HIGH

MPI_TYPE_CREATE_KEYVAL(TYPE_COPY_ATTR_FN, TYPE_DELETE_ATTR_FN, TYPE_KEYVAL,

EXTRA_STATE, IERROR)

EXTERNAL TYPE_COPY_ATTR_FN, TYPE_DELETE_ATTR_FN

INTEGER TYPE_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

MPI_TYPE_DELETE_ATTR(TYPE, TYPE_KEYVAL, IERROR)

INTEGER TYPE, TYPE_KEYVAL, IERROR

MPI_TYPE_DUP_FN(OLDTYPE, TYPE_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDTYPE, TYPE_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT

LOGICAL FLAG

MPI_TYPE_FREE_KEYVAL(TYPE_KEYVAL, IERROR)

INTEGER TYPE_KEYVAL, IERROR

MPI_TYPE_GET_ATTR(TYPE, TYPE_KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)

INTEGER TYPE, TYPE_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

LOGICAL FLAG

MPI_TYPE_GET_NAME(TYPE, TYPE_NAME, RESULTLEN, IERROR)

INTEGER TYPE, RESULTLEN, IERROR

CHARACTER*(*) TYPE_NAME

MPI_TYPE_NULL_COPY_FN(OLDTYPE, TYPE_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDTYPE, TYPE_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT

LOGICAL FLAG

MPI_TYPE_NULL_DELETE_FN(TYPE, TYPE_KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE,

IERROR)

INTEGER TYPE, TYPE_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

MPI_TYPE_SET_ATTR(TYPE, TYPE_KEYVAL, ATTRIBUTE_VAL, IERROR)

INTEGER TYPE, TYPE_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

MPI_TYPE_SET_NAME(TYPE, TYPE_NAME, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



A.3. FORTRAN BINDINGS 531

INTEGER TYPE, IERROR

CHARACTER*(*) TYPE_NAME

MPI_WIN_CREATE_KEYVAL(WIN_COPY_ATTR_FN, WIN_DELETE_ATTR_FN, WIN_KEYVAL,

EXTRA_STATE, IERROR)

EXTERNAL WIN_COPY_ATTR_FN, WIN_DELETE_ATTR_FN

INTEGER WIN_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

MPI_WIN_DELETE_ATTR(WIN, WIN_KEYVAL, IERROR)

INTEGER WIN, WIN_KEYVAL, IERROR

MPI_WIN_DUP_FN(OLDWIN, WIN_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDWIN, WIN_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT

LOGICAL FLAG

MPI_WIN_FREE_KEYVAL(WIN_KEYVAL, IERROR)

INTEGER WIN_KEYVAL, IERROR

MPI_WIN_GET_ATTR(WIN, WIN_KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)

INTEGER WIN, WIN_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

LOGICAL FLAG

MPI_WIN_GET_NAME(WIN, WIN_NAME, RESULTLEN, IERROR)

INTEGER WIN, RESULTLEN, IERROR

CHARACTER*(*) WIN_NAME

MPI_WIN_NULL_COPY_FN(OLDWIN, WIN_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDWIN, WIN_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT

LOGICAL FLAG
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INTEGER WIN, WIN_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

MPI_WIN_SET_NAME(WIN, WIN_NAME, IERROR)

INTEGER WIN, IERROR

CHARACTER*(*) WIN_NAME
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INTEGER TYPE, IERROR

CHARACTER*(*) TYPE_NAME

MPI_WIN_CREATE_KEYVAL(WIN_COPY_ATTR_FN, WIN_DELETE_ATTR_FN, WIN_KEYVAL,

EXTRA_STATE, IERROR)

EXTERNAL WIN_COPY_ATTR_FN, WIN_DELETE_ATTR_FN

INTEGER WIN_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

MPI_WIN_DELETE_ATTR(WIN, WIN_KEYVAL, IERROR)

INTEGER WIN, WIN_KEYVAL, IERROR

MPI_WIN_DUP_FN(OLDWIN, WIN_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDWIN, WIN_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT

LOGICAL FLAG

MPI_WIN_FREE_KEYVAL(WIN_KEYVAL, IERROR)

INTEGER WIN_KEYVAL, IERROR

MPI_WIN_GET_ATTR(WIN, WIN_KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)

INTEGER WIN, WIN_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

LOGICAL FLAG

MPI_WIN_GET_NAME(WIN, WIN_NAME, RESULTLEN, IERROR)

INTEGER WIN, RESULTLEN, IERROR

CHARACTER*(*) WIN_NAME
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A.3.5 Process Topologies Fortran Bindings

MPI_CART_COORDS(COMM, RANK, MAXDIMS, COORDS, IERROR)

INTEGER COMM, RANK, MAXDIMS, COORDS(*), IERROR

MPI_CART_CREATE(COMM_OLD, NDIMS, DIMS, PERIODS, REORDER, COMM_CART, IERROR)

INTEGER COMM_OLD, NDIMS, DIMS(*), COMM_CART, IERROR

LOGICAL PERIODS(*), REORDER

MPI_CARTDIM_GET(COMM, NDIMS, IERROR)

INTEGER COMM, NDIMS, IERROR

MPI_CART_GET(COMM, MAXDIMS, DIMS, PERIODS, COORDS, IERROR)

INTEGER COMM, MAXDIMS, DIMS(*), COORDS(*), IERROR

LOGICAL PERIODS(*)

MPI_CART_MAP(COMM, NDIMS, DIMS, PERIODS, NEWRANK, IERROR)

INTEGER COMM, NDIMS, DIMS(*), NEWRANK, IERROR

LOGICAL PERIODS(*)

MPI_CART_RANK(COMM, COORDS, RANK, IERROR)

INTEGER COMM, COORDS(*), RANK, IERROR

MPI_CART_SHIFT(COMM, DIRECTION, DISP, RANK_SOURCE, RANK_DEST, IERROR)

INTEGER COMM, DIRECTION, DISP, RANK_SOURCE, RANK_DEST, IERROR

MPI_CART_SUB(COMM, REMAIN_DIMS, NEWCOMM, IERROR)

INTEGER COMM, NEWCOMM, IERROR

LOGICAL REMAIN_DIMS(*)

MPI_DIMS_CREATE(NNODES, NDIMS, DIMS, IERROR)

INTEGER NNODES, NDIMS, DIMS(*), IERROR

MPI_GRAPH_CREATE(COMM_OLD, NNODES, INDEX, EDGES, REORDER, COMM_GRAPH,

IERROR)

INTEGER COMM_OLD, NNODES, INDEX(*), EDGES(*), COMM_GRAPH, IERROR

LOGICAL REORDER

MPI_GRAPHDIMS_GET(COMM, NNODES, NEDGES, IERROR)

INTEGER COMM, NNODES, NEDGES, IERROR

MPI_GRAPH_GET(COMM, MAXINDEX, MAXEDGES, INDEX, EDGES, IERROR)

INTEGER COMM, MAXINDEX, MAXEDGES, INDEX(*), EDGES(*), IERROR

MPI_GRAPH_MAP(COMM, NNODES, INDEX, EDGES, NEWRANK, IERROR)

INTEGER COMM, NNODES, INDEX(*), EDGES(*), NEWRANK, IERROR

MPI_GRAPH_NEIGHBORS(COMM, RANK, MAXNEIGHBORS, NEIGHBORS, IERROR)

INTEGER COMM, RANK, MAXNEIGHBORS, NEIGHBORS(*), IERROR

MPI_GRAPH_NEIGHBORS_COUNT(COMM, RANK, NNEIGHBORS, IERROR)

INTEGER COMM, RANK, NNEIGHBORS, IERROR

MPI_TOPO_TEST(COMM, STATUS, IERROR)

INTEGER COMM, STATUS, IERROR
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MPI_CART_SUB(COMM, REMAIN_DIMS, NEWCOMM, IERROR)
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MPI_GRAPH_CREATE(COMM_OLD, NNODES, INDEX, EDGES, REORDER, COMM_GRAPH,

IERROR)

INTEGER COMM_OLD, NNODES, INDEX(*), EDGES(*), COMM_GRAPH, IERROR

LOGICAL REORDER

MPI_GRAPHDIMS_GET(COMM, NNODES, NEDGES, IERROR)

INTEGER COMM, NNODES, NEDGES, IERROR

MPI_GRAPH_GET(COMM, MAXINDEX, MAXEDGES, INDEX, EDGES, IERROR)

INTEGER COMM, MAXINDEX, MAXEDGES, INDEX(*), EDGES(*), IERROR

MPI_GRAPH_MAP(COMM, NNODES, INDEX, EDGES, NEWRANK, IERROR)

INTEGER COMM, NNODES, INDEX(*), EDGES(*), NEWRANK, IERROR

MPI_GRAPH_NEIGHBORS(COMM, RANK, MAXNEIGHBORS, NEIGHBORS, IERROR)

INTEGER COMM, RANK, MAXNEIGHBORS, NEIGHBORS(*), IERROR

MPI_GRAPH_NEIGHBORS_COUNT(COMM, RANK, NNEIGHBORS, IERROR)

INTEGER COMM, RANK, NNEIGHBORS, IERROR

MPI_TOPO_TEST(COMM, STATUS, IERROR)

INTEGER COMM, STATUS, IERROR
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A.3.6 MPI Environmenta Management Fortran Bindings

DOUBLE PRECISION MPI_WTICK()

DOUBLE PRECISION MPI_WTIME()

MPI_ABORT(COMM, ERRORCODE, IERROR)

INTEGER COMM, ERRORCODE, IERROR

MPI_ADD_ERROR_CLASS(ERRORCLASS, IERROR)

INTEGER ERRORCLASS, IERROR

MPI_ADD_ERROR_CODE(ERRORCLASS, ERRORCODE, IERROR)

INTEGER ERRORCLASS, ERRORCODE, IERROR

MPI_ADD_ERROR_STRING(ERRORCODE, STRING, IERROR)

INTEGER ERRORCODE, IERROR

CHARACTER*(*) STRING

MPI_ALLOC_MEM(SIZE, INFO, BASEPTR, IERROR)

INTEGER INFO, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR

MPI_COMM_CALL_ERRHANDLER(COMM, ERRORCODE, IERROR)

INTEGER COMM, ERRORCODE, IERROR

MPI_COMM_CREATE_ERRHANDLER(FUNCTION, ERRHANDLER, IERROR)

EXTERNAL FUNCTION

INTEGER ERRHANDLER, IERROR

MPI_COMM_GET_ERRHANDLER(COMM, ERRHANDLER, IERROR)

INTEGER COMM, ERRHANDLER, IERROR

MPI_COMM_SET_ERRHANDLER(COMM, ERRHANDLER, IERROR)

INTEGER COMM, ERRHANDLER, IERROR

MPI_ERRHANDLER_FREE(ERRHANDLER, IERROR)

INTEGER ERRHANDLER, IERROR

MPI_ERROR_CLASS(ERRORCODE, ERRORCLASS, IERROR)

INTEGER ERRORCODE, ERRORCLASS, IERROR

MPI_ERROR_STRING(ERRORCODE, STRING, RESULTLEN, IERROR)

INTEGER ERRORCODE, RESULTLEN, IERROR

CHARACTER*(*) STRING

MPI_FILE_CALL_ERRHANDLER(FH, ERRORCODE, IERROR)

INTEGER FH, ERRORCODE, IERROR

MPI_FILE_CREATE_ERRHANDLER(FUNCTION, ERRHANDLER, IERROR)

EXTERNAL FUNCTION

INTEGER ERRHANDLER, IERROR

MPI_FILE_GET_ERRHANDLER(FILE, ERRHANDLER, IERROR)

INTEGER FILE, ERRHANDLER, IERROR
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MPI_FILE_SET_ERRHANDLER(FILE, ERRHANDLER, IERROR)

INTEGER FILE, ERRHANDLER, IERROR

MPI_FINALIZED(FLAG, IERROR)

LOGICAL FLAG

INTEGER IERROR

MPI_FINALIZE(IERROR)

INTEGER IERROR

MPI_FREE_MEM(BASE, IERROR)

<type> BASE(*)

INTEGER IERROR

MPI_GET_PROCESSOR_NAME( NAME, RESULTLEN, IERROR)

CHARACTER*(*) NAME

INTEGER RESULTLEN,IERROR

MPI_GET_VERSION(VERSION, SUBVERSION, IERROR)

INTEGER VERSION, SUBVERSION, IERROR

MPI_INITIALIZED(FLAG, IERROR)

LOGICAL FLAG

INTEGER IERROR

MPI_INIT(IERROR)

INTEGER IERROR

MPI_WIN_CALL_ERRHANDLER(WIN, ERRORCODE, IERROR)

INTEGER WIN, ERRORCODE, IERROR

MPI_WIN_CREATE_ERRHANDLER(FUNCTION, ERRHANDLER, IERROR)

EXTERNAL FUNCTION

INTEGER ERRHANDLER, IERROR

MPI_WIN_GET_ERRHANDLER(WIN, ERRHANDLER, IERROR)

INTEGER WIN, ERRHANDLER, IERROR

MPI_WIN_SET_ERRHANDLER(WIN, ERRHANDLER, IERROR)

INTEGER WIN, ERRHANDLER, IERROR

A.3.7 The Info Object Fortran Bindings

MPI_INFO_CREATE(INFO, IERROR)

INTEGER INFO, IERROR

MPI_INFO_DELETE(INFO, KEY, IERROR)

INTEGER INFO, IERROR

CHARACTER*(*) KEY

MPI_INFO_DUP(INFO, NEWINFO, IERROR)

INTEGER INFO, NEWINFO, IERROR

MPI_INFO_FREE(INFO, IERROR)
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MPI_FILE_SET_ERRHANDLER(FILE, ERRHANDLER, IERROR)
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LOGICAL FLAG
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EXTERNAL FUNCTION

INTEGER ERRHANDLER, IERROR

MPI_WIN_GET_ERRHANDLER(WIN, ERRHANDLER, IERROR)
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INTEGER WIN, ERRHANDLER, IERROR
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INTEGER INFO, IERROR

MPI_INFO_GET(INFO, KEY, VALUELEN, VALUE, FLAG, IERROR)

INTEGER INFO, VALUELEN, IERROR

CHARACTER*(*) KEY, VALUE

LOGICAL FLAG

MPI_INFO_GET_NKEYS(INFO, NKEYS, IERROR)

INTEGER INFO, NKEYS, IERROR

MPI_INFO_GET_NTHKEY(INFO, N, KEY, IERROR)

INTEGER INFO, N, IERROR

CHARACTER*(*) KEY

MPI_INFO_GET_VALUELEN(INFO, KEY, VALUELEN, FLAG, IERROR)

INTEGER INFO, VALUELEN, IERROR

LOGICAL FLAG

CHARACTER*(*) KEY

MPI_INFO_SET(INFO, KEY, VALUE, IERROR)

INTEGER INFO, IERROR

CHARACTER*(*) KEY, VALUE

A.3.8 Process Creation and Management Fortran Bindings

MPI_CLOSE_PORT(PORT_NAME, IERROR)

CHARACTER*(*) PORT_NAME

INTEGER IERROR

MPI_COMM_ACCEPT(PORT_NAME, INFO, ROOT, COMM, NEWCOMM, IERROR)

CHARACTER*(*) PORT_NAME

INTEGER INFO, ROOT, COMM, NEWCOMM, IERROR

MPI_COMM_CONNECT(PORT_NAME, INFO, ROOT, COMM, NEWCOMM, IERROR)

CHARACTER*(*) PORT_NAME

INTEGER INFO, ROOT, COMM, NEWCOMM, IERROR

MPI_COMM_DISCONNECT(COMM, IERROR)

INTEGER COMM, IERROR

MPI_COMM_GET_PARENT(PARENT, IERROR)

INTEGER PARENT, IERROR

MPI_COMM_JOIN(FD, INTERCOMM, IERROR)

INTEGER FD, INTERCOMM, IERROR

MPI_COMM_SPAWN(COMMAND, ARGV, MAXPROCS, INFO, ROOT, COMM, INTERCOMM,

ARRAY_OF_ERRCODES, IERROR)

CHARACTER*(*) COMMAND, ARGV(*)

INTEGER INFO, MAXPROCS, ROOT, COMM, INTERCOMM, ARRAY_OF_ERRCODES(*),

IERROR

MPI_COMM_SPAWN_MULTIPLE(COUNT, ARRAY_OF_COMMANDS, ARRAY_OF_ARGV,
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INTEGER INFO, IERROR

MPI_INFO_GET(INFO, KEY, VALUELEN, VALUE, FLAG, IERROR)

INTEGER INFO, VALUELEN, IERROR

CHARACTER*(*) KEY, VALUE

LOGICAL FLAG

MPI_INFO_GET_NKEYS(INFO, NKEYS, IERROR)

INTEGER INFO, NKEYS, IERROR

MPI_INFO_GET_NTHKEY(INFO, N, KEY, IERROR)

INTEGER INFO, N, IERROR

CHARACTER*(*) KEY

MPI_INFO_GET_VALUELEN(INFO, KEY, VALUELEN, FLAG, IERROR)

INTEGER INFO, VALUELEN, IERROR

LOGICAL FLAG

CHARACTER*(*) KEY

MPI_INFO_SET(INFO, KEY, VALUE, IERROR)

INTEGER INFO, IERROR

CHARACTER*(*) KEY, VALUE

A.3.8 Process Creation and Management Fortran Bindings

MPI_CLOSE_PORT(PORT_NAME, IERROR)

CHARACTER*(*) PORT_NAME

INTEGER IERROR

MPI_COMM_ACCEPT(PORT_NAME, INFO, ROOT, COMM, NEWCOMM, IERROR)

CHARACTER*(*) PORT_NAME

INTEGER INFO, ROOT, COMM, NEWCOMM, IERROR

MPI_COMM_CONNECT(PORT_NAME, INFO, ROOT, COMM, NEWCOMM, IERROR)

CHARACTER*(*) PORT_NAME

INTEGER INFO, ROOT, COMM, NEWCOMM, IERROR

MPI_COMM_DISCONNECT(COMM, IERROR)

INTEGER COMM, IERROR

MPI_COMM_GET_PARENT(PARENT, IERROR)

INTEGER PARENT, IERROR

MPI_COMM_JOIN(FD, INTERCOMM, IERROR)

INTEGER FD, INTERCOMM, IERROR

MPI_COMM_SPAWN(COMMAND, ARGV, MAXPROCS, INFO, ROOT, COMM, INTERCOMM,

ARRAY_OF_ERRCODES, IERROR)

CHARACTER*(*) COMMAND, ARGV(*)

INTEGER INFO, MAXPROCS, ROOT, COMM, INTERCOMM, ARRAY_OF_ERRCODES(*),

IERROR

MPI_COMM_SPAWN_MULTIPLE(COUNT, ARRAY_OF_COMMANDS, ARRAY_OF_ARGV,
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ARRAY_OF_MAXPROCS, ARRAY_OF_INFO, ROOT, COMM, INTERCOMM,

ARRAY_OF_ERRCODES, IERROR)

INTEGER COUNT, ARRAY_OF_INFO(*), ARRAY_OF_MAXPROCS(*), ROOT, COMM,

INTERCOMM, ARRAY_OF_ERRCODES(*), IERROR

CHARACTER*(*) ARRAY_OF_COMMANDS(*), ARRAY_OF_ARGV(COUNT, *)

MPI_LOOKUP_NAME(SERVICE_NAME, INFO, PORT_NAME, IERROR)

CHARACTER*(*) SERVICE_NAME, PORT_NAME

INTEGER INFO, IERROR

MPI_OPEN_PORT(INFO, PORT_NAME, IERROR)

CHARACTER*(*) PORT_NAME

INTEGER INFO, IERROR

MPI_PUBLISH_NAME(SERVICE_NAME, INFO, PORT_NAME, IERROR)

INTEGER INFO, IERROR

CHARACTER*(*) SERVICE_NAME, PORT_NAME

MPI_UNPUBLISH_NAME(SERVICE_NAME, INFO, PORT_NAME, IERROR)

INTEGER INFO, IERROR

CHARACTER*(*) SERVICE_NAME, PORT_NAME

A.3.9 One-Sided Communications Fortran Bindings

MPI_ACCUMULATE(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,

TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, OP, WIN, IERROR)

<type> ORIGIN_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE,TARGET_RANK, TARGET_COUNT,

TARGET_DATATYPE, OP, WIN, IERROR

MPI_GET(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,

TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, WIN, IERROR)

<type> ORIGIN_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,

TARGET_DATATYPE, WIN, IERROR

MPI_PUT(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,

TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, WIN, IERROR)

<type> ORIGIN_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,

TARGET_DATATYPE, WIN, IERROR

MPI_WIN_COMPLETE(WIN, IERROR)

INTEGER WIN, IERROR

MPI_WIN_CREATE(BASE, SIZE, DISP_UNIT, INFO, COMM, WIN, IERROR)

<type> BASE(*)

INTEGER(KIND=MPI_ADDRESS_KIND) SIZE
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ARRAY_OF_MAXPROCS, ARRAY_OF_INFO, ROOT, COMM, INTERCOMM,

ARRAY_OF_ERRCODES, IERROR)

INTEGER COUNT, ARRAY_OF_INFO(*), ARRAY_OF_MAXPROCS(*), ROOT, COMM,

INTERCOMM, ARRAY_OF_ERRCODES(*), IERROR

CHARACTER*(*) ARRAY_OF_COMMANDS(*), ARRAY_OF_ARGV(COUNT, *)

MPI_LOOKUP_NAME(SERVICE_NAME, INFO, PORT_NAME, IERROR)

CHARACTER*(*) SERVICE_NAME, PORT_NAME

INTEGER INFO, IERROR

MPI_OPEN_PORT(INFO, PORT_NAME, IERROR)

CHARACTER*(*) PORT_NAME

INTEGER INFO, IERROR

MPI_PUBLISH_NAME(SERVICE_NAME, INFO, PORT_NAME, IERROR)

INTEGER INFO, IERROR

CHARACTER*(*) SERVICE_NAME, PORT_NAME

MPI_UNPUBLISH_NAME(SERVICE_NAME, INFO, PORT_NAME, IERROR)

INTEGER INFO, IERROR

CHARACTER*(*) SERVICE_NAME, PORT_NAME

A.3.9 One-Sided Communications Fortran Bindings

MPI_ACCUMULATE(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,

TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, OP, WIN, IERROR)

<type> ORIGIN_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE,TARGET_RANK, TARGET_COUNT,

TARGET_DATATYPE, OP, WIN, IERROR

MPI_GET(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,

TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, WIN, IERROR)

<type> ORIGIN_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,

TARGET_DATATYPE, WIN, IERROR

MPI_PUT(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,

TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, WIN, IERROR)

<type> ORIGIN_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,

TARGET_DATATYPE, WIN, IERROR

MPI_WIN_COMPLETE(WIN, IERROR)

INTEGER WIN, IERROR

MPI_WIN_CREATE(BASE, SIZE, DISP_UNIT, INFO, COMM, WIN, IERROR)

<type> BASE(*)

INTEGER(KIND=MPI_ADDRESS_KIND) SIZE
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INTEGER DISP_UNIT, INFO, COMM, WIN, IERROR

MPI_WIN_FENCE(ASSERT, WIN, IERROR)

INTEGER ASSERT, WIN, IERROR

MPI_WIN_FREE(WIN, IERROR)

INTEGER WIN, IERROR

MPI_WIN_GET_GROUP(WIN, GROUP, IERROR)

INTEGER WIN, GROUP, IERROR

MPI_WIN_LOCK(LOCK_TYPE, RANK, ASSERT, WIN, IERROR)

INTEGER LOCK_TYPE, RANK, ASSERT, WIN, IERROR

MPI_WIN_POST(GROUP, ASSERT, WIN, IERROR)

INTEGER GROUP, ASSERT, WIN, IERROR

MPI_WIN_START(GROUP, ASSERT, WIN, IERROR)

INTEGER GROUP, ASSERT, WIN, IERROR

MPI_WIN_TEST(WIN, FLAG, IERROR)

INTEGER WIN, IERROR

LOGICAL FLAG

MPI_WIN_UNLOCK(RANK, WIN, IERROR)

INTEGER RANK, WIN, IERROR

MPI_WIN_WAIT(WIN, IERROR)

INTEGER WIN, IERROR

A.3.10 External Interfaces Fortran Bindings

MPI_GREQUEST_COMPLETE(REQUEST, IERROR)

INTEGER REQUEST, IERROR

MPI_GREQUEST_START(QUERY_FN, FREE_FN, CANCEL_FN, EXTRA_STATE, REQUEST,

IERROR)

INTEGER REQUEST, IERROR

EXTERNAL QUERY_FN, FREE_FN, CANCEL_FN

INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_STATE

MPI_INIT_THREAD(REQUIRED, PROVIDED, IERROR)

INTEGER REQUIRED, PROVIDED, IERROR

MPI_IS_THREAD_MAIN(FLAG, IERROR)

LOGICAL FLAG

INTEGER IERROR

MPI_QUERY_THREAD(PROVIDED, IERROR)

INTEGER PROVIDED, IERROR

MPI_STATUS_SET_CANCELLED(STATUS, FLAG, IERROR)

INTEGER STATUS(MPI_STATUS_SIZE), IERROR

LOGICAL FLAG
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INTEGER DISP_UNIT, INFO, COMM, WIN, IERROR

MPI_WIN_FENCE(ASSERT, WIN, IERROR)

INTEGER ASSERT, WIN, IERROR

MPI_WIN_FREE(WIN, IERROR)

INTEGER WIN, IERROR

MPI_WIN_GET_GROUP(WIN, GROUP, IERROR)

INTEGER WIN, GROUP, IERROR

MPI_WIN_LOCK(LOCK_TYPE, RANK, ASSERT, WIN, IERROR)

INTEGER LOCK_TYPE, RANK, ASSERT, WIN, IERROR

MPI_WIN_POST(GROUP, ASSERT, WIN, IERROR)

INTEGER GROUP, ASSERT, WIN, IERROR

MPI_WIN_START(GROUP, ASSERT, WIN, IERROR)

INTEGER GROUP, ASSERT, WIN, IERROR

MPI_WIN_TEST(WIN, FLAG, IERROR)

INTEGER WIN, IERROR

LOGICAL FLAG

MPI_WIN_UNLOCK(RANK, WIN, IERROR)

INTEGER RANK, WIN, IERROR

MPI_WIN_WAIT(WIN, IERROR)

INTEGER WIN, IERROR

A.3.10 External Interfaces Fortran Bindings

MPI_GREQUEST_COMPLETE(REQUEST, IERROR)

INTEGER REQUEST, IERROR

MPI_GREQUEST_START(QUERY_FN, FREE_FN, CANCEL_FN, EXTRA_STATE, REQUEST,

IERROR)

INTEGER REQUEST, IERROR

EXTERNAL QUERY_FN, FREE_FN, CANCEL_FN

INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_STATE

MPI_INIT_THREAD(REQUIRED, PROVIDED, IERROR)

INTEGER REQUIRED, PROVIDED, IERROR

MPI_IS_THREAD_MAIN(FLAG, IERROR)

LOGICAL FLAG

INTEGER IERROR

MPI_QUERY_THREAD(PROVIDED, IERROR)

INTEGER PROVIDED, IERROR

MPI_STATUS_SET_CANCELLED(STATUS, FLAG, IERROR)

INTEGER STATUS(MPI_STATUS_SIZE), IERROR

LOGICAL FLAG

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



538 ANNEX A. LANGUAGE BINDINGS SUMMARY

MPI_STATUS_SET_ELEMENTS(STATUS, DATATYPE, COUNT, IERROR)

INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR

A.3.11 I/O Fortran Bindings

MPI_FILE_CLOSE(FH, IERROR)

INTEGER FH, IERROR

MPI_FILE_DELETE(FILENAME, INFO, IERROR)

CHARACTER*(*) FILENAME

INTEGER INFO, IERROR

MPI_FILE_GET_AMODE(FH, AMODE, IERROR)

INTEGER FH, AMODE, IERROR

MPI_FILE_GET_ATOMICITY(FH, FLAG, IERROR)

INTEGER FH, IERROR

LOGICAL FLAG

MPI_FILE_GET_BYTE_OFFSET(FH, OFFSET, DISP, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET, DISP

MPI_FILE_GET_GROUP(FH, GROUP, IERROR)

INTEGER FH, GROUP, IERROR

MPI_FILE_GET_INFO(FH, INFO_USED, IERROR)

INTEGER FH, INFO_USED, IERROR

MPI_FILE_GET_POSITION(FH, OFFSET, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_GET_POSITION_SHARED(FH, OFFSET, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_GET_SIZE(FH, SIZE, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) SIZE

MPI_FILE_GET_TYPE_EXTENT(FH, DATATYPE, EXTENT, IERROR)

INTEGER FH, DATATYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTENT

MPI_FILE_GET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, IERROR)

INTEGER FH, ETYPE, FILETYPE, IERROR

CHARACTER*(*) DATAREP

INTEGER(KIND=MPI_OFFSET_KIND) DISP

MPI_FILE_IREAD_AT(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
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MPI_STATUS_SET_ELEMENTS(STATUS, DATATYPE, COUNT, IERROR)

INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR

A.3.11 I/O Fortran Bindings

MPI_FILE_CLOSE(FH, IERROR)

INTEGER FH, IERROR

MPI_FILE_DELETE(FILENAME, INFO, IERROR)

CHARACTER*(*) FILENAME

INTEGER INFO, IERROR

MPI_FILE_GET_AMODE(FH, AMODE, IERROR)

INTEGER FH, AMODE, IERROR

MPI_FILE_GET_ATOMICITY(FH, FLAG, IERROR)

INTEGER FH, IERROR

LOGICAL FLAG

MPI_FILE_GET_BYTE_OFFSET(FH, OFFSET, DISP, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET, DISP

MPI_FILE_GET_GROUP(FH, GROUP, IERROR)

INTEGER FH, GROUP, IERROR

MPI_FILE_GET_INFO(FH, INFO_USED, IERROR)

INTEGER FH, INFO_USED, IERROR

MPI_FILE_GET_POSITION(FH, OFFSET, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_GET_POSITION_SHARED(FH, OFFSET, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_GET_SIZE(FH, SIZE, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) SIZE

MPI_FILE_GET_TYPE_EXTENT(FH, DATATYPE, EXTENT, IERROR)

INTEGER FH, DATATYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTENT

MPI_FILE_GET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, IERROR)

INTEGER FH, ETYPE, FILETYPE, IERROR

CHARACTER*(*) DATAREP

INTEGER(KIND=MPI_OFFSET_KIND) DISP

MPI_FILE_IREAD_AT(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
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INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_IREAD(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI_FILE_IREAD_SHARED(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI_FILE_IWRITE_AT(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_IWRITE(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI_FILE_IWRITE_SHARED(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI_FILE_OPEN(COMM, FILENAME, AMODE, INFO, FH, IERROR)

CHARACTER*(*) FILENAME

INTEGER COMM, AMODE, INFO, FH, IERROR

MPI_FILE_PREALLOCATE(FH, SIZE, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) SIZE

MPI_FILE_READ_ALL_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

MPI_FILE_READ_ALL_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_AT_ALL_BEGIN(FH, OFFSET, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_READ_AT_ALL_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_AT_ALL(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)
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INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_IREAD(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI_FILE_IREAD_SHARED(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI_FILE_IWRITE_AT(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_IWRITE(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI_FILE_IWRITE_SHARED(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI_FILE_OPEN(COMM, FILENAME, AMODE, INFO, FH, IERROR)

CHARACTER*(*) FILENAME

INTEGER COMM, AMODE, INFO, FH, IERROR

MPI_FILE_PREALLOCATE(FH, SIZE, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) SIZE

MPI_FILE_READ_ALL_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

MPI_FILE_READ_ALL_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_AT_ALL_BEGIN(FH, OFFSET, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_READ_AT_ALL_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_AT_ALL(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)
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INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_READ_AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_READ(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_ORDERED_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

MPI_FILE_READ_ORDERED_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_ORDERED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_SEEK(FH, OFFSET, WHENCE, IERROR)

INTEGER FH, WHENCE, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_SEEK_SHARED(FH, OFFSET, WHENCE, IERROR)

INTEGER FH, WHENCE, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_SET_ATOMICITY(FH, FLAG, IERROR)

INTEGER FH, IERROR

LOGICAL FLAG

MPI_FILE_SET_INFO(FH, INFO, IERROR)

INTEGER FH, INFO, IERROR

MPI_FILE_SET_SIZE(FH, SIZE, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) SIZE

MPI_FILE_SET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, INFO, IERROR)

INTEGER FH, ETYPE, FILETYPE, INFO, IERROR

CHARACTER*(*) DATAREP

INTEGER(KIND=MPI_OFFSET_KIND) DISP

MPI_FILE_SYNC(FH, IERROR)

INTEGER FH, IERROR
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INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_READ_AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_READ(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_ORDERED_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

MPI_FILE_READ_ORDERED_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_ORDERED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_SEEK(FH, OFFSET, WHENCE, IERROR)

INTEGER FH, WHENCE, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_SEEK_SHARED(FH, OFFSET, WHENCE, IERROR)

INTEGER FH, WHENCE, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_SET_ATOMICITY(FH, FLAG, IERROR)

INTEGER FH, IERROR

LOGICAL FLAG

MPI_FILE_SET_INFO(FH, INFO, IERROR)

INTEGER FH, INFO, IERROR

MPI_FILE_SET_SIZE(FH, SIZE, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) SIZE

MPI_FILE_SET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, INFO, IERROR)

INTEGER FH, ETYPE, FILETYPE, INFO, IERROR

CHARACTER*(*) DATAREP

INTEGER(KIND=MPI_OFFSET_KIND) DISP

MPI_FILE_SYNC(FH, IERROR)

INTEGER FH, IERROR
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MPI_FILE_WRITE_ALL_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

MPI_FILE_WRITE_ALL_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_AT_ALL_BEGIN(FH, OFFSET, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_WRITE_AT_ALL_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_AT_ALL(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_WRITE_AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_WRITE(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_ORDERED_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

MPI_FILE_WRITE_ORDERED_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_ORDERED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_REGISTER_DATAREP(DATAREP, READ_CONVERSION_FN, WRITE_CONVERSION_FN,

DTYPE_FILE_EXTENT_FN, EXTRA_STATE, IERROR)
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MPI_FILE_WRITE_ALL_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

MPI_FILE_WRITE_ALL_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_AT_ALL_BEGIN(FH, OFFSET, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_WRITE_AT_ALL_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_AT_ALL(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_WRITE_AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_WRITE(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_ORDERED_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

MPI_FILE_WRITE_ORDERED_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_ORDERED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_REGISTER_DATAREP(DATAREP, READ_CONVERSION_FN, WRITE_CONVERSION_FN,

DTYPE_FILE_EXTENT_FN, EXTRA_STATE, IERROR)
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CHARACTER*(*) DATAREP

EXTERNAL READ_CONVERSION_FN, WRITE_CONVERSION_FN, DTYPE_FILE_EXTENT_FN

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

INTEGER IERROR

A.3.12 Language Bindings Fortran Bindings

MPI_SIZEOF(X, SIZE, IERROR)

<type> X

INTEGER SIZE, IERROR

MPI_TYPE_CREATE_F90_COMPLEX(P, R, NEWTYPE, IERROR)

INTEGER P, R, NEWTYPE, IERROR

MPI_TYPE_CREATE_F90_INTEGER(R, NEWTYPE, IERROR)

INTEGER R, NEWTYPE, IERROR

MPI_TYPE_CREATE_F90_REAL(P, R, NEWTYPE, IERROR)

INTEGER P, R, NEWTYPE, IERROR

MPI_TYPE_MATCH_SIZE(TYPECLASS, SIZE, TYPE, IERROR)

INTEGER TYPECLASS, SIZE, TYPE, IERROR

A.3.13 Profiling Interface Fortran Bindings

MPI_PCONTROL(LEVEL)

INTEGER LEVEL, ...

A.3.14 Deprecated Fortran Bindings

MPI_ADDRESS(LOCATION, ADDRESS, IERROR)

<type> LOCATION(*)

INTEGER ADDRESS, IERROR

MPI_ATTR_DELETE(COMM, KEYVAL, IERROR)

INTEGER COMM, KEYVAL, IERROR

MPI_ATTR_GET(COMM, KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)

INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, IERROR

LOGICAL FLAG

MPI_ATTR_PUT(COMM, KEYVAL, ATTRIBUTE_VAL, IERROR)

INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, IERROR

MPI_DUP_FN(OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, FLAG, IERR)

INTEGER OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, IERR

LOGICAL FLAG

MPI_ERRHANDLER_CREATE(FUNCTION, ERRHANDLER, IERROR)
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CHARACTER*(*) DATAREP

EXTERNAL READ_CONVERSION_FN, WRITE_CONVERSION_FN, DTYPE_FILE_EXTENT_FN

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

INTEGER IERROR

A.3.12 Language Bindings Fortran Bindings

MPI_SIZEOF(X, SIZE, IERROR)

<type> X

INTEGER SIZE, IERROR

MPI_TYPE_CREATE_F90_COMPLEX(P, R, NEWTYPE, IERROR)

INTEGER P, R, NEWTYPE, IERROR

MPI_TYPE_CREATE_F90_INTEGER(R, NEWTYPE, IERROR)

INTEGER R, NEWTYPE, IERROR

MPI_TYPE_CREATE_F90_REAL(P, R, NEWTYPE, IERROR)

INTEGER P, R, NEWTYPE, IERROR

MPI_TYPE_MATCH_SIZE(TYPECLASS, SIZE, TYPE, IERROR)

INTEGER TYPECLASS, SIZE, TYPE, IERROR

A.3.13 Profiling Interface Fortran Bindings

MPI_PCONTROL(LEVEL)

INTEGER LEVEL, ...

A.3.14 Deprecated Fortran Bindings

MPI_ADDRESS(LOCATION, ADDRESS, IERROR)

<type> LOCATION(*)

INTEGER ADDRESS, IERROR

MPI_ATTR_DELETE(COMM, KEYVAL, IERROR)

INTEGER COMM, KEYVAL, IERROR

MPI_ATTR_GET(COMM, KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)

INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, IERROR

LOGICAL FLAG

MPI_ATTR_PUT(COMM, KEYVAL, ATTRIBUTE_VAL, IERROR)

INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, IERROR

MPI_DUP_FN(OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, FLAG, IERR)

INTEGER OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, IERR

LOGICAL FLAG

MPI_ERRHANDLER_CREATE(FUNCTION, ERRHANDLER, IERROR)
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EXTERNAL FUNCTION

INTEGER ERRHANDLER, IERROR

MPI_ERRHANDLER_GET(COMM, ERRHANDLER, IERROR)

INTEGER COMM, ERRHANDLER, IERROR

MPI_ERRHANDLER_SET(COMM, ERRHANDLER, IERROR)

INTEGER COMM, ERRHANDLER, IERROR

MPI_KEYVAL_CREATE(COPY_FN, DELETE_FN, KEYVAL, EXTRA_STATE, IERROR)

EXTERNAL COPY_FN, DELETE_FN

INTEGER KEYVAL, EXTRA_STATE, IERROR

MPI_KEYVAL_FREE(KEYVAL, IERROR)

INTEGER KEYVAL, IERROR

MPI_NULL_COPY_FN(OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, FLAG, IERR)

INTEGER OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, IERR

LOGICAL FLAG

MPI_NULL_DELETE_FN(COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERROR)

INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERROR

MPI_TYPE_EXTENT(DATATYPE, EXTENT, IERROR)

INTEGER DATATYPE, EXTENT, IERROR

MPI_TYPE_HINDEXED(COUNT, ARRAY_OF_BLOCKLENGTHS, ARRAY_OF_DISPLACEMENTS,

OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_DISPLACEMENTS(*),

OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_HVECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_LB( DATATYPE, DISPLACEMENT, IERROR)

INTEGER DATATYPE, DISPLACEMENT, IERROR

MPI_TYPE_STRUCT(COUNT, ARRAY_OF_BLOCKLENGTHS, ARRAY_OF_DISPLACEMENTS,

ARRAY_OF_TYPES, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_DISPLACEMENTS(*),

ARRAY_OF_TYPES(*), NEWTYPE, IERROR

MPI_TYPE_UB( DATATYPE, DISPLACEMENT, IERROR)

INTEGER DATATYPE, DISPLACEMENT, IERROR

SUBROUTINE COPY_FUNCTION(OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, FLAG, IERR)

INTEGER OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, IERR

LOGICAL FLAG

SUBROUTINE DELETE_FUNCTION(COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERR)
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EXTERNAL FUNCTION

INTEGER ERRHANDLER, IERROR

MPI_ERRHANDLER_GET(COMM, ERRHANDLER, IERROR)

INTEGER COMM, ERRHANDLER, IERROR

MPI_ERRHANDLER_SET(COMM, ERRHANDLER, IERROR)

INTEGER COMM, ERRHANDLER, IERROR

MPI_KEYVAL_CREATE(COPY_FN, DELETE_FN, KEYVAL, EXTRA_STATE, IERROR)

EXTERNAL COPY_FN, DELETE_FN

INTEGER KEYVAL, EXTRA_STATE, IERROR

MPI_KEYVAL_FREE(KEYVAL, IERROR)

INTEGER KEYVAL, IERROR

MPI_NULL_COPY_FN(OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, FLAG, IERR)

INTEGER OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, IERR

LOGICAL FLAG

MPI_NULL_DELETE_FN(COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERROR)

INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERROR

MPI_TYPE_EXTENT(DATATYPE, EXTENT, IERROR)

INTEGER DATATYPE, EXTENT, IERROR

MPI_TYPE_HINDEXED(COUNT, ARRAY_OF_BLOCKLENGTHS, ARRAY_OF_DISPLACEMENTS,

OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_DISPLACEMENTS(*),

OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_HVECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_LB( DATATYPE, DISPLACEMENT, IERROR)

INTEGER DATATYPE, DISPLACEMENT, IERROR

MPI_TYPE_STRUCT(COUNT, ARRAY_OF_BLOCKLENGTHS, ARRAY_OF_DISPLACEMENTS,

ARRAY_OF_TYPES, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_DISPLACEMENTS(*),

ARRAY_OF_TYPES(*), NEWTYPE, IERROR

MPI_TYPE_UB( DATATYPE, DISPLACEMENT, IERROR)

INTEGER DATATYPE, DISPLACEMENT, IERROR

SUBROUTINE COPY_FUNCTION(OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, FLAG, IERR)

INTEGER OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, IERR

LOGICAL FLAG

SUBROUTINE DELETE_FUNCTION(COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERR)
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INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERR1
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INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERR1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



A.4. C++ BINDINGS 545

A.4 C++ Bindings

A.4.1 Point-to-Point Communication C++ Bindings

namespace MPI {

void Attach_buffer(void* buffer, int size)

void Comm::Bsend(const void* buf, int count, const Datatype& datatype,

int dest, int tag) const

Prequest Comm::Bsend_init(const void* buf, int count, const

Datatype& datatype, int dest, int tag) const

void Request::Cancel() const

int Detach_buffer(void*& buffer)

void Request::Free()

int Status::Get_count(const Datatype& datatype) const

int Status::Get_error() const

int Status::Get_source() const

bool Request::Get_status() const

bool Request::Get_status(Status& status) const

int Status::Get_tag() const

Request Comm::Ibsend(const void* buf, int count, const

Datatype& datatype, int dest, int tag) const

bool Comm::Iprobe(int source, int tag) const

bool Comm::Iprobe(int source, int tag, Status& status) const

Request Comm::Irecv(void* buf, int count, const Datatype& datatype,

int source, int tag) const

Request Comm::Irsend(const void* buf, int count, const

Datatype& datatype, int dest, int tag) const

bool Status::Is_cancelled() const

Request Comm::Isend(const void* buf, int count, const Datatype& datatype,

int dest, int tag) const

Request Comm::Issend(const void* buf, int count, const

Datatype& datatype, int dest, int tag) const

void Comm::Probe(int source, int tag) const

void Comm::Probe(int source, int tag, Status& status) const

Prequest Comm::Recv_init(void* buf, int count, const Datatype& datatype,

int source, int tag) const
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A.4 C++ Bindings

A.4.1 Point-to-Point Communication C++ Bindings

namespace MPI {
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void Request::Free()

int Status::Get_count(const Datatype& datatype) const

int Status::Get_error() const

int Status::Get_source() const

bool Request::Get_status() const

bool Request::Get_status(Status& status) const

int Status::Get_tag() const

Request Comm::Ibsend(const void* buf, int count, const

Datatype& datatype, int dest, int tag) const

bool Comm::Iprobe(int source, int tag) const

bool Comm::Iprobe(int source, int tag, Status& status) const

Request Comm::Irecv(void* buf, int count, const Datatype& datatype,

int source, int tag) const

Request Comm::Irsend(const void* buf, int count, const

Datatype& datatype, int dest, int tag) const

bool Status::Is_cancelled() const

Request Comm::Isend(const void* buf, int count, const Datatype& datatype,

int dest, int tag) const

Request Comm::Issend(const void* buf, int count, const

Datatype& datatype, int dest, int tag) const

void Comm::Probe(int source, int tag) const

void Comm::Probe(int source, int tag, Status& status) const

Prequest Comm::Recv_init(void* buf, int count, const Datatype& datatype,

int source, int tag) const
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void Comm::Recv(void* buf, int count, const Datatype& datatype,

int source, int tag) const

void Comm::Recv(void* buf, int count, const Datatype& datatype,

int source, int tag, Status& status) const

void Comm::Rsend(const void* buf, int count, const Datatype& datatype,

int dest, int tag) const

Prequest Comm::Rsend_init(const void* buf, int count, const

Datatype& datatype, int dest, int tag) const

void Comm::Send(const void* buf, int count, const Datatype& datatype,

int dest, int tag) const

Prequest Comm::Send_init(const void* buf, int count, const

Datatype& datatype, int dest, int tag) const

void Comm::Sendrecv(const void *sendbuf, int sendcount, const

Datatype& sendtype, int dest, int sendtag, void *recvbuf,

int recvcount, const Datatype& recvtype, int source,

int recvtag) const

void Comm::Sendrecv(const void *sendbuf, int sendcount, const

Datatype& sendtype, int dest, int sendtag, void *recvbuf,

int recvcount, const Datatype& recvtype, int source,

int recvtag, Status& status) const

void Comm::Sendrecv_replace(void* buf, int count, const

Datatype& datatype, int dest, int sendtag, int source,

int recvtag) const

void Comm::Sendrecv_replace(void* buf, int count, const

Datatype& datatype, int dest, int sendtag, int source,

int recvtag, Status& status) const

void Status::Set_error(int error)

void Status::Set_source(int source)

void Status::Set_tag(int tag)

void Comm::Ssend(const void* buf, int count, const Datatype& datatype,

int dest, int tag) const

Prequest Comm::Ssend_init(const void* buf, int count, const

Datatype& datatype, int dest, int tag) const

static void Prequest::Startall(int count, Prequest array_of_requests[])

void Prequest::Start()

static bool Request::Testall(int count, Request array_of_requests[],

Status array_of_statuses[])

static bool Request::Testall(int count, Request array_of_requests[])
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void Comm::Recv(void* buf, int count, const Datatype& datatype,

int source, int tag) const

void Comm::Recv(void* buf, int count, const Datatype& datatype,

int source, int tag, Status& status) const

void Comm::Rsend(const void* buf, int count, const Datatype& datatype,

int dest, int tag) const

Prequest Comm::Rsend_init(const void* buf, int count, const

Datatype& datatype, int dest, int tag) const

void Comm::Send(const void* buf, int count, const Datatype& datatype,

int dest, int tag) const

Prequest Comm::Send_init(const void* buf, int count, const

Datatype& datatype, int dest, int tag) const

void Comm::Sendrecv(const void *sendbuf, int sendcount, const

Datatype& sendtype, int dest, int sendtag, void *recvbuf,

int recvcount, const Datatype& recvtype, int source,

int recvtag) const

void Comm::Sendrecv(const void *sendbuf, int sendcount, const

Datatype& sendtype, int dest, int sendtag, void *recvbuf,

int recvcount, const Datatype& recvtype, int source,

int recvtag, Status& status) const

void Comm::Sendrecv_replace(void* buf, int count, const

Datatype& datatype, int dest, int sendtag, int source,

int recvtag) const

void Comm::Sendrecv_replace(void* buf, int count, const

Datatype& datatype, int dest, int sendtag, int source,

int recvtag, Status& status) const

void Status::Set_error(int error)

void Status::Set_source(int source)

void Status::Set_tag(int tag)

void Comm::Ssend(const void* buf, int count, const Datatype& datatype,

int dest, int tag) const

Prequest Comm::Ssend_init(const void* buf, int count, const

Datatype& datatype, int dest, int tag) const

static void Prequest::Startall(int count, Prequest array_of_requests[])

void Prequest::Start()

static bool Request::Testall(int count, Request array_of_requests[],

Status array_of_statuses[])

static bool Request::Testall(int count, Request array_of_requests[])
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static bool Request::Testany(int count, Request array_of_requests[],

int& index, Status& status)

static bool Request::Testany(int count, Request array_of_requests[],

int& index)

bool Request::Test()

bool Request::Test(Status& status)

static int Request::Testsome(int incount, Request array_of_requests[],

int array_of_indices[], Status array_of_statuses[])

static int Request::Testsome(int incount, Request array_of_requests[],

int array_of_indices[])

static void Request::Waitall(int count, Request array_of_requests[],

Status array_of_statuses[])

static void Request::Waitall(int count, Request array_of_requests[])

static int Request::Waitany(int count, Request array_of_requests[],

Status& status)

static int Request::Waitany(int count, Request array_of_requests[])

void Request::Wait(Status& status)

static int Request::Waitsome(int incount, Request array_of_requests[],

int array_of_indices[], Status array_of_statuses[])

static int Request::Waitsome(int incount, Request array_of_requests[],

int array_of_indices[])

void Request::Wait()

};

A.4.2 Datatypes C++ Bindings

namespace MPI {

void Datatype::Commit()

Datatype Datatype::Create_contiguous(int count) const

Datatype Datatype::Create_darray(int size, int rank, int ndims,

const int array_of_gsizes[], const int array_of_distribs[],

const int array_of_dargs[], const int array_of_psizes[],

int order) const

Datatype Datatype::Create_hindexed(int count,

const int array_of_blocklengths[],

const Aint array_of_displacements[]) const
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static bool Request::Testany(int count, Request array_of_requests[],

int& index, Status& status)

static bool Request::Testany(int count, Request array_of_requests[],

int& index)

bool Request::Test()

bool Request::Test(Status& status)

static int Request::Testsome(int incount, Request array_of_requests[],

int array_of_indices[], Status array_of_statuses[])

static int Request::Testsome(int incount, Request array_of_requests[],

int array_of_indices[])

static void Request::Waitall(int count, Request array_of_requests[],

Status array_of_statuses[])

static void Request::Waitall(int count, Request array_of_requests[])

static int Request::Waitany(int count, Request array_of_requests[],

Status& status)

static int Request::Waitany(int count, Request array_of_requests[])

void Request::Wait(Status& status)

static int Request::Waitsome(int incount, Request array_of_requests[],

int array_of_indices[], Status array_of_statuses[])

static int Request::Waitsome(int incount, Request array_of_requests[],

int array_of_indices[])

void Request::Wait()

};

A.4.2 Datatypes C++ Bindings

namespace MPI {

void Datatype::Commit()

Datatype Datatype::Create_contiguous(int count) const

Datatype Datatype::Create_darray(int size, int rank, int ndims,

const int array_of_gsizes[], const int array_of_distribs[],

const int array_of_dargs[], const int array_of_psizes[],

int order) const

Datatype Datatype::Create_hindexed(int count,

const int array_of_blocklengths[],

const Aint array_of_displacements[]) const
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Datatype Datatype::Create_hvector(int count, int blocklength, Aint

stride) const

Datatype Datatype::Create_indexed_block(int count, int blocklength,

const int array_of_displacements[]) const

Datatype Datatype::Create_indexed(int count,

const int array_of_blocklengths[],

const int array_of_displacements[]) const

Datatype Datatype::Create_resized(const Aint lb, const Aint extent) const

static Datatype Datatype::Create_struct(int count,

const int array_of_blocklengths[], const Aint

array_of_displacements[], const Datatype array_of_types[])

Datatype Datatype::Create_subarray(int ndims, const int array_of_sizes[],

const int array_of_subsizes[], const int array_of_starts[],

int order) const

Datatype Datatype::Create_vector(int count, int blocklength, int stride)

const

Datatype Datatype::Dup() const

void Datatype::Free()

Aint Get_address(void* location)

void Datatype::Get_contents(int max_integers, int max_addresses,

int max_datatypes, int array_of_integers[],

Aint array_of_addresses[], Datatype array_of_datatypes[])

const

int Status::Get_elements(const Datatype& datatype) const

void Datatype::Get_envelope(int& num_integers, int& num_addresses,

int& num_datatypes, int& combiner) const

void Datatype::Get_extent(Aint& lb, Aint& extent) const

int Datatype::Get_size() const

void Datatype::Get_true_extent(Aint& true_lb, Aint& true_extent) const

void Datatype::Pack(const void* inbuf, int incount, void *outbuf,

int outsize, int& position, const Comm &comm) const

void Datatype::Pack_external(const char* datarep, const void* inbuf,

int incount, void* outbuf, Aint outsize, Aint& position) const

Aint Datatype::Pack_external_size(const char* datarep, int incount) const

int Datatype::Pack_size(int incount, const Comm& comm) const

void Datatype::Unpack(const void* inbuf, int insize, void *outbuf,

int outcount, int& position, const Comm& comm) const

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

548 ANNEX A. LANGUAGE BINDINGS SUMMARY

Datatype Datatype::Create_hvector(int count, int blocklength, Aint

stride) const

Datatype Datatype::Create_indexed_block(int count, int blocklength,

const int array_of_displacements[]) const

Datatype Datatype::Create_indexed(int count,

const int array_of_blocklengths[],

const int array_of_displacements[]) const

Datatype Datatype::Create_resized(const Aint lb, const Aint extent) const

static Datatype Datatype::Create_struct(int count,

const int array_of_blocklengths[], const Aint

array_of_displacements[], const Datatype array_of_types[])

Datatype Datatype::Create_subarray(int ndims, const int array_of_sizes[],

const int array_of_subsizes[], const int array_of_starts[],

int order) const

Datatype Datatype::Create_vector(int count, int blocklength, int stride)

const

Datatype Datatype::Dup() const

void Datatype::Free()

Aint Get_address(void* location)

void Datatype::Get_contents(int max_integers, int max_addresses,

int max_datatypes, int array_of_integers[],

Aint array_of_addresses[], Datatype array_of_datatypes[])

const

int Status::Get_elements(const Datatype& datatype) const

void Datatype::Get_envelope(int& num_integers, int& num_addresses,

int& num_datatypes, int& combiner) const

void Datatype::Get_extent(Aint& lb, Aint& extent) const

int Datatype::Get_size() const

void Datatype::Get_true_extent(Aint& true_lb, Aint& true_extent) const

void Datatype::Pack(const void* inbuf, int incount, void *outbuf,

int outsize, int& position, const Comm &comm) const

void Datatype::Pack_external(const char* datarep, const void* inbuf,

int incount, void* outbuf, Aint outsize, Aint& position) const

Aint Datatype::Pack_external_size(const char* datarep, int incount) const

int Datatype::Pack_size(int incount, const Comm& comm) const

void Datatype::Unpack(const void* inbuf, int insize, void *outbuf,

int outcount, int& position, const Comm& comm) const
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void Datatype::Unpack_external(const char* datarep, const void* inbuf,

Aint insize, Aint& position, void* outbuf, int outcount) const

};

A.4.3 Collective Communication C++ Bindings

namespace MPI {

void Comm::Allgather(const void* sendbuf, int sendcount, const

Datatype& sendtype, void* recvbuf, int recvcount,

const Datatype& recvtype) const = 0

void Comm::Allgatherv(const void* sendbuf, int sendcount, const

Datatype& sendtype, void* recvbuf, const int recvcounts[],

const int displs[], const Datatype& recvtype) const = 0

void Comm::Allreduce(const void* sendbuf, void* recvbuf, int count, const

Datatype& datatype, const Op& op) const = 0

void Comm::Alltoall(const void* sendbuf, int sendcount, const

Datatype& sendtype, void* recvbuf, int recvcount,

const Datatype& recvtype) const = 0

void Comm::Alltoallv(const void* sendbuf, const int sendcounts[],

const int sdispls[], const Datatype& sendtype, void* recvbuf,

const int recvcounts[], const int rdispls[],

const Datatype& recvtype) const = 0

void Comm::Alltoallw(const void* sendbuf, const int sendcounts[], const

int sdispls[], const Datatype sendtypes[], void* recvbuf,

const int recvcounts[], const int rdispls[], const Datatype

recvtypes[]) const = 0

void Comm::Barrier() const = 0

void Comm::Bcast(void* buffer, int count, const Datatype& datatype,

int root) const = 0

void Intracomm::Exscan(const void* sendbuf, void* recvbuf, int count,

const Datatype& datatype, const Op& op) const

void Op::Free()

void Comm::Gather(const void* sendbuf, int sendcount, const

Datatype& sendtype, void* recvbuf, int recvcount,

const Datatype& recvtype, int root) const = 0

void Comm::Gatherv(const void* sendbuf, int sendcount, const

Datatype& sendtype, void* recvbuf, const int recvcounts[],

const int displs[], const Datatype& recvtype, int root)

const = 0
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void Datatype::Unpack_external(const char* datarep, const void* inbuf,

Aint insize, Aint& position, void* outbuf, int outcount) const

};

A.4.3 Collective Communication C++ Bindings

namespace MPI {

void Comm::Allgather(const void* sendbuf, int sendcount, const

Datatype& sendtype, void* recvbuf, int recvcount,

const Datatype& recvtype) const = 0

void Comm::Allgatherv(const void* sendbuf, int sendcount, const

Datatype& sendtype, void* recvbuf, const int recvcounts[],

const int displs[], const Datatype& recvtype) const = 0

void Comm::Allreduce(const void* sendbuf, void* recvbuf, int count, const

Datatype& datatype, const Op& op) const = 0

void Comm::Alltoall(const void* sendbuf, int sendcount, const

Datatype& sendtype, void* recvbuf, int recvcount,

const Datatype& recvtype) const = 0

void Comm::Alltoallv(const void* sendbuf, const int sendcounts[],

const int sdispls[], const Datatype& sendtype, void* recvbuf,

const int recvcounts[], const int rdispls[],

const Datatype& recvtype) const = 0

void Comm::Alltoallw(const void* sendbuf, const int sendcounts[], const

int sdispls[], const Datatype sendtypes[], void* recvbuf,

const int recvcounts[], const int rdispls[], const Datatype

recvtypes[]) const = 0

void Comm::Barrier() const = 0

void Comm::Bcast(void* buffer, int count, const Datatype& datatype,

int root) const = 0

void Intracomm::Exscan(const void* sendbuf, void* recvbuf, int count,

const Datatype& datatype, const Op& op) const

void Op::Free()

void Comm::Gather(const void* sendbuf, int sendcount, const

Datatype& sendtype, void* recvbuf, int recvcount,

const Datatype& recvtype, int root) const = 0

void Comm::Gatherv(const void* sendbuf, int sendcount, const

Datatype& sendtype, void* recvbuf, const int recvcounts[],

const int displs[], const Datatype& recvtype, int root)

const = 0
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void Op::Init(User_function* function, bool commute)

void Comm::Reduce(const void* sendbuf, void* recvbuf, int count,

const Datatype& datatype, const Op& op, int root) const = 0

void Comm::Reduce_scatter(const void* sendbuf, void* recvbuf,

int recvcounts[], const Datatype& datatype, const Op& op)

const = 0

void Intracomm::Scan(const void* sendbuf, void* recvbuf, int count, const

Datatype& datatype, const Op& op) const

void Comm::Scatter(const void* sendbuf, int sendcount, const

Datatype& sendtype, void* recvbuf, int recvcount,

const Datatype& recvtype, int root) const = 0

void Comm::Scatterv(const void* sendbuf, const int sendcounts[],

const int displs[], const Datatype& sendtype, void* recvbuf,

int recvcount, const Datatype& recvtype, int root) const = 0

};

A.4.4 Groups, Contexts, Communicators, and Caching C++ Bindings

namespace MPI {

Comm& Comm::Clone() const = 0

Cartcomm& Cartcomm::Clone() const

Graphcomm& Graphcomm::Clone() const

Intercomm& Intercomm::Clone() const

Intracomm& Intracomm::Clone() const

static int Comm::Compare(const Comm& comm1, const Comm& comm2)

static int Group::Compare(const Group& group1, const Group& group2)

Intercomm Intercomm::Create(const Group& group) const

Intracomm Intracomm::Create(const Group& group) const

Intercomm Intracomm::Create_intercomm(int local_leader, const

Comm& peer_comm, int remote_leader, int tag) const

static int Comm::Create_keyval(Comm::Copy_attr_function*

comm_copy_attr_fn,

Comm::Delete_attr_function* comm_delete_attr_fn,

void* extra_state)

static int Datatype::Create_keyval(Datatype::Copy_attr_function*

type_copy_attr_fn, Datatype::Delete_attr_function*

type_delete_attr_fn, void* extra_state)
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void Op::Init(User_function* function, bool commute)

void Comm::Reduce(const void* sendbuf, void* recvbuf, int count,

const Datatype& datatype, const Op& op, int root) const = 0

void Comm::Reduce_scatter(const void* sendbuf, void* recvbuf,

int recvcounts[], const Datatype& datatype, const Op& op)

const = 0

void Intracomm::Scan(const void* sendbuf, void* recvbuf, int count, const

Datatype& datatype, const Op& op) const

void Comm::Scatter(const void* sendbuf, int sendcount, const

Datatype& sendtype, void* recvbuf, int recvcount,

const Datatype& recvtype, int root) const = 0

void Comm::Scatterv(const void* sendbuf, const int sendcounts[],

const int displs[], const Datatype& sendtype, void* recvbuf,

int recvcount, const Datatype& recvtype, int root) const = 0

};

A.4.4 Groups, Contexts, Communicators, and Caching C++ Bindings

namespace MPI {

Comm& Comm::Clone() const = 0

Cartcomm& Cartcomm::Clone() const

Graphcomm& Graphcomm::Clone() const

Intercomm& Intercomm::Clone() const

Intracomm& Intracomm::Clone() const

static int Comm::Compare(const Comm& comm1, const Comm& comm2)

static int Group::Compare(const Group& group1, const Group& group2)

Intercomm Intercomm::Create(const Group& group) const

Intracomm Intracomm::Create(const Group& group) const

Intercomm Intracomm::Create_intercomm(int local_leader, const

Comm& peer_comm, int remote_leader, int tag) const

static int Comm::Create_keyval(Comm::Copy_attr_function*

comm_copy_attr_fn,

Comm::Delete_attr_function* comm_delete_attr_fn,

void* extra_state)

static int Datatype::Create_keyval(Datatype::Copy_attr_function*

type_copy_attr_fn, Datatype::Delete_attr_function*

type_delete_attr_fn, void* extra_state)
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static int Win::Create_keyval(Win::Copy_attr_function* win_copy_attr_fn,

Win::Delete_attr_function* win_delete_attr_fn,

void* extra_state)

void Comm::Delete_attr(int comm_keyval)

void Datatype::Delete_attr(int type_keyval)

void Win::Delete_attr(int win_keyval)

static Group Group::Difference(const Group& group1, const Group& group2)

Cartcomm Cartcomm::Dup() const

Graphcomm Graphcomm::Dup() const

Intercomm Intercomm::Dup() const

Intracomm Intracomm::Dup() const

Group Group::Excl(int n, const int ranks[]) const

static void Comm::Free_keyval(int& comm_keyval)

static void Datatype::Free_keyval(int& type_keyval)

static void Win::Free_keyval(int& win_keyval)

void Comm::Free()

void Group::Free()

bool Comm::Get_attr(int comm_keyval, void* attribute_val) const

bool Datatype::Get_attr(int type_keyval, void* attribute_val) const

bool Win::Get_attr(int win_keyval, void* attribute_val) const

Group Comm::Get_group() const

void Comm::Get_name(char* comm_name, int& resultlen) const

void Datatype::Get_name(char* type_name, int& resultlen) const

void Win::Get_name(char* win_name, int& resultlen) const

int Comm::Get_rank() const

int Group::Get_rank() const

Group Intercomm::Get_remote_group() const

int Intercomm::Get_remote_size() const

int Comm::Get_size() const

int Group::Get_size() const

Group Group::Incl(int n, const int ranks[]) const

static Group Group::Intersect(const Group& group1, const Group& group2)
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static int Win::Create_keyval(Win::Copy_attr_function* win_copy_attr_fn,

Win::Delete_attr_function* win_delete_attr_fn,

void* extra_state)

void Comm::Delete_attr(int comm_keyval)

void Datatype::Delete_attr(int type_keyval)

void Win::Delete_attr(int win_keyval)

static Group Group::Difference(const Group& group1, const Group& group2)

Cartcomm Cartcomm::Dup() const

Graphcomm Graphcomm::Dup() const

Intercomm Intercomm::Dup() const

Intracomm Intracomm::Dup() const

Group Group::Excl(int n, const int ranks[]) const

static void Comm::Free_keyval(int& comm_keyval)

static void Datatype::Free_keyval(int& type_keyval)

static void Win::Free_keyval(int& win_keyval)

void Comm::Free()

void Group::Free()

bool Comm::Get_attr(int comm_keyval, void* attribute_val) const

bool Datatype::Get_attr(int type_keyval, void* attribute_val) const

bool Win::Get_attr(int win_keyval, void* attribute_val) const

Group Comm::Get_group() const

void Comm::Get_name(char* comm_name, int& resultlen) const

void Datatype::Get_name(char* type_name, int& resultlen) const

void Win::Get_name(char* win_name, int& resultlen) const

int Comm::Get_rank() const

int Group::Get_rank() const

Group Intercomm::Get_remote_group() const

int Intercomm::Get_remote_size() const

int Comm::Get_size() const

int Group::Get_size() const

Group Group::Incl(int n, const int ranks[]) const

static Group Group::Intersect(const Group& group1, const Group& group2)
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bool Comm::Is_inter() const

Intracomm Intercomm::Merge(bool high) const

Group Group::Range_excl(int n, const int ranges[][3]) const

Group Group::Range_incl(int n, const int ranges[][3]) const

void Comm::Set_attr(int comm_keyval, const void* attribute_val) const

void Datatype::Set_attr(int type_keyval, const void* attribute_val)

void Win::Set_attr(int win_keyval, const void* attribute_val)

void Comm::Set_name(const char* comm_name)

void Datatype::Set_name(const char* type_name)

void Win::Set_name(const char* win_name)

Intercomm Intercomm::Split(int color, int key) const

Intracomm Intracomm::Split(int color, int key) const

static void Group::Translate_ranks (const Group& group1, int n,

const int ranks1[], const Group& group2, int ranks2[])

static Group Group::Union(const Group& group1, const Group& group2)

};

A.4.5 Process Topologies C++ Bindings

namespace MPI {

void Compute_dims(int nnodes, int ndims, int dims[])

Cartcomm Intracomm::Create_cart(int ndims, const int dims[],

const bool periods[], bool reorder) const

Graphcomm Intracomm::Create_graph(int nnodes, const int index[],

const int edges[], bool reorder) const

int Cartcomm::Get_cart_rank(const int coords[]) const

void Cartcomm::Get_coords(int rank, int maxdims, int coords[]) const

int Cartcomm::Get_dim() const

void Graphcomm::Get_dims(int nnodes[], int nedges[]) const

int Graphcomm::Get_neighbors_count(int rank) const

void Graphcomm::Get_neighbors(int rank, int maxneighbors, int

neighbors[]) const

void Cartcomm::Get_topo(int maxdims, int dims[], bool periods[],

int coords[]) const
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bool Comm::Is_inter() const

Intracomm Intercomm::Merge(bool high) const

Group Group::Range_excl(int n, const int ranges[][3]) const

Group Group::Range_incl(int n, const int ranges[][3]) const

void Comm::Set_attr(int comm_keyval, const void* attribute_val) const

void Datatype::Set_attr(int type_keyval, const void* attribute_val)

void Win::Set_attr(int win_keyval, const void* attribute_val)

void Comm::Set_name(const char* comm_name)

void Datatype::Set_name(const char* type_name)

void Win::Set_name(const char* win_name)

Intercomm Intercomm::Split(int color, int key) const

Intracomm Intracomm::Split(int color, int key) const

static void Group::Translate_ranks (const Group& group1, int n,

const int ranks1[], const Group& group2, int ranks2[])

static Group Group::Union(const Group& group1, const Group& group2)

};

A.4.5 Process Topologies C++ Bindings

namespace MPI {

void Compute_dims(int nnodes, int ndims, int dims[])

Cartcomm Intracomm::Create_cart(int ndims, const int dims[],

const bool periods[], bool reorder) const

Graphcomm Intracomm::Create_graph(int nnodes, const int index[],

const int edges[], bool reorder) const

int Cartcomm::Get_cart_rank(const int coords[]) const

void Cartcomm::Get_coords(int rank, int maxdims, int coords[]) const

int Cartcomm::Get_dim() const

void Graphcomm::Get_dims(int nnodes[], int nedges[]) const

int Graphcomm::Get_neighbors_count(int rank) const

void Graphcomm::Get_neighbors(int rank, int maxneighbors, int

neighbors[]) const

void Cartcomm::Get_topo(int maxdims, int dims[], bool periods[],

int coords[]) const
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void Graphcomm::Get_topo(int maxindex, int maxedges, int index[],

int edges[]) const

int Comm::Get_topology() const

int Cartcomm::Map(int ndims, const int dims[], const bool periods[])

const

int Graphcomm::Map(int nnodes, const int index[], const int edges[])

const

void Cartcomm::Shift(int direction, int disp, int& rank_source,

int& rank_dest) const

Cartcomm Cartcomm::Sub(const bool remain_dims[]) const

};

A.4.6 MPI Environmenta Management C++ Bindings

namespace MPI {

void Comm::Abort(int errorcode)

int Add_error_class()

int Add_error_code(int errorclass)

void Add_error_string(int errorcode, const char* string)

void* Alloc_mem(Aint size, const Info& info)

void Comm::Call_errhandler(int errorcode) const

void File::Call_errhandler(int errorcode) const

void Win::Call_errhandler(int errorcode) const

static Errhandler Comm::Create_errhandler(Comm::Errhandler_fn* function)

static Errhandler File::Create_errhandler(File::Errhandler_fn* function)

static Errhandler Win::Create_errhandler(Win::Errhandler_fn* function)

void Finalize()

void Free_mem(void *base)

void Errhandler::Free()

Errhandler Comm::Get_errhandler() const

Errhandler File::Get_errhandler() const

Errhandler Win::Get_errhandler() const

int Get_error_class(int errorcode)

void Get_error_string(int errorcode, char* name, int& resultlen)
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void Graphcomm::Get_topo(int maxindex, int maxedges, int index[],

int edges[]) const

int Comm::Get_topology() const

int Cartcomm::Map(int ndims, const int dims[], const bool periods[])

const

int Graphcomm::Map(int nnodes, const int index[], const int edges[])

const

void Cartcomm::Shift(int direction, int disp, int& rank_source,

int& rank_dest) const

Cartcomm Cartcomm::Sub(const bool remain_dims[]) const

};

A.4.6 MPI Environmenta Management C++ Bindings

namespace MPI {

void Comm::Abort(int errorcode)

int Add_error_class()

int Add_error_code(int errorclass)

void Add_error_string(int errorcode, const char* string)

void* Alloc_mem(Aint size, const Info& info)

void Comm::Call_errhandler(int errorcode) const

void File::Call_errhandler(int errorcode) const

void Win::Call_errhandler(int errorcode) const

static Errhandler Comm::Create_errhandler(Comm::Errhandler_fn* function)

static Errhandler File::Create_errhandler(File::Errhandler_fn* function)

static Errhandler Win::Create_errhandler(Win::Errhandler_fn* function)

void Finalize()

void Free_mem(void *base)

void Errhandler::Free()

Errhandler Comm::Get_errhandler() const

Errhandler File::Get_errhandler() const

Errhandler Win::Get_errhandler() const

int Get_error_class(int errorcode)

void Get_error_string(int errorcode, char* name, int& resultlen)
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void Get_processor_name(char* name, int& resultlen)

void Get_version(int& version, int& subversion)

void Init(int& argc, char**& argv)

void Init()

bool Is_finalized()

bool Is_initialized()

void Comm::Set_errhandler(const Errhandler& errhandler)

void File::Set_errhandler(const Errhandler& errhandler)

void Win::Set_errhandler(const Errhandler& errhandler)

double Wtick()

double Wtime()

};

A.4.7 The Info Object C++ Bindings

namespace MPI {

static Info Info::Create()

void Info::Delete(const char* key)

Info Info::Dup() const

void Info::Free()

bool Info::Get(const char* key, int valuelen, char* value) const

int Info::Get_nkeys() const

void Info::Get_nthkey(int n, char* key) const

bool Info::Get_valuelen(const char* key, int& valuelen) const

void Info::Set(const char* key, const char* value)

};

A.4.8 Process Creation and Management C++ Bindings

namespace MPI {

Intercomm Intracomm::Accept(const char* port_name, const Info& info,

int root) const

void Close_port(const char* port_name)
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void Get_processor_name(char* name, int& resultlen)

void Get_version(int& version, int& subversion)

void Init(int& argc, char**& argv)

void Init()

bool Is_finalized()

bool Is_initialized()

void Comm::Set_errhandler(const Errhandler& errhandler)

void File::Set_errhandler(const Errhandler& errhandler)

void Win::Set_errhandler(const Errhandler& errhandler)

double Wtick()

double Wtime()

};

A.4.7 The Info Object C++ Bindings

namespace MPI {

static Info Info::Create()

void Info::Delete(const char* key)

Info Info::Dup() const

void Info::Free()

bool Info::Get(const char* key, int valuelen, char* value) const

int Info::Get_nkeys() const

void Info::Get_nthkey(int n, char* key) const

bool Info::Get_valuelen(const char* key, int& valuelen) const

void Info::Set(const char* key, const char* value)

};

A.4.8 Process Creation and Management C++ Bindings

namespace MPI {

Intercomm Intracomm::Accept(const char* port_name, const Info& info,

int root) const

void Close_port(const char* port_name)
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Intercomm Intracomm::Connect(const char* port_name, const Info& info,

int root) const

void Comm::Disconnect()

static Intercomm Comm::Get_parent()

static Intercomm Comm::Join(const int fd)

void Lookup_name(const char* service_name, const Info& info,

char* port_name)

void Open_port(const Info& info, char* port_name)

void Publish_name(const char* service_name, const Info& info,

const char* port_name)

Intercomm Intracomm::Spawn(const char* command, const char* argv[],

int maxprocs, const Info& info, int root) const

Intercomm Intracomm::Spawn(const char* command, const char* argv[],

int maxprocs, const Info& info, int root,

int array_of_errcodes[]) const

Intercomm Intracomm::Spawn_multiple(int count,

const char* array_of_commands[], const char** array_of_argv[],

const int array_of_maxprocs[], const Info array_of_info[],

int root, int array_of_errcodes[])

Intercomm Intracomm::Spawn_multiple(int count,

const char* array_of_commands[], const char** array_of_argv[],

const int array_of_maxprocs[], const Info array_of_info[],

int root)

void Unpublish_name(const char* service_name, const Info& info,

const char* port_name)

};

A.4.9 One-Sided Communications C++ Bindings

namespace MPI {

void Win::Accumulate(const void* origin_addr, int origin_count, const

Datatype& origin_datatype, int target_rank, Aint target_disp,

int target_count, const Datatype& target_datatype, const Op&

op) const

void Win::Complete() const

static Win Win::Create(const void* base, Aint size, int disp_unit, const

Info& info, const Intracomm& comm)

void Win::Fence(int assert) const
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Intercomm Intracomm::Connect(const char* port_name, const Info& info,

int root) const

void Comm::Disconnect()

static Intercomm Comm::Get_parent()

static Intercomm Comm::Join(const int fd)

void Lookup_name(const char* service_name, const Info& info,

char* port_name)

void Open_port(const Info& info, char* port_name)

void Publish_name(const char* service_name, const Info& info,

const char* port_name)

Intercomm Intracomm::Spawn(const char* command, const char* argv[],

int maxprocs, const Info& info, int root) const

Intercomm Intracomm::Spawn(const char* command, const char* argv[],

int maxprocs, const Info& info, int root,

int array_of_errcodes[]) const

Intercomm Intracomm::Spawn_multiple(int count,

const char* array_of_commands[], const char** array_of_argv[],

const int array_of_maxprocs[], const Info array_of_info[],

int root, int array_of_errcodes[])

Intercomm Intracomm::Spawn_multiple(int count,

const char* array_of_commands[], const char** array_of_argv[],

const int array_of_maxprocs[], const Info array_of_info[],

int root)

void Unpublish_name(const char* service_name, const Info& info,

const char* port_name)

};

A.4.9 One-Sided Communications C++ Bindings

namespace MPI {

void Win::Accumulate(const void* origin_addr, int origin_count, const

Datatype& origin_datatype, int target_rank, Aint target_disp,

int target_count, const Datatype& target_datatype, const Op&

op) const

void Win::Complete() const

static Win Win::Create(const void* base, Aint size, int disp_unit, const

Info& info, const Intracomm& comm)

void Win::Fence(int assert) const
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void Win::Free()

Group Win::Get_group() const

void Win::Get(void *origin_addr, int origin_count, const Datatype&

origin_datatype, int target_rank, Aint target_disp, int

target_count, const Datatype& target_datatype) const

void Win::Lock(int lock_type, int rank, int assert) const

void Win::Post(const Group& group, int assert) const

void Win::Put(const void* origin_addr, int origin_count, const Datatype&

origin_datatype, int target_rank, Aint target_disp, int

target_count, const Datatype& target_datatype) const

void Win::Start(const Group& group, int assert) const

bool Win::Test() const

void Win::Unlock(int rank) const

void Win::Wait() const

};

A.4.10 External Interfaces C++ Bindings

namespace MPI {

void Grequest::Complete()

int Init_thread(int& argc, char**& argv, int required)

int Init_thread(int required)

bool Is_thread_main()

int Query_thread()

void Status::Set_cancelled(bool flag)

void Status::Set_elements(const Datatype& datatype, int count)

static Grequest Grequest::Start(const Grequest::Query_function query_fn,

const Grequest::Free_function free_fn,

const Grequest::Cancel_function cancel_fn, void *extra_state)

};

A.4.11 I/O C++ Bindings

namespace MPI {

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

556 ANNEX A. LANGUAGE BINDINGS SUMMARY

void Win::Free()

Group Win::Get_group() const

void Win::Get(void *origin_addr, int origin_count, const Datatype&

origin_datatype, int target_rank, Aint target_disp, int

target_count, const Datatype& target_datatype) const

void Win::Lock(int lock_type, int rank, int assert) const

void Win::Post(const Group& group, int assert) const

void Win::Put(const void* origin_addr, int origin_count, const Datatype&

origin_datatype, int target_rank, Aint target_disp, int

target_count, const Datatype& target_datatype) const

void Win::Start(const Group& group, int assert) const

bool Win::Test() const

void Win::Unlock(int rank) const

void Win::Wait() const

};

A.4.10 External Interfaces C++ Bindings

namespace MPI {

void Grequest::Complete()

int Init_thread(int& argc, char**& argv, int required)

int Init_thread(int required)

bool Is_thread_main()

int Query_thread()

void Status::Set_cancelled(bool flag)

void Status::Set_elements(const Datatype& datatype, int count)

static Grequest Grequest::Start(const Grequest::Query_function query_fn,

const Grequest::Free_function free_fn,

const Grequest::Cancel_function cancel_fn, void *extra_state)

};

A.4.11 I/O C++ Bindings

namespace MPI {
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void File::Close()

static void File::Delete(const char* filename, const Info& info)

int File::Get_amode() const

bool File::Get_atomicity() const

Offset File::Get_byte_offset(const Offset disp) const

Group File::Get_group() const

Info File::Get_info() const

Offset File::Get_position() const

Offset File::Get_position_shared() const

Offset File::Get_size() const

Aint File::Get_type_extent(const Datatype& datatype) const

void File::Get_view(Offset& disp, Datatype& etype, Datatype& filetype,

char* datarep) const

Request File::Iread_at(Offset offset, void* buf, int count,

const Datatype& datatype)

Request File::Iread_shared(void* buf, int count,

const Datatype& datatype)

Request File::Iread(void* buf, int count, const Datatype& datatype)

Request File::Iwrite_at(Offset offset, const void* buf, int count,

const Datatype& datatype)

Request File::Iwrite(const void* buf, int count,

const Datatype& datatype)

Request File::Iwrite_shared(const void* buf, int count,

const Datatype& datatype)

static File File::Open(const Intracomm& comm, const char* filename,

int amode, const Info& info)

void File::Preallocate(Offset size)

void File::Read_all_begin(void* buf, int count, const Datatype& datatype)

void File::Read_all_end(void* buf, Status& status)

void File::Read_all_end(void* buf)

void File::Read_all(void* buf, int count, const Datatype& datatype,

Status& status)

void File::Read_all(void* buf, int count, const Datatype& datatype)
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void File::Close()

static void File::Delete(const char* filename, const Info& info)

int File::Get_amode() const

bool File::Get_atomicity() const

Offset File::Get_byte_offset(const Offset disp) const

Group File::Get_group() const

Info File::Get_info() const

Offset File::Get_position() const

Offset File::Get_position_shared() const

Offset File::Get_size() const

Aint File::Get_type_extent(const Datatype& datatype) const

void File::Get_view(Offset& disp, Datatype& etype, Datatype& filetype,

char* datarep) const

Request File::Iread_at(Offset offset, void* buf, int count,

const Datatype& datatype)

Request File::Iread_shared(void* buf, int count,

const Datatype& datatype)

Request File::Iread(void* buf, int count, const Datatype& datatype)

Request File::Iwrite_at(Offset offset, const void* buf, int count,

const Datatype& datatype)

Request File::Iwrite(const void* buf, int count,

const Datatype& datatype)

Request File::Iwrite_shared(const void* buf, int count,

const Datatype& datatype)

static File File::Open(const Intracomm& comm, const char* filename,

int amode, const Info& info)

void File::Preallocate(Offset size)

void File::Read_all_begin(void* buf, int count, const Datatype& datatype)

void File::Read_all_end(void* buf, Status& status)

void File::Read_all_end(void* buf)

void File::Read_all(void* buf, int count, const Datatype& datatype,

Status& status)

void File::Read_all(void* buf, int count, const Datatype& datatype)
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void File::Read_at_all_begin(Offset offset, void* buf, int count,

const Datatype& datatype)

void File::Read_at_all_end(void* buf, Status& status)

void File::Read_at_all_end(void* buf)

void File::Read_at_all(Offset offset, void* buf, int count,

const Datatype& datatype, Status& status)

void File::Read_at_all(Offset offset, void* buf, int count,

const Datatype& datatype)

void File::Read_at(Offset offset, void* buf, int count,

const Datatype& datatype, Status& status)

void File::Read_at(Offset offset, void* buf, int count,

const Datatype& datatype)

void File::Read_ordered_begin(void* buf, int count,

const Datatype& datatype)

void File::Read_ordered_end(void* buf, Status& status)

void File::Read_ordered_end(void* buf)

void File::Read_ordered(void* buf, int count, const Datatype& datatype,

Status& status)

void File::Read_ordered(void* buf, int count, const Datatype& datatype)

void File::Read_shared(void* buf, int count, const Datatype& datatype,

Status& status)

void File::Read_shared(void* buf, int count, const Datatype& datatype)

void File::Read(void* buf, int count, const Datatype& datatype, Status&

status)

void File::Read(void* buf, int count, const Datatype& datatype)

void Register_datarep(const char* datarep,

Datarep_conversion_function* read_conversion_fn,

Datarep_conversion_function* write_conversion_fn,

Datarep_extent_function* dtype_file_extent_fn,

void* extra_state)

void File::Seek(Offset offset, int whence)

void File::Seek_shared(Offset offset, int whence)

void File::Set_atomicity(bool flag)

void File::Set_info(const Info& info)

void File::Set_size(Offset size)
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void File::Read_at_all_begin(Offset offset, void* buf, int count,

const Datatype& datatype)

void File::Read_at_all_end(void* buf, Status& status)

void File::Read_at_all_end(void* buf)

void File::Read_at_all(Offset offset, void* buf, int count,

const Datatype& datatype, Status& status)

void File::Read_at_all(Offset offset, void* buf, int count,

const Datatype& datatype)

void File::Read_at(Offset offset, void* buf, int count,

const Datatype& datatype, Status& status)

void File::Read_at(Offset offset, void* buf, int count,

const Datatype& datatype)

void File::Read_ordered_begin(void* buf, int count,

const Datatype& datatype)

void File::Read_ordered_end(void* buf, Status& status)

void File::Read_ordered_end(void* buf)

void File::Read_ordered(void* buf, int count, const Datatype& datatype,

Status& status)

void File::Read_ordered(void* buf, int count, const Datatype& datatype)

void File::Read_shared(void* buf, int count, const Datatype& datatype,

Status& status)

void File::Read_shared(void* buf, int count, const Datatype& datatype)

void File::Read(void* buf, int count, const Datatype& datatype, Status&

status)

void File::Read(void* buf, int count, const Datatype& datatype)

void Register_datarep(const char* datarep,

Datarep_conversion_function* read_conversion_fn,

Datarep_conversion_function* write_conversion_fn,

Datarep_extent_function* dtype_file_extent_fn,

void* extra_state)

void File::Seek(Offset offset, int whence)

void File::Seek_shared(Offset offset, int whence)

void File::Set_atomicity(bool flag)

void File::Set_info(const Info& info)

void File::Set_size(Offset size)
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void File::Set_view(Offset disp, const Datatype& etype,

const Datatype& filetype, const char* datarep,

const Info& info)

void File::Sync()

void File::Write_all_begin(const void* buf, int count,

const Datatype& datatype)

void File::Write_all(const void* buf, int count,

const Datatype& datatype, Status& status)

void File::Write_all(const void* buf, int count,

const Datatype& datatype)

void File::Write_all_end(const void* buf, Status& status)

void File::Write_all_end(const void* buf)

void File::Write_at_all_begin(Offset offset, const void* buf, int count,

const Datatype& datatype)

void File::Write_at_all_end(const void* buf, Status& status)

void File::Write_at_all_end(const void* buf)

void File::Write_at_all(Offset offset, const void* buf, int count,

const Datatype& datatype, Status& status)

void File::Write_at_all(Offset offset, const void* buf, int count,

const Datatype& datatype)

void File::Write_at(Offset offset, const void* buf, int count,

const Datatype& datatype, Status& status)

void File::Write_at(Offset offset, const void* buf, int count,

const Datatype& datatype)

void File::Write(const void* buf, int count, const Datatype& datatype,

Status& status)

void File::Write(const void* buf, int count, const Datatype& datatype)

void File::Write_ordered_begin(const void* buf, int count,

const Datatype& datatype)

void File::Write_ordered(const void* buf, int count,

const Datatype& datatype, Status& status)

void File::Write_ordered(const void* buf, int count,

const Datatype& datatype)

void File::Write_ordered_end(const void* buf, Status& status)

void File::Write_ordered_end(const void* buf)
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void File::Write_shared(const void* buf, int count,

const Datatype& datatype, Status& status)

void File::Write_shared(const void* buf, int count,

const Datatype& datatype)

};

A.4.12 Language Bindings C++ Bindings

namespace MPI {

static Datatype Datatype::Create_f90_complex(int p, int r)

static Datatype Datatype::Create_f90_integer(int r)

static Datatype Datatype::Create_f90_real(int p, int r)

Exception::Exception(int error_code)

int Exception::Get_error_class() const

int Exception::Get_error_code() const

const char* Exception::Get_error_string() const

static Datatype Datatype::Match_size(int typeclass, int size)

};

A.4.13 Profiling Interface C++ Bindings

namespace MPI {

void Pcontrol(const int level, ...)

};

A.4.14 Deprecated C++ Bindings

namespace MPI {

};

A.4.15 C++ Bindings on all MPI Classes

The C++ language requires all classes to have four special functions: a default constructor,
a copy constructor, a destructor, and an assignment operator. The bindings for these func-
tions are listed below; their semantics are discussed in Section 16.1.5. The two constructors
are not virtual. The bindings prototype functions are using the type 〈CLASS〉 rather than
listing each function for every MPI class. The token 〈CLASS〉 can be replaced with valid MPI-
2 class names, such as Group, Datatype, etc., except when noted. In addition, bindings are
provided for comparison and inter-language operability from Sections 16.1.5 and 16.1.9.
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void File::Write_shared(const void* buf, int count,

const Datatype& datatype, Status& status)
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const Datatype& datatype)
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namespace MPI {

};
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The C++ language requires all classes to have four special functions: a default constructor,
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tions are listed below; their semantics are discussed in Section 16.1.5. The two constructors
are not virtual. The bindings prototype functions are using the type 〈CLASS〉 rather than
listing each function for every MPI class. The token 〈CLASS〉 can be replaced with valid MPI-
2 class names, such as Group, Datatype, etc., except when noted. In addition, bindings are
provided for comparison and inter-language operability from Sections 16.1.5 and 16.1.9.
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A.4.16 Construction / Destruction

namespace MPI {

〈CLASS〉::〈CLASS〉()

〈CLASS〉::∼〈CLASS〉()

};

A.4.17 Copy / Assignment

namespace MPI {

〈CLASS〉::〈CLASS〉(const 〈CLASS〉& data)

〈CLASS〉& 〈CLASS〉::operator=(const 〈CLASS〉& data)

};

A.4.18 Comparison

Since Status instances are not handles to underlying MPI objects, the operator==() and
operator!=() functions are not defined on the Status class.

namespace MPI {

bool 〈CLASS〉::operator==(const 〈CLASS〉& data) const

bool 〈CLASS〉::operator!=(const 〈CLASS〉& data) const

};

A.4.19 Inter-language Operability

Since there are no C++ MPI::STATUS_IGNORE and MPI::STATUSES_IGNORE objects, the
result of promoting the C or Fortran handles (MPI_STATUS_IGNORE and
MPI_STATUSES_IGNORE) to C++ is undefined.

namespace MPI {

〈CLASS〉& 〈CLASS〉::operator=(const MPI_〈CLASS〉& data)

〈CLASS〉::〈CLASS〉(const MPI_〈CLASS〉& data)

〈CLASS〉::operator MPI_〈CLASS〉() const

};
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Annex B

Change-Log

This annex summarizes changes from the previous version of the MPI standard to the version
presented by this document. Only changes (i.e., clarifications and new features) are pre-
sented that may cause implementation effort in the MPI libraries. Editorial modifications,
formatting, typo corrections and minor clarifications are not shown.

B.1 Changes from Version 2.0 to Version 2.1

1. Section 3.2.2 on page 27, Section 16.1.6 on page 453, and Annex A.1 on page 491.
In addition, the MPI_LONG_LONG should be added as an optional type; it is a syn-
onym for MPI_LONG_LONG_INT.

2. Section 3.2.2 on page 27, Section 16.1.6 on page 453, and Annex A.1 on page 491.
MPI_LONG_LONG_INT, MPI_LONG_LONG (as synonym), MPI_UNSIGNED_LONG_LONG,
MPI_SIGNED_CHAR, and MPI_WCHAR are moved from optional to official and they
are therefore defined for all three language bindings.

3. Section 3.2.5 on page 31.
MPI_GET_COUNT with zero-length datatypes: The value returned as the
count argument of MPI_GET_COUNT for a datatype of length zero where zero bytes
have been transferred is zero. If the number of bytes transferred is greater than zero,
MPI_UNDEFINED is returned.

4. Section 4.1 on page 77.
General rule about derived datatypes: Most datatype constructors have replication
count or block length arguments. Allowed values are nonnegative integers. If the
value is zero, no elements are generated in the type map and there is no effect on
datatype bounds or extent.

5. Section 4.3 on page 127.
MPI_BYTE should be used to send and receive data that is packed using
MPI_PACK_EXTERNAL.

6. Section 5.9.6 on page 171.
If comm is an intercommunicator in MPI_ALLREDUCE, then both groups should pro-
vide count and datatype arguments that specify the same type signature (i.e., it is not
necessary that both groups provide the same count value).
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B.1. CHANGES FROM VERSION 2.0 TO VERSION 2.1 563

7. Section 6.3.1 on page 186.
MPI_GROUP_TRANSLATE_RANKS and MPI_PROC_NULL: MPI_PROC_NULL is a valid
rank for input to MPI_GROUP_TRANSLATE_RANKS, which returns MPI_PROC_NULL

as the translated rank.

8. Section 6.7 on page 221.
About the attribute caching functions:

Advice to implementors. High-quality implementations should raise an er-
ror when a keyval that was created by a call to MPI_XXX_CREATE_KEYVAL
is used with an object of the wrong type with a call to
MPI_YYY_GET_ATTR, MPI_YYY_SET_ATTR, MPI_YYY_DELETE_ATTR, or
MPI_YYY_FREE_KEYVAL. To do so, it is necessary to maintain, with each key-
val, information on the type of the associated user function. (End of advice to
implementors.)

9. Section 6.8 on page 235.
In MPI_COMM_GET_NAME: In C, a null character is additionally stored at
name[resultlen]. resultlen cannot be larger then MPI_MAX_OBJECT-1. In Fortran, name
is padded on the right with blank characters. resultlen cannot be larger then
MPI_MAX_OBJECT.

10. Section 7.4 on page 243.
About MPI_GRAPH_CREATE and MPI_CART_CREATE: All input arguments must
have identical values on all processes of the group of comm_old.

11. Section 7.5.1 on page 244.
In MPI_CART_CREATE: If ndims is zero then a zero-dimensional Cartesian topology
is created. The call is erroneous if it specifies a grid that is larger than the group size
or if ndims is negative.

12. Section 7.5.3 on page 246.
In MPI_GRAPH_CREATE: If the graph is empty, i.e., nnodes == 0, then
MPI_COMM_NULL is returned in all processes.

13. Section 7.5.3 on page 246.
In MPI_GRAPH_CREATE: A single process is allowed to be defined multiple times
in the list of neighbors of a process (i.e., there may be multiple edges between two
processes). A process is also allowed to be a neighbor to itself (i.e., a self loop in the
graph). The adjacency matrix is allowed to be non-symmetric.

Advice to users. Performance implications of using multiple edges or a non-
symmetric adjacency matrix are not defined. The definition of a node-neighbor
edge does not imply a direction of the communication. (End of advice to users.)

14. Section 7.5.4 on page 248.
In MPI_CARTDIM_GET and MPI_CART_GET: If comm is associated with a zero-
dimensional Cartesian topology, MPI_CARTDIM_GET returns ndims=0 and
MPI_CART_GET will keep all output arguments unchanged.
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7. Section 6.3.1 on page 186.
MPI_GROUP_TRANSLATE_RANKS and MPI_PROC_NULL: MPI_PROC_NULL is a valid
rank for input to MPI_GROUP_TRANSLATE_RANKS, which returns MPI_PROC_NULL

as the translated rank.
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MPI_YYY_GET_ATTR, MPI_YYY_SET_ATTR, MPI_YYY_DELETE_ATTR, or
MPI_YYY_FREE_KEYVAL. To do so, it is necessary to maintain, with each key-
val, information on the type of the associated user function. (End of advice to
implementors.)

9. Section 6.8 on page 235.
In MPI_COMM_GET_NAME: In C, a null character is additionally stored at
name[resultlen]. resultlen cannot be larger then MPI_MAX_OBJECT-1. In Fortran, name
is padded on the right with blank characters. resultlen cannot be larger then
MPI_MAX_OBJECT.

10. Section 7.4 on page 243.
About MPI_GRAPH_CREATE and MPI_CART_CREATE: All input arguments must
have identical values on all processes of the group of comm_old.

11. Section 7.5.1 on page 244.
In MPI_CART_CREATE: If ndims is zero then a zero-dimensional Cartesian topology
is created. The call is erroneous if it specifies a grid that is larger than the group size
or if ndims is negative.

12. Section 7.5.3 on page 246.
In MPI_GRAPH_CREATE: If the graph is empty, i.e., nnodes == 0, then
MPI_COMM_NULL is returned in all processes.

13. Section 7.5.3 on page 246.
In MPI_GRAPH_CREATE: A single process is allowed to be defined multiple times
in the list of neighbors of a process (i.e., there may be multiple edges between two
processes). A process is also allowed to be a neighbor to itself (i.e., a self loop in the
graph). The adjacency matrix is allowed to be non-symmetric.

Advice to users. Performance implications of using multiple edges or a non-
symmetric adjacency matrix are not defined. The definition of a node-neighbor
edge does not imply a direction of the communication. (End of advice to users.)
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15. Section 7.5.4 on page 248.
In MPI_CART_RANK: If comm is associated with a zero-dimensional Cartesian topol-
ogy, coord is not significant and 0 is returned in rank.

16. Section 7.5.4 on page 248.
In MPI_CART_COORDS: If comm is associated with a zero-dimensional Cartesian
topology, coords will be unchanged.

17. Section 7.5.5 on page 252.
In MPI_CART_SHIFT: It is erroneous to call MPI_CART_SHIFT with a direction that
is either negative or greater than or equal to the number of dimensions in the Cartesian
communicator. This implies that it is erroneous to call MPI_CART_SHIFT with a
comm that is associated with a zero-dimensional Cartesian topology.

18. Section 7.5.6 on page 254.
In MPI_CART_SUB: If all entries in remain_dims are false or comm is already associ-
ated with a zero-dimensional Cartesian topology then newcomm is associated with a
zero-dimensional Cartesian topology.

19. Section 8.1.2 on page 260.
In MPI_GET_PROCESSOR_NAME: In C, a null character is additionally stored at
name[resultlen]. resultlen cannot be larger then MPI_MAX_PROCESSOR_NAME-1. In
Fortran, name is padded on the right with blank characters. resultlen cannot be larger
then MPI_MAX_PROCESSOR_NAME.

20. Section 8.3 on page 264.
MPI_{COMM,WIN,FILE}_GET_ERRHANDLER behave as if a new error handler object
is created. That is, once the error handler is no longer needed,
MPI_ERRHANDLER_FREE should be called with the error handler returned from
MPI_ERRHANDLER_GET or MPI_{COMM,WIN,FILE}_GET_ERRHANDLER to mark
the error handler for deallocation. This provides behavior similar to that of
MPI_COMM_GROUP and MPI_GROUP_FREE.

21. Section 8.7 on page 278, see explanations to MPI_FINALIZE.
MPI_FINALIZE is collective over all connected processes. If no processes were spawned,
accepted or connected then this means over MPI_COMM_WORLD; otherwise it is col-
lective over the union of all processes that have been and continue to be connected,
as explained in Section 10.5.4 on page 318.

22. Section 8.7 on page 278.
About MPI_ABORT:

Advice to users. Whether the errorcode is returned from the executable or from
the MPI process startup mechanism (e.g., mpiexec), is an aspect of quality of the
MPI library but not mandatory. (End of advice to users.)

Advice to implementors. Where possible, a high-quality implementation will try
to return the errorcode from the MPI process startup mechanism (e.g. mpiexec
or singleton init). (End of advice to implementors.)
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23. Section 9 on page 287.
An implementation must support info objects as caches for arbitrary (key, value)
pairs, regardless of whether it recognizes the key. Each function that takes hints in
the form of an MPI_Info must be prepared to ignore any key it does not recognize. This
description of info objects does not attempt to define how a particular function should
react if it recognizes a key but not the associated value. MPI_INFO_GET_NKEYS,
MPI_INFO_GET_NTHKEY, MPI_INFO_GET_VALUELEN, and MPI_INFO_GET must
retain all (key,value) pairs so that layered functionality can also use the Info object.

24. Section 11.3 on page 325.
MPI_PROC_NULL is a valid target rank in the MPI RMA calls MPI_ACCUMULATE,
MPI_GET, and MPI_PUT. The effect is the same as for MPI_PROC_NULL in MPI point-
to-point communication. See also item 25 in this list.

25. Section 11.3 on page 325.
After any RMA operation with rank MPI_PROC_NULL, it is still necessary to finish
the RMA epoch with the synchronization method that started the epoch. See also
item 24 in this list.

26. Section 11.3.4 on page 331.
MPI_REPLACE in MPI_ACCUMULATE, like the other predefined operations, is defined
only for the predefined MPI datatypes.

27. Section 13.2.8 on page 382.
About MPI_FILE_SET_VIEW and MPI_FILE_SET_INFO: When an info object that
specifies a subset of valid hints is passed to MPI_FILE_SET_VIEW or
MPI_FILE_SET_INFO, there will be no effect on previously set or defaulted hints that
the info does not specify.

28. Section 13.2.8 on page 382.
About MPI_FILE_GET_INFO: If no hint exists for the file associated with fh, a handle
to a newly created info object is returned that contains no key/value pair.

29. Section 13.3 on page 385.
If a file does not have the mode MPI_MODE_SEQUENTIAL, then
MPI_DISPLACEMENT_CURRENT is invalid as disp in MPI_FILE_SET_VIEW.

30. Section 13.5.2 on page 414.
The bias of 16 byte doubles was defined with 10383. The correct value is 16383.

31. Section 16.1.4 on page 450.
In the example in this section, the buffer should be declared as const void* buf.

32. Section 16.2.5 on page 470.
About MPI_TYPE_CREATE_F90_xxxx:

Advice to implementors. An application may often repeat a call to
MPI_TYPE_CREATE_F90_xxxx with the same combination of (xxxx,p,r). The
application is not allowed to free the returned predefined, unnamed datatype
handles. To prevent the creation of a potentially huge amount of handles, the
MPI implementation should return the same datatype handle for the same (
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REAL/COMPLEX/INTEGER,p,r) combination. Checking for the combination (
p,r) in the preceding call to MPI_TYPE_CREATE_F90_xxxx and using a hash-
table to find formerly generated handles should limit the overhead of finding
a previously generated datatype with same combination of (xxxx,p,r). (End of
advice to implementors.)

33. Section A.1.1 on page 491.
MPI_BOTTOM is defined as void * const MPI::BOTTOM.
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[32] O. Krämer and H. Mühlenbein. Mapping strategies in message-based multiprocessor
systems. Parallel Computing, 9:213–225, 1989. 7.1

[33] S. J. Lefflet, R. S. Fabry, W. N. Joy, P. Lapsley, S. Miller, and C. Torek. An advanced
4.4BSD interprocess communication tutorial, Unix programmer’s supplementary docu-
ments (PSD) 21. Technical report, Computer Systems Research Group, Depertment of
Electrical Engineering and Computer Science, University of California, Berkeley, 1993.
Also available at http://www.netbsd.org/Documentation/lite2/psd/. 10.5.5

[34] nCUBE Corporation. nCUBE 2 Programmers Guide, r2.0, December 1990. 1.2

[35] Bill Nitzberg. Performance of the iPSC/860 Concurrent File System. Technical Report
RND-92-020, NAS Systems Division, NASA Ames, December 1992. 13.1

[36] William J. Nitzberg. Collective Parallel I/O. PhD thesis, Department of Computer
and Information Science, University of Oregon, December 1995. 13.1

[37] 4.4BSD Programmer’s Supplementary Documents (PSD). O’Reilly and Associates,
1994. 10.5.5

[38] Paul Pierce. The NX/2 operating system. In Proceedings of the Third Conference on
Hypercube Concurrent Computers and Applications, pages 384–390. ACM Press, 1988.
1.2

[39] K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett. Server-directed
collective I/O in Panda. In Proceedings of Supercomputing ’95, December 1995. 13.1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



570 BIBLIOGRAPHY

[40] A. Skjellum and A. Leung. Zipcode: a portable multicomputer communication library
atop the reactive kernel. In D. W. Walker and Q. F. Stout, editors, Proceedings of the
Fifth Distributed Memory Concurrent Computing Conference, pages 767–776. IEEE
Press, 1990. 1.2, 6.1.2

[41] A. Skjellum, S. Smith, C. Still, A. Leung, and M. Morari. The Zipcode message passing
system. Technical report, Lawrence Livermore National Laboratory, September 1992.
1.2

[42] Anthony Skjellum, Nathan E. Doss, and Purushotham V. Bangalore. Writing Libraries
in MPI. In Anthony Skjellum and Donna S. Reese, editors, Proceedings of the Scalable
Parallel Libraries Conference, pages 166–173. IEEE Computer Society Press, October
1993. 6.1

[43] Anthony Skjellum, Nathan E. Doss, and Kishore Viswanathan. Inter-communicator
extensions to MPI in the MPIX (MPI eXtension) Library. Technical Report MSU-
940722, Mississippi State University — Dept. of Computer Science, April 1994.
http://www.erc.msstate.edu/mpi/mpix.html. 5.2.2

[44] Anthony Skjellum, Ziyang Lu, Purushotham V. Bangalore, and Nathan E. Doss. Ex-
plicit parallel programming in C++ based on the message-passing interface (MPI). In
Gregory V. Wilson, editor, Parallel Programming Using C++, Engineering Computa-
tion Series. MIT Press, July 1996. ISBN 0-262-73118-5.

[45] Anthony Skjellum, Steven G. Smith, Nathan E. Doss, Alvin P. Leung, and Manfred
Morari. The Design and Evolution of Zipcode. Parallel Computing, 20(4):565–596,
April 1994. 6.1.2, 6.5.6

[46] Rajeev Thakur and Alok Choudhary. An Extended Two-Phase Method for Accessing
Sections of Out-of-Core Arrays. Scientific Programming, 5(4):301–317, Winter 1996.
13.1

[47] The Unicode Standard, Version 2.0. Addison-Wesley, 1996. ISBN 0-201-48345-9. 13.5.2

[48] D. Walker. Standards for message passing in a distributed memory environment. Tech-
nical Report TM-12147, Oak Ridge National Laboratory, August 1992. 1.2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

570 BIBLIOGRAPHY

[40] A. Skjellum and A. Leung. Zipcode: a portable multicomputer communication library
atop the reactive kernel. In D. W. Walker and Q. F. Stout, editors, Proceedings of the
Fifth Distributed Memory Concurrent Computing Conference, pages 767–776. IEEE
Press, 1990. 1.2, 6.1.2

[41] A. Skjellum, S. Smith, C. Still, A. Leung, and M. Morari. The Zipcode message passing
system. Technical report, Lawrence Livermore National Laboratory, September 1992.
1.2

[42] Anthony Skjellum, Nathan E. Doss, and Purushotham V. Bangalore. Writing Libraries
in MPI. In Anthony Skjellum and Donna S. Reese, editors, Proceedings of the Scalable
Parallel Libraries Conference, pages 166–173. IEEE Computer Society Press, October
1993. 6.1

[43] Anthony Skjellum, Nathan E. Doss, and Kishore Viswanathan. Inter-communicator
extensions to MPI in the MPIX (MPI eXtension) Library. Technical Report MSU-
940722, Mississippi State University — Dept. of Computer Science, April 1994.
http://www.erc.msstate.edu/mpi/mpix.html. 5.2.2

[44] Anthony Skjellum, Ziyang Lu, Purushotham V. Bangalore, and Nathan E. Doss. Ex-
plicit parallel programming in C++ based on the message-passing interface (MPI). In
Gregory V. Wilson, editor, Parallel Programming Using C++, Engineering Computa-
tion Series. MIT Press, July 1996. ISBN 0-262-73118-5.

[45] Anthony Skjellum, Steven G. Smith, Nathan E. Doss, Alvin P. Leung, and Manfred
Morari. The Design and Evolution of Zipcode. Parallel Computing, 20(4):565–596,
April 1994. 6.1.2, 6.5.6

[46] Rajeev Thakur and Alok Choudhary. An Extended Two-Phase Method for Accessing
Sections of Out-of-Core Arrays. Scientific Programming, 5(4):301–317, Winter 1996.
13.1

[47] The Unicode Standard, Version 2.0. Addison-Wesley, 1996. ISBN 0-201-48345-9. 13.5.2

[48] D. Walker. Standards for message passing in a distributed memory environment. Tech-
nical Report TM-12147, Oak Ridge National Laboratory, August 1992. 1.2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



Examples Index

This index lists code examples throughout the text. Some examples are referred to by
content; others are listed by the major MPI function that they are demonstrating. MPI
functions listed in all capital letter are Fortran examples; MPI functions listed in mixed
case are C/C++ examples.

Attributes between languages, 487

C++ declarations in mpi.h, 460
C++ deriving from C++ MPI class, 451
C++ handle assignement and comparison

operators, 456
C++ handle assignment operator, 452
C++ handle scope destruction, 452
C++ illegal communicator handle initial-

ization, 456
C++ MPI class comparison operator, 451
C++ profiling example, 460, 461
C/C++ handle conversion, 481, 482
C/Fortran handle conversion, 480
Client-server code, 62, 63
Client-server code with blocking probe, 66
Client-server code with blocking probe, wrong,

66

Datatype - 3D array, 111
Datatype - absolute addresses, 117
Datatype - array of structures, 114
Datatype - elaborate example, 124, 125
Datatype - matching type, 101
Datatype - matrix transpose, 112, 113
Datatype - union, 118
Datatypes - matching, 35
Datatypes - not matching, 35
Datatypes - untyped, 35
Deadlock with MPI_Bcast, 177, 178
Deadlock, if not buffered, 44
Deadlock, wrong message exchange, 44

Fortran 90 copying and sequence problem,
463, 464

Fortran 90 derived types, 465
Fortran 90 heterogeneous communication,

476, 477
Fortran 90 illegal KIND, 472
Fortran 90 MPI_TYPE_MATCH_SIZE im-

plementation, 476
Fortran 90 register optimization, 467

Intercommunicator, 198, 199
Interlanguage communication, 489
Intertwined matching pairs, 42

Message exchange, 43
MPI::Comm::Probe, 33
MPI_ACCUMULATE, 332
MPI_ADDRESS, 95
MPI_Address, 114, 117, 118, 124
MPI_Aint, 114
MPI_Allgather, 154
MPI_ALLOC_MEM, 263
MPI_Alloc_mem, 264
MPI_ALLREDUCE, 172
MPI_Barrier, 280, 281, 347
MPI_Bcast, 136, 177, 178
MPI_BSEND, 42
MPI_Buffer_attach, 46, 280
MPI_Buffer_detach, 46
MPI_BYTE, 35
MPI_Cancel, 281
MPI_CART_COORDS, 253
MPI_CART_GET, 256
MPI_CART_RANK, 256
MPI_CART_SHIFT, 253
MPI_CART_SUB, 254
MPI_CHARACTER, 36
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MPI_Comm_create, 198
MPI_Comm_group, 198
MPI_Comm_remote_size, 199
MPI_COMM_SPAWN, 298
MPI_Comm_spawn, 298
MPI_COMM_SPAWN_MULTIPLE, 303
MPI_Comm_spawn_multiple, 303
MPI_Comm_split, 199
MPI_DIMS_CREATE, 245, 256
MPI_FILE_CLOSE, 394, 397
MPI_FILE_GET_AMODE, 381
MPI_FILE_IREAD, 397
MPI_FILE_OPEN, 394, 397
MPI_FILE_READ, 394
MPI_FILE_SET_ATOMICITY, 425
MPI_FILE_SET_VIEW, 394, 397
MPI_FILE_SYNC, 426
MPI_Finalize, 280–282
MPI_FREE_MEM, 263
MPI_Gather, 125, 140, 141, 145
MPI_Gatherv, 125, 142–145
MPI_GET, 328, 330
MPI_Get, 346, 347
MPI_GET_ADDRESS, 95, 484
MPI_Get_address, 114, 117, 118, 124
MPI_GET_COUNT, 103
MPI_GET_ELEMENTS, 103
MPI_GRAPH_CREATE, 246, 252
MPI_Grequest_complete, 361
MPI_Grequest_start, 361
MPI_Group_free, 198
MPI_Group_incl, 198
MPI_Iprobe, 281
MPI_IRECV, 54–56, 62, 63
MPI_ISEND, 54–56, 62, 63
MPI_Op_create, 170, 176
MPI_Pack, 124, 125
MPI_Pack_size, 125
MPI_PROBE, 66
MPI_Put, 339, 344, 346, 347
MPI_RECV, 35, 36, 42–44, 56, 66, 101
MPI_REDUCE, 162, 163, 166
MPI_Reduce, 165, 166, 170
MPI_REQUEST_FREE, 55
MPI_Request_free, 280
MPI_Scan, 176
MPI_Scatter, 149
MPI_Scatterv, 150

MPI_SEND, 35, 36, 43, 44, 56, 66, 101
MPI_Send, 114, 117, 118, 124
MPI_SENDRECV, 111–113
MPI_SENDRECV_REPLACE, 253
MPI_SSEND, 42, 56
MPI_Test_cancelled, 281
MPI_TYPE_COMMIT, 99, 111–113, 328
MPI_Type_commit, 114, 117, 118, 124,

141–145, 150, 176
MPI_TYPE_CONTIGUOUS, 79, 96, 101,

103
MPI_Type_contiguous, 141
MPI_TYPE_CREATE_DARRAY, 93
MPI_TYPE_CREATE_HVECTOR, 111,

112
MPI_Type_create_hvector, 114, 117
MPI_TYPE_CREATE_INDEXED_BLOCK,

328
MPI_TYPE_CREATE_STRUCT, 86, 96,

113
MPI_Type_create_struct, 114, 117, 118,

124, 143, 145, 176
MPI_TYPE_CREATE_SUBARRAY, 433
MPI_TYPE_EXTENT, 111–113, 328, 330,

332
MPI_Type_extent, 114
MPI_TYPE_FREE, 328
MPI_Type_get_contents, 119
MPI_Type_get_envelope, 119
MPI_TYPE_HVECTOR, 111, 112
MPI_Type_hvector, 114, 117
MPI_TYPE_INDEXED, 83, 112
MPI_Type_indexed, 114, 117
MPI_TYPE_STRUCT, 86, 96, 113
MPI_Type_struct, 114, 117, 118, 124, 143,

145, 176
MPI_TYPE_VECTOR, 80, 81, 111–113
MPI_Type_vector, 142, 144, 150
MPI_Unpack, 124, 125
MPI_WAIT, 54–56, 62, 63, 397
MPI_WAITANY, 62
MPI_WAITSOME, 63
MPI_Win_complete, 339, 347
MPI_WIN_CREATE, 328, 330, 332
MPI_WIN_FENCE, 328, 330, 332
MPI_Win_fence, 346
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MPI_Win_post, 347
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MPI_Win_start, 339, 347
MPI_Win_unlock, 344
MPI_Win_wait, 347
mpiexec, 286

Non-deterministic program with MPI_Bcast,
178

Non-overtaking messages, 42
Nonblocking operations, 54, 55
Nonblocking operations - message order-

ing, 56
Nonblocking operations - progress, 56

Threads and MPI, 366
Typemap, 79–81, 83, 86, 93
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MPI_Win_start, 339, 347
MPI_Win_unlock, 344
MPI_Win_wait, 347
mpiexec, 286

Non-deterministic program with MPI_Bcast,
178

Non-overtaking messages, 42
Nonblocking operations, 54, 55
Nonblocking operations - message order-

ing, 56
Nonblocking operations - progress, 56

Threads and MPI, 366
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MPI Constant and Predefined
Handle Index

This index lists predefined MPI constants and handles.

MPI::*_NULL, 451
MPI::BOOL, 454, 495
MPI::BYTE, 453–455
MPI::CHAR, 454
MPI::CHARACTER, 454
MPI::COMM_NULL, 453, 456
MPI::COMPLEX, 454, 495
MPI::DOUBLE, 454
MPI::DOUBLE_COMPLEX, 454, 495
MPI::DOUBLE_INT, 455
MPI::DOUBLE_PRECISION, 454
MPI::ERRORS_ARE_FATAL, 19
MPI::ERRORS_RETURN, 19
MPI::ERRORS_THROW_EXCEPTIONS,

19, 23, 265
MPI::F_COMPLEX, 454
MPI::F_DOUBLE_COMPLEX, 455
MPI::FLOAT, 454
MPI::FLOAT_INT, 455
MPI::INT, 454
MPI::INTEGER, 453, 454
MPI::INTEGER1, 455
MPI::INTEGER2, 455
MPI::INTEGER4, 455
MPI::INTEGER8, 455
MPI::LOGICAL, 454
MPI::LOGICAL, MPI::BOOL, 455
MPI::LONG, 454
MPI::LONG_DOUBLE, 453, 454
MPI::LONG_DOUBLE_COMPLEX, 454,

455, 495
MPI::LONG_DOUBLE_INT, 455
MPI::LONG_INT, 455
MPI::LONG_LONG, 454
MPI::MAXLOC, 455

MPI::MINLOC, 455
MPI::PACKED, 453, 454
MPI::REAL, 454
MPI::REAL16, 455
MPI::REAL4, 455
MPI::REAL8, 455
MPI::SHORT, 454
MPI::SHORT_INT, 455
MPI::SIGNED_CHAR, 454
MPI::SIGNED_CHAR, MPI::UNSIGNED_CHAR,

453
MPI::TWODOUBLE_PRECISION, 455
MPI::TWOINT, 455
MPI::TWOINTEGER, 455
MPI::TWOREAL, 455
MPI::UNSIGNED, 454
MPI::UNSIGNED_CHAR, 454
MPI::UNSIGNED_LONG, 454
MPI::UNSIGNED_LONG_LONG, 454
MPI::UNSIGNED_SHORT, 454
MPI::WCHAR, 454
MPI_2DOUBLE_PRECISION, 165
MPI_2INT, 165
MPI_2INTEGER, 165
MPI_2REAL, 165
MPI_ADDRESS_KIND, 18, 106, 486, 487
MPI_ANY_SOURCE, 30, 42, 64–66, 71,

240, 261
MPI_ANY_TAG, 14, 30, 32, 64, 65, 67,

71, 75
MPI_APPNUM, 317, 318
MPI_ARGV_NULL, 298, 299, 462
MPI_ARGVS_NULL, 302, 462
MPI_BAND, 161, 162
MPI_BOR, 162

574

MPI Constant and Predefined
Handle Index

This index lists predefined MPI constants and handles.

MPI::*_NULL, 451
MPI::BOOL, 454, 495
MPI::BYTE, 453–455
MPI::CHAR, 454
MPI::CHARACTER, 454
MPI::COMM_NULL, 453, 456
MPI::COMPLEX, 454, 495
MPI::DOUBLE, 454
MPI::DOUBLE_COMPLEX, 454, 495
MPI::DOUBLE_INT, 455
MPI::DOUBLE_PRECISION, 454
MPI::ERRORS_ARE_FATAL, 19
MPI::ERRORS_RETURN, 19
MPI::ERRORS_THROW_EXCEPTIONS,

19, 23, 265
MPI::F_COMPLEX, 454
MPI::F_DOUBLE_COMPLEX, 455
MPI::FLOAT, 454
MPI::FLOAT_INT, 455
MPI::INT, 454
MPI::INTEGER, 453, 454
MPI::INTEGER1, 455
MPI::INTEGER2, 455
MPI::INTEGER4, 455
MPI::INTEGER8, 455
MPI::LOGICAL, 454
MPI::LOGICAL, MPI::BOOL, 455
MPI::LONG, 454
MPI::LONG_DOUBLE, 453, 454
MPI::LONG_DOUBLE_COMPLEX, 454,

455, 495
MPI::LONG_DOUBLE_INT, 455
MPI::LONG_INT, 455
MPI::LONG_LONG, 454
MPI::MAXLOC, 455

MPI::MINLOC, 455
MPI::PACKED, 453, 454
MPI::REAL, 454
MPI::REAL16, 455
MPI::REAL4, 455
MPI::REAL8, 455
MPI::SHORT, 454
MPI::SHORT_INT, 455
MPI::SIGNED_CHAR, 454
MPI::SIGNED_CHAR, MPI::UNSIGNED_CHAR,

453
MPI::TWODOUBLE_PRECISION, 455
MPI::TWOINT, 455
MPI::TWOINTEGER, 455
MPI::TWOREAL, 455
MPI::UNSIGNED, 454
MPI::UNSIGNED_CHAR, 454
MPI::UNSIGNED_LONG, 454
MPI::UNSIGNED_LONG_LONG, 454
MPI::UNSIGNED_SHORT, 454
MPI::WCHAR, 454
MPI_2DOUBLE_PRECISION, 165
MPI_2INT, 165
MPI_2INTEGER, 165
MPI_2REAL, 165
MPI_ADDRESS_KIND, 18, 106, 486, 487
MPI_ANY_SOURCE, 30, 42, 64–66, 71,

240, 261
MPI_ANY_TAG, 14, 30, 32, 64, 65, 67,

71, 75
MPI_APPNUM, 317, 318
MPI_ARGV_NULL, 298, 299, 462
MPI_ARGVS_NULL, 302, 462
MPI_BAND, 161, 162
MPI_BOR, 162

574



MPI Constant and Predefined Handle Index 575

MPI_BOTTOM, 10, 15, 17, 33, 94, 103,
104, 132, 300, 462, 465–467, 469,
484, 485, 489, 566

MPI_BSEND_OVERHEAD, 47, 262
MPI_BXOR, 162
MPI_BYTE, 27, 28, 34, 35, 37, 127, 162,

374, 412, 424, 453, 489, 562
MPI_CART, 248
MPI_CHAR, 28, 37, 86, 163
MPI_CHARACTER, 27, 36, 37, 163
MPI_COMBINER_CONTIGUOUS, 106,

109
MPI_COMBINER_DARRAY, 106, 111
MPI_COMBINER_DUP, 106, 109
MPI_COMBINER_F90_COMPLEX, 106,

111
MPI_COMBINER_F90_INTEGER, 106, 111
MPI_COMBINER_F90_REAL, 106, 111
MPI_COMBINER_HINDEXED, 106, 110
MPI_COMBINER_HINDEXED_INTEGER,

106, 110
MPI_COMBINER_HVECTOR, 106, 110
MPI_COMBINER_HVECTOR_INTEGER,

106, 110
MPI_COMBINER_INDEXED, 106, 110
MPI_COMBINER_INDEXED_BLOCK, 106,

110
MPI_COMBINER_NAMED, 105, 106, 109
MPI_COMBINER_RESIZED, 106, 111
MPI_COMBINER_STRUCT, 106, 110
MPI_COMBINER_STRUCT_INTEGER,

106, 110
MPI_COMBINER_SUBARRAY, 106, 110
MPI_COMBINER_VECTOR, 106, 109
MPI_COMM_NULL, 185, 196–199, 201,

237, 244, 246, 300, 319, 320, 563
MPI_COMM_PARENT, 237
MPI_COMM_SELF, 185, 221, 237, 283,

319, 375
MPI_COMM_WORLD, 14, 24, 29, 185–

187, 193, 194, 212, 237, 244, 260,
261, 264, 267, 274, 281–283, 285,
293, 294, 296, 297, 301–303, 316–
319, 369, 410, 429, 430, 479, 488,
564

MPI_COMPLEX, 27, 162, 414, 471
MPI_CONGRUENT, 194, 211
MPI_CONVERSION_FN_NULL, 419

MPI_DATATYPE, 19
MPI_DATATYPE_NULL, 100
MPI_DISPLACEMENT_CURRENT, 385,

565
MPI_DISTRIBUTE_BLOCK, 91
MPI_DISTRIBUTE_CYCLIC, 91
MPI_DISTRIBUTE_DFLT_DARG, 91
MPI_DISTRIBUTE_NONE, 91
MPI_DOUBLE, 28, 162, 470
MPI_DOUBLE_COMPLEX, 27, 414, 471
MPI_DOUBLE_INT, 165
MPI_DOUBLE_PRECISION, 27, 162, 471
MPI_ERR_ACCESS, 273, 378, 431
MPI_ERR_AMODE, 273, 377, 431
MPI_ERR_ARG, 272
MPI_ERR_ASSERT, 272, 349
MPI_ERR_BAD_FILE, 273, 431
MPI_ERR_BASE, 263, 272, 349
MPI_ERR_BUFFER, 272
MPI_ERR_COMM, 272
MPI_ERR_CONVERSION, 273, 419, 431
MPI_ERR_COUNT, 272
MPI_ERR_DIMS, 272
MPI_ERR_DISP, 272, 349
MPI_ERR_DUP_DATAREP, 273, 417, 431
MPI_ERR_FILE, 273, 431
MPI_ERR_FILE_EXISTS, 273, 431
MPI_ERR_FILE_IN_USE, 273, 378, 431
MPI_ERR_GROUP, 272
MPI_ERR_IN_STATUS, 31, 33, 52, 59,

61, 266, 272, 360, 390, 458
MPI_ERR_INFO, 272
MPI_ERR_INFO_KEY, 272, 288
MPI_ERR_INFO_NOKEY, 272, 289
MPI_ERR_INFO_VALUE, 272, 288
MPI_ERR_INTERN, 272
MPI_ERR_IO, 273, 431
MPI_ERR_KEYVAL, 233, 272
MPI_ERR_LASTCODE, 271, 273–275
MPI_ERR_LOCKTYPE, 272, 349
MPI_ERR_NAME, 272, 313
MPI_ERR_NO_MEM, 263, 272
MPI_ERR_NO_SPACE, 273, 431
MPI_ERR_NO_SUCH_FILE, 273, 378, 431
MPI_ERR_NOT_SAME, 273, 431
MPI_ERR_OP, 272
MPI_ERR_OTHER, 271, 272
MPI_ERR_PENDING, 59, 272
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MPI_ERR_PORT, 272, 310
MPI_ERR_QUOTA, 273, 431
MPI_ERR_RANK, 272
MPI_ERR_READ_ONLY, 273, 431
MPI_ERR_REQUEST, 272
MPI_ERR_RMA_CONFLICT, 272, 349
MPI_ERR_RMA_SYNC, 272, 349
MPI_ERR_ROOT, 272
MPI_ERR_SERVICE, 272, 312
MPI_ERR_SIZE, 272, 349
MPI_ERR_SPAWN, 272, 299, 300
MPI_ERR_TAG, 272
MPI_ERR_TOPOLOGY, 272
MPI_ERR_TRUNCATE, 272
MPI_ERR_TYPE, 272
MPI_ERR_UNKNOWN, 271, 272
MPI_ERR_UNSUPPORTED_DATAREP,

273, 431
MPI_ERR_UNSUPPORTED_OPERATION,

273, 431
MPI_ERR_WIN, 272, 349
MPI_ERRCODES_IGNORE, 17, 300, 462,

465
MPI_ERRHANDLER_NULL, 270
MPI_ERROR, 31, 52
MPI_ERROR_STRING, 271
MPI_ERRORS_ARE_FATAL, 264, 265, 276,

349, 429
MPI_ERRORS_RETURN, 264, 265, 277,

430, 488
MPI_F_STATUS_IGNORE, 483
MPI_F_STATUSES_IGNORE, 483
MPI_FILE, 474
MPI_FILE_NULL, 378, 430
MPI_FLOAT, 28, 86, 160, 162, 413
MPI_FLOAT_INT, 12, 165
MPI_GRAPH, 248
MPI_GROUP_EMPTY, 184, 189, 190, 197
MPI_GROUP_NULL, 184, 192
MPI_HOST, 260
MPI_IDENT, 187, 194
MPI_IN_PLACE, 132, 462, 465, 469
MPI_INFO_NULL, 291, 299, 309, 377, 378,

386
MPI_INT, 12, 28, 78, 162, 413, 414, 470,

488, 490
MPI_INTEGER, 27, 34, 162, 470, 471,

490

MPI_INTEGER1, 27
MPI_INTEGER2, 27, 414
MPI_INTEGER4, 27
MPI_INTEGER8, 474
MPI_INTEGER_KIND, 106, 486
MPI_IO, 260, 261
MPI_KEYVAL_INVALID, 225, 226
MPI_LAND, 161, 162
MPI_LASTUSEDCODE, 274
MPI_LB, 16, 89, 92, 96–98, 413
MPI_LOCK_EXCLUSIVE, 342
MPI_LOCK_SHARED, 342
MPI_LOGICAL, 27, 162
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MPI_LONG_INT, 165
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MPI_MAX, 160–162, 175
MPI_MAX_DATAREP_STRING, 387, 417
MPI_MAX_ERROR_STRING, 270, 275
MPI_MAX_INFO_KEY, 272, 287, 289, 290
MPI_MAX_INFO_VAL, 272, 287
MPI_MAX_OBJECT, 237, 563
MPI_MAX_OBJECT_NAME, 236
MPI_MAX_PORT_NAME, 308
MPI_MAX_PROCESSOR_NAME, 262, 564
MPI_MAXLOC, 162, 164, 165, 167
MPI_MIN, 161, 162
MPI_MINLOC, 162, 164, 165, 167
MPI_MODE_APPEND, 376, 377
MPI_MODE_CREATE, 376, 377, 384
MPI_MODE_DELETE_ON_CLOSE, 376–

378
MPI_MODE_EXCL, 376, 377
MPI_MODE_NOCHECK, 345, 346
MPI_MODE_NOPRECEDE, 345
MPI_MODE_NOPUT, 345
MPI_MODE_NOSTORE, 345
MPI_MODE_NOSUCCEED, 345
MPI_MODE_RDONLY, 376, 377, 382
MPI_MODE_RDWR, 376, 377
MPI_MODE_SEQUENTIAL, 376, 377, 379,
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MPI_MODE_UNIQUE_OPEN, 376, 377
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MPI_MODE_WRONLY, 376, 377
MPI_OFFSET_KIND, 18, 424
MPI_OP_NULL, 170
MPI_ORDER_C, 14, 88, 91, 92
MPI_ORDER_FORTRAN, 14, 88, 91
MPI_PACKED, 27, 28, 34, 121, 123, 127,

414, 453, 489
MPI_PROC_NULL, 26, 75, 134, 136, 138,

140, 148, 149, 161, 187, 253, 260,
261, 326, 563, 565

MPI_PROD, 161, 162
MPI_REAL, 27, 34, 162, 414, 470, 471,

477
MPI_REAL2, 27
MPI_REAL4, 27, 470, 474
MPI_REAL8, 27, 470
MPI_REPLACE, 332, 565
MPI_REQUEST_NULL, 52–55, 57–61, 360
MPI_ROOT, 134
MPI_SEEK_CUR, 398, 404
MPI_SEEK_END, 398, 404
MPI_SEEK_SET, 398, 399, 404
MPI_SHORT, 28, 162
MPI_SHORT_INT, 165
MPI_SIGNED_CHAR, 28, 162, 163, 562
MPI_SIMILAR, 187, 194, 211
MPI_SOURCE, 31
MPI_STATUS, 21, 33, 52
MPI_STATUS_IGNORE, 10, 17, 33, 359,

390, 462, 465, 469, 482, 483, 489,
561

MPI_STATUS_SIZE, 31
MPI_STATUSES_IGNORE, 14, 33, 359,

360, 462, 465, 482, 483, 561
MPI_SUBVERSION, 260
MPI_SUCCESS, 16, 18, 59, 61, 224–229,

231, 271, 272, 276, 277, 300, 419,
444, 445

MPI_SUM, 161, 162, 488
MPI_TAG, 31
MPI_TAG_UB, 28, 260, 486, 487
MPI_THREAD_FUNNELED, 368, 369
MPI_THREAD_MULTIPLE, 369, 371
MPI_THREAD_SERIALIZED, 369
MPI_THREAD_SINGLE, 368–370
MPI_TYPECLASS_COMPLEX, 476
MPI_TYPECLASS_INTEGER, 476
MPI_TYPECLASS_REAL, 476

MPI_UB, 12, 16, 89, 93, 96–98, 413
MPI_UNDEFINED, 32, 57, 58, 102, 187,

199, 248, 255, 256, 472, 562
MPI_UNEQUAL, 187, 194, 211
MPI_UNIVERSE_SIZE, 296, 316
MPI_UNSIGNED, 28, 162
MPI_UNSIGNED_CHAR, 28, 162, 163
MPI_UNSIGNED_LONG, 28, 162
MPI_UNSIGNED_LONG_LONG, 28, 162,

562
MPI_UNSIGNED_SHORT, 28, 162
MPI_VERSION, 260
MPI_WCHAR, 28, 163, 238, 414, 562
MPI_WIN_BASE, 324, 488
MPI_WIN_DISP_UNIT, 324
MPI_WIN_NULL, 324
MPI_WIN_SIZE, 324
MPI_WTIME_IS_GLOBAL, 260, 261, 278,

486
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MPI Declarations Index

This index refers to declarations needed in C/C++, such as address kind integers, handles,
etc. The underlined page numbers is the “main” reference (sometimes there are more than
one when key concepts are discussed in multiple areas).

MPI::Aint, 15, 15, 19, 79, 79, 81, 84, 86,
94, 97, 98, 107, 127, 128, 322, 326,
328, 331, 413, 417, 441–444, 485,
485, 486

MPI::Cartcomm, 244, 450, 456
MPI::Comm, 26, 188, 193–196, 198, 201,

210, 211, 213, 223, 226, 227, 450,
456, 456

MPI::Datatype, 79, 450
MPI::Errhandler, 266, 267–270, 446, 447,

450, 480
MPI::Exception, 450, 457
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MPI::Intracomm, 450, 456
MPI::Offset, 15, 15, 19, 379, 380, 385, 387,
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MPI::Op, 160, 168, 170, 172–175, 331, 450,
480

MPI::Prequest, 69, 450
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398, 401, 450, 480

MPI::Status, 29, 32, 53, 57–61, 64, 65, 68,
73, 74, 102, 358, 364, 391, 392,
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MPI Callback Function Prototype
Index

This index lists the C typedef names for callback routines, such as those used with attribute
caching or user-defined reduction operations. C++ names for these typedefs and Fortran
example prototypes are given near the text of the C name.

MPI_Comm_copy_attr_function, 17, 223
MPI_Comm_delete_attr_function, 17, 223
MPI_Comm_errhandler_fn, 17, 266
MPI_Copy_function, 17, 444
MPI_Datarep_conversion_function, 417
MPI_Datarep_extent_function, 417
MPI_Delete_function, 17, 445
MPI_File_errhandler_fn, 269
MPI_Grequest_cancel_function, 360
MPI_Grequest_free_function, 359
MPI_Grequest_query_function, 358
MPI_Handler_function, 17, 447
MPI_Type_copy_attr_function, 231
MPI_Type_delete_attr_function, 231
MPI_User_function, 168
MPI_Win_copy_attr_function, 228
MPI_Win_delete_attr_function, 228
MPI_Win_errhandler_fn, 268
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MPI Function Index

The underlined page numbers refer to the function definitions.

MPI_ABORT, 169, 264, 279, 283, 318, 479,
564

MPI_ACCUMULATE, 321, 325, 326, 331,
332, 333, 352, 565

MPI_ADD_ERROR_CLASS, 274, 274
MPI_ADD_ERROR_CODE, 275
MPI_ADD_ERROR_STRING, 275, 275
MPI_ADDRESS, 17, 94, 443, 486
MPI_ALLGATHER, 129, 133, 152, 152,

153–155
MPI_ALLGATHERV, 129, 133, 153, 154
MPI_ALLOC_MEM, 18, 262, 263, 272,

323, 327, 343, 462
MPI_ALLREDUCE, 129, 132–134, 161, 168,

172, 172, 562
MPI_ALLTOALL, 129, 133, 134, 155, 155,

157
MPI_ALLTOALLV, 129, 132–134, 156, 157
MPI_ALLTOALLW, 129, 133, 134, 158,

158, 159
MPI_ATTR_DELETE, 17, 227, 233, 445,

446
MPI_ATTR_GET, 17, 227, 233, 260, 446,

486
MPI_ATTR_PUT, 17, 226, 233, 445, 486
MPI_BARRIER, 129, 133, 135, 135, 426
MPI_BCAST, 129, 133, 136, 136, 451
MPI_BSEND, 39, 47, 262, 280
MPI_BSEND_INIT, 69, 72
MPI_BUFFER_ATTACH, 21, 45, 53
MPI_BUFFER_DETACH, 45, 280
MPI_CANCEL, 42, 53, 64, 67, 67, 68, 357,

360, 361
MPI_CART_COORDS, 243, 251, 251, 564
MPI_CART_CREATE, 243, 244, 244, 245,

246, 249, 254, 255, 563
MPI_CART_GET, 243, 249, 250, 563

MPI_CART_MAP, 243, 255, 255
MPI_CART_RANK, 243, 250, 250, 564
MPI_CART_SHIFT, 243, 252, 253, 253,

564
MPI_CART_SUB, 243, 254, 254, 255, 564
MPI_CARTDIM_GET, 243, 249, 249, 563
MPI_CLOSE_PORT, 308, 309, 311
MPI_COMM_ACCEPT, 307–309, 309, 310,

316, 318
MPI_COMM_C2F, 479
MPI_COMM_CALL_ERRHANDLER, 276,

277
MPI_COMM_CLONE, 457
MPI_COMM_COMPARE, 194, 211
MPI_COMM_CONNECT, 272, 310, 310,

317, 318
MPI_COMM_CREATE, 192, 196, 196, 197,

199, 210, 243
MPI_COMM_CREATE_ERRHANDLER,

17, 265, 266, 267, 446, 502
MPI_COMM_CREATE_KEYVAL, 17, 222,

223, 233, 444, 486, 563
MPI_COMM_DELETE_ATTR, 17, 222,

225, 226, 227, 233, 446
MPI_COMM_DISCONNECT, 233, 301, 318,

319, 319
MPI_COMM_DUP, 188, 192, 195, 195, 197,

202, 212, 214, 222, 224, 227, 233,
240, 444

MPI_COMM_DUP_FN, 17, 224, 224
MPI_COMM_F2C, 479
MPI_COMM_FREE, 192, 196, 201, 202,

212, 214, 225, 227, 233, 283, 301,
318, 319, 445, 453

MPI_COMM_FREE_KEYVAL, 17, 222,
225, 233, 445
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MPI_COMM_GET_ATTR, 17, 222, 226,
226, 233, 445, 488

MPI_COMM_GET_ERRHANDLER, 17,
265, 267, 447, 564

MPI_COMM_GET_NAME, 236, 236, 237,
563

MPI_COMM_GET_PARENT, 237, 297,
300, 300, 301

MPI_COMM_GROUP, 14, 186, 188, 188,
192–194, 211, 265, 564

MPI_COMM_JOIN, 319, 319, 320
MPI_COMM_KEYVAL_CREATE, 501
MPI_COMM_NULL_COPY_FN, 17, 224,

224
MPI_COMM_NULL_DELETE_FN, 17, 225,

225
MPI_COMM_RANK, 193, 193, 211
MPI_COMM_REMOTE_GROUP, 211
MPI_COMM_REMOTE_SIZE, 211, 212
MPI_COMM_SET_ATTR, 17, 222, 225,

226, 233, 445
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267, 447
MPI_COMM_SET_NAME, 235, 235, 236
MPI_COMM_SIZE, 21, 193, 193, 194, 211
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297, 299–304, 316, 317
MPI_COMM_SPAWN_MULTIPLE, 285,

294, 295, 300, 301, 302, 303, 317
MPI_COMM_SPLIT, 196, 198, 199, 200,

240, 243, 244, 246, 254–256
MPI_COMM_TEST_INTER, 210, 210
MPI_DIMS_CREATE, 243–245, 245
MPI_DUP_FN, 17, 224, 444
MPI_ERRHANDLER_C2F, 480
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446
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MPI_ERRHANDLER_FREE, 265, 270, 564
MPI_ERRHANDLER_GET, 17, 265, 267,

447, 564
MPI_ERRHANDLER_SET, 17, 267, 447
MPI_ERROR_CLASS, 271, 271, 273
MPI_ERROR_STRING, 270, 271, 273, 275
MPI_EXSCAN, 129, 133, 161, 168, 175,

175
MPI_FILE_C2F, 480
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MPI_FILE_CLOSE, 319, 375, 377, 378
MPI_FILE_CREATE_ERRHANDLER, 265,
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384, 430
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MPI_FILE_GET_AMODE, 381, 381
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