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This document describes the Message-Passing Interface (MPI) standard, version 2.1.
The MPI standard includes point-to-point message-passing, collective communications, group
and communicator concepts, process topologies, environmental management, process cre-
ation and management, one-sided communications, extended collective operations, external
interfaces, I/O, some miscellaneous topics, and a profiling interface. Language bindings for
C, C++ and Fortran are defined.

Technically, this version of the standard is based on “MPI: A Message-Passing Interface
Standard, June 12, 1995” (MPI-1.1) from the MPI-1 Forum, and “MPI-2: Extensions to the
Message-Passing Interface, July, 1997” (MPI-1.2 and MPI-2.0) from the MPI-2 Forum, and
errata documents from the MPI Forum.

Historically, the evolution of the standards is from MPI-1.0 (June 1994) to MPI-1.1
(June 12, 1995) to MPI-1.2 (July 18, 1997), with several clarifications and additions and
published as part of the MPI-2 document, to MPI-2.0 (July 18, 1997), with new functionality,
to MPI-1.3 (May 30, 2008), combining for historical reasons the documents 1.1 and 1.2 and
some errata documents to one combined document, and this document, MPI-2.1, combining
the previous documents. Additional clarifications and errata corrections to MPI-2.0 are also
included.

©1993, 1994, 1995, 1996, 1997, 2008 University of Tennessee, Knoxville, Tennessee.
Permission to copy without fee all or part of this material is granted, provided the University
of Tennessee copyright notice and the title of this document appear, and notice is given that
copying is by permission of the University of Tennessee.



Version 2.1: June 23, 2008, 2008. This document combines the previous documents MPI-
1.3 (May 30, 2008) and MPI-2.0 (July 18, 1997). Certain parts of MPI-2.0, such as some
sections of Chapter 4, Miscellany, and Chapter 7, Extended Collective Operations have been
merged into the Chapters of MPI-1.3. Additional errata and clarifications collected by the
MPI Forum are also included in this document.

Version 1.3: May 30, 2008. This document combines the previous documents MPI-1.1 (June
12, 1995) and the MPI-1.2 Chapter in MPI-2 (July 18, 1997). Additional errata collected
by the MPI Forum referring to MPI-1.1 and MPI-1.2 are also included in this document.

Version 2.0: July 18, 1997. Beginning after the release of MPI-1.1, the MPI Forum began
meeting to consider corrections and extensions. MPI-2 has been focused on process creation
and management, one-sided communications, extended collective communications, external
interfaces and parallel 1/O. A miscellany chapter discusses items that don’t fit elsewhere,
in particular language interoperability.

Version 1.2: July 18, 1997. The MPI-2 Forum introduced MPI-1.2 as Chapter 3 in the
standard "MPI-2: Extensions to the Message-Passing Interface”, July 18, 1997. This section
contains clarifications and minor corrections to Version 1.1 of the MPI Standard. The only
new function in MPI-1.2 is one for identifying to which version of the MPI Standard the
implementation conforms. There are small differences between MPI-1 and MPI-1.1. There
are very few differences between MPI-1.1 and MPI-1.2, but large differences between MPI-1.2
and MPI-2.

Version 1.1: June, 1995. Beginning in March, 1995, the Message-Passing Interface Forum
reconvened to correct errors and make clarifications in the MPI document of May 5, 1994,
referred to below as Version 1.0. These discussions resulted in Version 1.1, which is this
document. The changes from Version 1.0 are minor. A version of this document with all
changes marked is available. This paragraph is an example of a change.

Version 1.0:  May, 1994. The Message-Passing Interface Forum (MPIF), with participation
from over 40 organizations, has been meeting since January 1993 to discuss and define a set
of library interface standards for message passing. MPIF is not sanctioned or supported by
any official standards organization.

The goal of the Message-Passing Interface, simply stated, is to develop a widely used
standard for writing message-passing programs. As such the interface should establish a
practical, portable, efficient, and flexible standard for message-passing.

This is the final report, Version 1.0, of the Message-Passing Interface Forum. This
document contains all the technical features proposed for the interface. This copy of the
draft was processed by ITEX on May 5, 1994.

Please send comments on MPI to mpi-comments@mpi-forum.org. Your comment will
be forwarded to MP| Forum committee members who will attempt to respond.
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MPI Callback Function Prototype
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This index lists the C typedef names for callback routines, such as those used with attribute
caching or user-defined reduction operations. C++ names for these typedefs and Fortran
example prototypes are given near the text of the C name.
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MPI_Comm_errhandler_fn, 17, 266
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MPI_Delete_function, 17, 445
MPI_File_errhandler_fn, 269
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MPI_Type_copy_attr_function, 231
MPI_Type_delete_attr_function, 231
MPI_User_function, 168
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MPI_Win_errhandler_fn, 268
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Chapter 1

Introduction to MPI

1.1 Overview and Goals

MPI (Message-Passing Interface) is a message-passing library interface specification. All
parts of this definition are significant. MPI addresses primarily the message-passing parallel
programming model, in which data is moved from the address space of one process to that
of another process through cooperative operations on each process. (Extensions to the

“classical” message-passing model are provided in collective operations, remote-memory

ac

s operations, dynamic process creation, and parallel 1/0.) MPI is a specification, not
an implementation; there are multiple implementations of MPI. This specification is for a
library interface; MPI is not a language, and all MPI operations are expressed as functions,
subroutines, or methods, according to the appropriate language bindings, which for C,
C++, Fortran-77, and Fortran-95, are part of the MPI standard. The standard has been
defined through an open process by a community of parallel computing vendors, computer
scientists, and application developers. The next few sections provide an overview of the
history of MPI’s development.

The main advantages of establishing a message-passing standard are portability and
ease of use. In a distributed memory communication environment in which the higher level
routines and/or abstractions are built upon lower level message-passing routines the benefits
of standardization are particularly apparent. Furthermore, the definition of a message-
passing standard, such as that proposed here, provides vendors with a clearly defined base
set, of routines that they can implement efficiently, or in some cases provide hardware support
for, thereby enhancing scalability.

The goal of the Message-Passing Interface simply stated is to develop a widely used
standard for writing message-passing programs. As such the interface should establish a
practical, portable, efficient, and flexible standard for message passing.

A complete list of goals follows.

e Design an application programming interface (not necessarily for compilers or a system
implementation library).

e Allow efficient communication: Avoid memory-to-memory copying, allow overlap of
computation and communication, and offload to communication co-processor, where
available.

e Allow for implementations that can be used in a heterogeneous environment.
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This index lists code examples throughout the text. Some examples are referred to by
content; others are listed by the major MPI function that they are demonstrating. MPI
functions listed in all capital letter are Fortran examples; MPI functions listed in mixed

case are C/C++ examples.

Attributes between languages, 487

C++ declarations in mpi.h, 460

C++ deriving from C++ MPI class, 451
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operators, 456

C++ handle assignment operator, 452

C++ handle scope destruction, 452

C++ illegal communicator handle initial-
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Deadlock with MPI_Bcast, 177, 178
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plementation, 476

Fortran 90 register optimization, 467

Intercommunicator, 198, 199
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2 CHAPTER 1. INTRODUCTION TO MPI

e Allow convenient C, C++, Fortran-77, and Fortran-95 bindings for the interface.

e Assume a reliable communication interface: the user need not cope with communica-
tion failures. Such failures are dealt with by the underlying communication subsystem.

e Define an interface that can be implemented on many vendor’s platforms, with no
significant changes in the underlying communication and system software.

e Semantics of the interface should be language independent.

e The interface should be designed to allow for thread safety.

1.2 Background of MPI-1.0

MPI sought to make use of the most attractive features of a number of existing message-
passing systems, rather than selecting one of them and adopting it as the standard. Thus,
MPI was strongly influenced by work at the IBM T. J. Watson Research Center [1, 2],
Intel’s NX/2 [38], Express [12], nCUBE’s Vertex [34], p4 [7, 8], and PARMACS [5, 9].
Other important contributions have come from Zipcode [40, 41], Chimp [16, 17], PVM
[4, 14], Chameleon [25], and PICL [24].

The MPI standardization effort involved about 60 people from 40 organizations mainly
from the United States and Europe. Most of the major vendors of concurrent computers
were involved in MPI, along with researchers from universities, government laboratories, and
industry. The standardization process began with the Workshop on Standards for Message-
Passing in a Distributed Memory Environment, sponsored by the Center for Research on
Parallel Computing, held April 29-30, 1992, in Williamsburg, Virginia [48]. At this workshop
the basic features essential to a standard message-passing interface were discussed, and a
working group established to continue the standardization process.

A preliminary draft proposal, known as MPI1, was put forward by Dongarra, Hempel,
Hey, and Walker in November 1992, and a revised version was completed in February
1993 [15]. MPI1 embodied the main features that were identified at the Williamsburg
workshop as being necessary in a message passing standard. Since MPI1 was primarily
intended to promote discussion and “get the ball rolling,” it focused mainly on point-to-point
communications. MPI1 brought to the forefront a number of important standardization
issues, but did not include any collective communication routines and was not thread-safe.

In November 1992, a meeting of the MPI working group was held in Minneapolis, at
which it was decided to place the standardization process on a more formal footing, and to
generally adopt the procedures and organization of the High Performance Fortran Forum.
Subcommittees were formed for the major component areas of the standard, and an email
discussion service established for each. In addition, the goal of producing a draft MPI
standard by the Fall of 1993 was set. To achieve this goal the MPI working group met every
6 weeks for two days throughout the first 9 months of 1993, and presented the draft MPI
standard at the Supercomputing 93 conference in November 1993. These meetings and the
email discussion together constituted the MPI Forum, membership of which has been open
to all members of the high performance computing community.
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1.3 Background of MPI-1.1, MPI-1.2, and MPI-2.0

Beginning in March 1995, the MPIl Forum began meeting to consider corrections and exten-
sions to the original MPI Standard document [21]. The first product of these deliberations
was Version 1.1 of the MPI specification, released in June of 1995 [22] (see
http://www.mpi-forum.org for official MPI document releases). At that time, effort fo-
cused in five areas.

1. Further corrections and clarifications for the MPI-1.1 document.

2. Additions to MPI-1.1 that do not significantly change its types of functionality (new
datatype constructors, language interoperability, etc.).

3. Completely new types of functionality (dynamic processes, one-sided communication,
parallel I/O, etc.) that are what everyone thinks of as “MPI-2 functionality.”

4. Bindings for Fortran 90 and C++. MPI-2 specifies C++ bindings for both MPI-1
and MPI-2 functions, and extensions to the Fortran 77 binding of MPI-1 and MPI-2
to handle Fortran 90 issues.

5. Discussions of areas in which the MPI process and framework seem likely to be useful,
but where more discussion and experience are needed before standardization (e.g.
zero-copy semantics on shared-memory machines, real-time specifications).

Corrections and clarifications (items of type 1 in the above list) were collected in Chap-
ter 3 of the MPI-2 document: “Version 1.2 of MPL.” That chapter also contains the function
for identifying the version number. Additions to MPI-1.1 (items of types 2, 3, and 4 in the
above list) are in the remaining chapters of the MPI-2 document, and constitute the specifi-
cation for MPI-2. Items of type 5 in the above list have been moved to a separate document,
the “MPI Journal of Development” (JOD), and are not part of the MPI-2 Standard.

This structure makes it easy for users and implementors to understand what level of
MPI compliance a given implementation has:

e MPI-1 compliance will mean compliance with MPI-1.3. This is a useful level of com-
pliance. It means that the implementation conforms to the clarifications of MPI-1.1
function behavior given in Chapter 3 of the MPI-2 document. Some implementations
may require changes to be MPI-1 compliant.

e MPI-2 compliance will mean compliance with all of MPI-2.1.
e The MPI Journal of Development is not part of the MPI Standard.

It is to be emphasized that forward compatibility is preserved. That is, a valid MPI-1.1
program is both a valid MPI-1.3 program and a valid MPI-2.1 program, and a valid MPI-1.3
program is a valid MPI-2.1 program.

1.4 Background of MPI-1.3 and MPI-2.1

After the release of MPI-2.0, the MPI Forum kept working on errata and clarifications for
both standard documents (MPI-1.1 and MPI-2.0). The short document “Errata for MPI-1.1”
was released October 12, 1998. On July 5, 2001, a first ballot of errata and clarifications for
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MPI-2.0 was released, and a second ballot was voted on May 22, 2002. Both votes were done
electronically. Both ballots were combined into one document: “Errata for MPI-2”, May
15, 2002. This errata process was then interrupted, but the Forum and its e-mail reflectors
kept working on new requests for clarification.

Restarting regular work of the MPI Forum was initiated in three meetings, at Eu-
roPVM/MPT’06 in Bonn, at EuroPVM/MPT’07 in Paris, and at SC’07 in Reno. In De-
cember 2007, a steering committee started the organization of new MPI Forum meetings at
regular 8-weeks intervals. At the January 14-16, 2008 meeting in Chicago, the MPI Forum
decided to combine the existing and future MPI documents to one single document for each
version of the MPI standard. For technical and historical reasons, this series was started
with MPI-1.3. Additional Ballots 3 and 4 solved old questions from the errata list started
in 1995 up to new questions from the last years. After all documents (MPI-1.1, MPI-2,
Errata for MPI-1.1 (Oct. 12, 1998), and MPI-2.1 Ballots 1-4) were combined into one draft
document, for each chapter, a chapter author and review team were defined. They cleaned
up the document to achieve a consistent MPI-2.1 document. The final MPI-2.1 standard
document was finished in June 2008, and finally released with a second vote in September
2008 in the meeting at Dublin, just before EuroPVM/MPI'08. The major work of the
current MPI Forum is the preparation of MPI-3.

1.5 Who Should Use This Standard?

This standard is intended for use by all those who want to write portable message-passing
programs in Fortran, C and C++. This includes individual application programmers, de-
velopers of software designed to run on parallel machines, and creators of environments
and tools. In order to be attractive to this wide audience, the standard must provide a
simple, easy-to-use interface for the basic user while not semantically precluding the high-
performance message-passing operations available on advanced machines.

1.6 What Platforms Are Targets For Implementation?

The attractiveness of the message-passing paradigm at least partially stems from its wide
portability. Programs expressed this way may run on distributed-memory multiprocessors,
networks of workstations, and combinations of all of these. In addition, shared-memory
implementations, including those for multi-core processors and hybrid architectures, are
possible. The paradigm will not be made obsolete by architectures combining the shared-
and distributed-memory views, or by increases in network speeds. It thus should be both
possible and useful to implement this standard on a great variety of machines, including
those “machines” consisting of collections of other machines, parallel or not, connected by
a communication network.

The interface is suitable for use by fully general MIMD programs, as well as those writ-
ten in the more restricted style of SPND. MPI provides many features intended to improve
performance on scalable parallel computers with specialized interprocessor communication
hardware. Thus, we expect that native, high-performance implementations of MPI will be
provided on such machines. At the same time, implementations of MPI on top of stan-
dard Unix interprocessor communication protocols will provide portability to workstation
clusters and heterogenous networks of workstations.
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for example, interrupt-driven receives, remote execution, or active messages, 35 35 [22] Message Passing Interface Forum. MPI: A Message-Passing Interface standard (version
e Program construction tools, 36 36 1.1). Technical report, 1995. http://www.mpi-forum.org. 1.3
o Debugging facilities o i [23] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Bob Manchek, and Vaidy
. 38 3
s : Sunderam. PVM: Parallel Virtual Machine—A User’s Guide and Tutorial for Network
39 39 .
There are many features that have been considered and not included in this standard. o Parallel Computing. MIT Press, 1994. 10.1
This happened for a number of reasons, one of which is the time constraint that was self- " " [24] G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley. PICL: A portable in-
imposed in finishing the standard. Features that are not included can always be offered as 42 42 strumented communicatioﬁs library, C reference manual. Technical Report TM-11130,
extensions by specific implementations. Perhaps future versions of MPI will address some 1 3 Oak Ridge National Laboratory, Oak Ridge, TN, July 1990. 1.2
of these issues. “ w ' Y
. - [25] William D. Gropp and Barry Smith. Chameleon parallel programming tools users
46 16 manual. Technical Report ANL-93/23, Argonne National Laboratory, March 1993. 1.2
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6 CHAPTER 1. INTRODUCTION TO MPI

1.9 Organization of this Document

The following is a list of the remaining chapters in this document, along with a brief
description of each.

e Chapter 2, MPI Terms and Conventions, explains notational terms and conventions
used throughout the MPI document.

e Chapter 3, Point to Point Communication, defines the basic, pairwise communication
subset of MPI. Send and receive are found here, along with many associated functions
designed to make basic communication powerful and efficient.

o Chapter 4, Datatypes, defines a method to describe any data layout, e.g., an array of
structures in the memory, which can be used as message send or receive buffer.

e Chapter 5, Collective Communications, defines process-group collective communication
operations. Well known examples of this are barrier and broadcast over a group of
processes (not necessarily all the processes). With MPI-2, the semantics of collective
communication was extended to include intercommunicators. It also adds two new
collective operations.

e Chapter 6, Groups, Contexts, Communicators, and Caching, shows how groups of pro-
cesses are formed and manipulated, how unique communication contexts are obtained,
and how the two are bound together into a communicator.

e Chapter 7, Process Topologies, explains a set of utility functions meant to assist in
the mapping of process groups (a linearly ordered set) to richer topological structures
such as multi-dimensional grids.

e Chapter 8, MPI Environmental Management, explains how the programmer can manage
and make inquiries of the current MPI environment. These functions are needed for the
writing of correct, robust programs, and are especially important for the construction
of highly-portable message-passing programs.

e Chapter 9, The Info Object, defines an opaque object, that is used as input of several
MPI routines.

e Chapter 10, Process Creation and Management, defines routines that allow for creation
of processes.

e Chapter 11, One-Sided Communications, defines communication routines that can be
completed by a single process. These include shared-memory operations (put/get)
and remote accumulate operations.

e Chapter 12, External Interfaces, defines routines designed to allow developers to layer
on top of MPI. This includes generalized requests, routines that decode MPI opaque
objects, and threads.

e Chapter 13, 1/0, defines MPI support for parallel I/O.
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Chapter 14, Profiling Interface, explains a simple name-shifting convention that any
MPI implementation must support. One motivation for this is the ability to put
performance profiling calls into MPI without the need for access to the MPI source
code. The name shift is merely an interface, it says nothing about how the actual
profiling should be done and in fact, the name shift can be useful for other purposes.

Chapter 15, Deprecated Functions, describes routines that are kept for reference. How-
ever usage of these functions is discouraged, as they may be deleted in future versions
of the standard.

Chapter 16, Language Bindings, describes the C++ binding, discusses Fortran issues,
and describes language interoperability aspects between C, C++, and Fortran.

The Appendices are:

Annex A, Language Bindings Summary, gives specific syntax in C, C++, and Fortran,
for all MPI functions, constants, and types.

Annex B, Change-Log, summarizes major changes since the previous version of the
standard.

Several Index pages are showing the locations of examples, constants and predefined
handles, callback routines’ prototypes, and all MPI functions.

MPI provides various interfaces to facilitate interoperability of distinct MPI imple-

mentations. Among these are the canonical data representation for MPI I/O and for
MPI_PACK_EXTERNAL and MPI_UNPACK_EXTERNAL. The definition of an actual bind-
ing of these interfaces that will enable interoperability is outside the scope of this document.

A separate document consists of ideas that were discussed in the MPI Forum and

deemed to have value, but are not included in the MPI Standard. They are part of the
“Journal of Development” (JOD), lest good ideas be lost and in order to provide a starting
point for further work. The chapters in the JOD are

Chapter 2, Spawning Independent Processes, includes some elements of dynamic pro-
cess management, in particular management of processes with which the spawning
processes do not intend to communicate, that the Forum discussed at length but
ultimately decided not to include in the MPI Standard.

Chapter 3, Threads and MPI, describes some of the expected interaction between an
MPI implementation and a thread library in a multi-threaded environment.

Chapter 4, Communicator ID, describes an approach to providing identifiers for com-
municators.

Chapter 5, Miscellany, discusses Miscellaneous topics in the MPIl JOD, in particu-
lar single-copy routines for use in shared-memory environments and new datatype
constructors.

Chapter 6, Toward a Full Fortran 90 Interface, describes an approach to providing a
more elaborate Fortran 90 interface.
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ANNEX B. CHANGE-LOG

REAL/COMPLEX/INTEGER,p,r) combination. Checking for the combination (
p,r) in the preceding call to MPI_TYPE_CREATE_F90_xxxx and using a hash-
table to find formerly generated handles should limit the overhead of finding
a previously generated datatype with same combination of (xxxx,p,r). (End of
advice to implementors.)

33. Section A.1.1 on page 491.

MPI_BOTTOM is defined as void * const MPI::BOTTOM.
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Section 9 on page 287.

An implementation must support info objects as caches for arbitrary (key, value)
pairs, regardless of whether it recognizes the key. Each function that takes hints in
the form of an MPI_Info must be prepared to ignore any key it does not recognize. This
description of info objects does not attempt to define how a particular function should
react if it recognizes a key but not the associated value. MPI_INFO_GET_NKEYS,
MPI_INFO_GET_NTHKEY, MPI_INFO_GET_VALUELEN, and MPI_INFO_GET must
retain all (key,value) pairs so that layered functionality can also use the Info object.

Section 11.3 on page 325.

MPI_PROC_NULL is a valid target rank in the MPI RMA calls MPI_ACCUMULATE,
MPI_GET, and MPI_PUT. The effect is the same as for MPI_PROC_NULL in MPI point-
to-point communication. See also item 25 in this list.

Section 11.3 on page 325.

After any RMA operation with rank MPI_PROC_NULL, it is still necessary to finish
the RMA epoch with the synchronization method that started the epoch. See also
item 24 in this list.

Section 11.3.4 on page 331.
MPI_REPLACE in MPI_ACCUMULATE, like the other predefined operations, is defined
only for the predefined MPI datatypes.

Section 13.2.8 on page 382.

About MPI_FILE_SET_VIEW and MPI_FILE_SET_INFO: When an info object that
specifies a subset of valid hints is passed to MPI_FILE_SET_VIEW or
MPI_FILE_SET_INFO, there will be no effect on previously set or defaulted hints that
the info does not specify.

Section 13.2.8 on page 382.
About MPI_FILE_GET_INFO: If no hint exists for the file associated with fh, a handle
to a newly created info object is returned that contains no key/value pair.

Section 13.3 on page 385.
If a file does not have the mode MPI_MODE_SEQUENTIAL, then
MPI_DISPLACEMENT_CURRENT is invalid as disp in MPI_FILE_SET_VIEW.

Section 13.5.2 on page 414.
The bias of 16 byte doubles was defined with 10383. The correct value is 16383.

Section 16.1.4 on page 450.
In the example in this section, the buffer should be declared as const void* buf.

Section 16.2.5 on page 470.
About MPI_TYPE_CREATE_F90_xxxx:

Advice to implementors.  An application may often repeat a call to
MPI_TYPE_CREATE_F90_xxxx with the same combination of (xxxx,p,r). The
application is not allowed to free the returned predefined, unnamed datatype
handles. To prevent the creation of a potentially huge amount of handles, the
MPI implementation should return the same datatype handle for the same (
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e Chapter 7, Split Collective Communication, describes a specification for certain non-
blocking collective operations.

e Chapter 8, Real-Time MPI, discusses MPI support for real time processing.



Chapter 2

MPI Terms and Conventions

This chapter explains notational terms and conventions used throughout the MPIl document,
some of the choices that have been made, and the rationale behind those choices. It is similar
to the MPI-1 Terms and Conventions chapter but differs in some major and minor ways.
Some of the major areas of difference are the naming conventions, some semantic definitions,
file objects, Fortran 90 vs Fortran 77, C++, processes, and interaction with signals.

2.1 Document Notation

Rationale. Throughout this document, the rationale for the design choices made in
the interface specification is set off in this format. Some readers may wish to skip
these sections, while readers interested in interface design may want to read them
carefully. (End of rationale.)

Advice to users. Throughout this document, material aimed at users and that
illustrates usage is set off in this format. Some readers may wish to skip these sections,
while readers interested in programming in MPl may want to read them carefully. (End
of advice to users.)

Advice to implementors. Throughout this document, material that is primarily
commentary to implementors is set off in this format. Some readers may wish to skip
these sections, while readers interested in MPI implementations may want to read
them carefully. (End of advice to implementors.)

2.2 Naming Conventions

In many cases MPI names for C functions are of the form Class_action_subset. This con-
vention originated with MPI-1. Since MPI-2 an attempt has been made to standardize the
names of MPI functions according to the following rules. The C++ bindings in particular
follow these rules (see Section 2.6.4 on page 18).

1. In C, all routines associated with a particular type of MPI object should be of the
form Class_action_subset or, if no subset exists, of the form Class_action. In Fortran,
all routines associated with a particular type of MPI object should be of the form
CLASS_ACTION_SUBSET or, if no subset exists, of the form CLASS_ACTION. For C
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16.

19.

21.
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. Section 7.5.4 on page 248.
In MPI_CART_RANK: If comm is associated with a zero-dimensional Cartesian topol-
ogy, coord is not significant and 0 is returned in rank.

Section 7.5.4 on page 248.
In MPI_CART_COORDS: If comm is associated with a zero-dimensional Cartesian
topology, coords will be unchanged.

. Section 7.5.5 on page 252.
In MPI_CART_SHIFT: It is erroneous to call MPI_CART_SHIFT with a direction that
is either negative or greater than or equal to the number of dimensions in the Cartesian
communicator. This implies that it is erroneous to call MPI_CART_SHIFT with a
comm that is associated with a zero-dimensional Cartesian topology.

. Section 7.5.6 on page 254.
In MPI_CART_SUB: If all entries in remain_dims are false or comm is already associ-
ated with a zero-dimensional Cartesian topology then newcomm is associated with a
zero-dimensional Cartesian topology.

Section 8.1.2 on page 260.

In MPI_GET_PROCESSOR_NAME: In C, a null character is additionally stored at
namelresultlen]. resultlen cannot be larger then MPI_MAX_PROCESSOR_NAME-1. In
Fortran, name is padded on the right with blank characters. resultlen cannot be larger
then MPI_MAX_PROCESSOR_NAME.

. Section 8.3 on page 264.
MPI_{COMM,WIN,FILE}_GET_ERRHANDLER behave as if a new error handler object
is created. That is, once the error handler is no longer needed,
MPI_ERRHANDLER_FREE should be called with the error handler returned from
MPI_ERRHANDLER_GET or MPI_{COMM,WIN,FILE}_GET_ERRHANDLER to mark
the error handler for deallocation. This provides behavior similar to that of

MPI_COMM_GROUP and MPI_GROUP_FREE.

Section 8.7 on page 278, see explanations to MPI_FINALIZE.

MPI_FINALIZE is collective over all connected processes. If no processes were spawned,
accepted or connected then this means over MPI_COMM_WORLD; otherwise it is col-
lective over the union of all processes that have been and continue to be connected,
as explained in Section 10.5.4 on page 318.

. Section 8.7 on page 278.
About MPI_ABORT:

Advice to users. Whether the errorcode is returned from the executable or from
the MPI process startup mechanism (e.g., mpie
MPI library but not mandatory. (End of advice to users.)

cec), is an aspect of quality of the

Advice to implementors. Where possible, a high-quality implementation will try
to return the errorcode from the MPI process startup mechanism (e.g. mpiexec
or singleton init). (End of advice to implementors.)
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Section 6.3.1 on page 186.

MPI_GROUP_TRANSLATE_RANKS and MPI_PROC_NULL: MPI_PROC_NULL is a valid
rank for input to MPI_GROUP_TRANSLATE_RANKS, which returns MPI_PROC_NULL
as the translated rank.

. Section 6.7 on page 221.

About the attribute caching functions:

Advice to implementors. High-quality implementations should raise an er-
ror when a keyval that was created by a call to MPI_XXX_CREATE_KEYVAL
is used with an object of the wrong type with a call to
MPI_YYY_GET_ATTR, MPI_YYY_SET_ATTR, MPI_YYY_DELETE_ATTR, or
MPI_YYY_FREE_KEYVAL. To do so, it is necessary to maintain, with each key-
val, information on the type of the associated user function. (End of advice to
implementors.)

. Section 6.8 on page 235.

In MPI_COMM_GET_NAME: In C, a null character is additionally stored at
name[resultlen]. resultlen cannot be larger then MPI_MAX_OBJECT-1. In Fortran, name
is padded on the right with blank characters. resultlen cannot be larger then
MPI_MAX_OBJECT.

Section 7.4 on page 243.
About MPI_GRAPH_CREATE and MPI_CART_CREATE: All input arguments must
have identical values on all processes of the group of comm_old.

. Section 7.5.1 on page 244.

In MPI_CART_CREATE: If ndims is zero then a zero-dimensional Cartesian topology
is created. The call is erroneous if it specifies a grid that is larger than the group size
or if ndims is negative.

. Section 7.5.3 on page 246.

In MPI_GRAPH_CREATE: If the graph is empty, i.e., nnodes == 0, then
MPI_COMM_NULL is returned in all processes.

. Section 7.5.3 on page 246.

In MPI_GRAPH_CREATE: A single process is allowed to be defined multiple times
in the list of neighbors of a process (i.e., there may be multiple edges between two
processes). A process is also allowed to be a neighbor to itself (i.e., a self loop in the
graph). The adjacency matrix is allowed to be non-symmetric.

Advice to users.  Performance implications of using multiple edges or a non-
symmetric adjacency matrix are not defined. The definition of a node-neighbor
edge does not imply a direction of the communication. (End of advice to users.)

Section 7.5.4 on page 248.

In MPI_CARTDIM_GET and MPI_CART_GET: If comm is associated with a zero-
dimensional Cartesian topology, MPI_CARTDIM_GET returns ndims=0 and
MPI_CART_GET will keep all output arguments unchanged.
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10 CHAPTER 2. MP|I TERMS AND CONVENTIONS

and Fortran we use the C++ terminology to define the Class. In C++, the routine
is a method on Class and is named MPI::Class::Action_subset. If the routine is
associated with a certain class, but does not make sense as an object method, it is a
static member function of the class.

2. If the routine is not associated with a class, the name should be of the form
Action_subset in C and ACTION_SUBSET in Fortran, and in C++ should be scoped
in the MPI namespace, MPI::Action_subset.

3. The names of certain actions have been standardized. In particular, Create creates
a new object, Get retrieves information about an object, Set sets this information,
Delete deletes information, Is asks whether or not an object has a certain property.

C and Fortran names for some MPI functions (that were defined during the MPI-1
process) violate these rules in several cases. The most common exceptions are the omission
of the Class name from the routine and the omission of the Action where one can be
inferred.

MPI identifiers are limited to 30 characters (31 with the profiling interface). This is
done to avoid exceeding the limit on some compilation systems.

2.3 Procedure Specification

MPI procedures are specified using a language-independent notation. The arguments of
procedure calls are marked as IN, OUT or INOUT. The meanings of these are:

e IN: the call may use the input value but does not update the argument,
e OUT: the call may update the argument but does not use its input value,
e INOUT: the call may both use and update the argument.

There is one special case — if an argument is a handle to an opaque object (these
terms are defined in Section 2.5.1), and the object is updated by the procedure call, then
the argument is marked INOUT or OUT. It is marked this way even though the handle itself
is not modified — we use the INOUT or OUT attribute to denote that what the handle
references is updated. Thus, in C4++, IN arguments are usually either references or pointers
to const objects.

Rationale. The definition of MPI tries to avoid, to the largest possible extent, the use
of INOUT arguments, because such use is error-prone, especially for scalar arguments.
(End of rationale.)

MPI’s use of IN, OUT and INOUT is intended to indicate to the user how an argument
is to be used, but does not provide a rigorous classification that can be translated directly
into all language bindings (e.g., INTENT in Fortran 90 bindings or const in C bindings).
For instance, the “constant” MPI_BOTTOM can usually be passed to OUT buffer arguments.
Similarly, MPI_STATUS_IGNORE can be passed as the OUT status argument.

A common occurrence for MPI functions is an argument that is used as IN by some
processes and OUT by other processes. Such an argument is, syntactically, an
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INOUT argument and is marked as such, although, semantically, it is not used in one call
both for input and for output on a single process.

Another frequent situation arises when an argument value is needed only by a subset
of the processes. When an argument is not significant at a process then an arbitrary value
can be passed as an argument.

Unless specified otherwise, an argument of type OUT or type INOUT cannot be aliased
with any other argument passed to an MPI procedure. An example of argument aliasing in
C appears below. If we define a C procedure like this,

void copyIntBuffer( int *pin, int *pout, int len )
{ int i;
for (i=0; i<len; ++i) *pout++ = *pin++;

}

then a call to it in the following code fragment has aliased arguments.

int a[10];
copyIntBuffer( a, a+3, 7);

Although the C language allows this, such usage of MPI procedures is forbidden unless
otherwise specified. Note that Fortran prohibits aliasing of arguments.

All MPI functions are first specified in the language-independent notation. Immediately
below this, the ISO C version of the function is shown followed by a version of the same
function in Fortran and then the C++ binding. Fortran in this document refers to Fortran
90; see Section 2.6.

2.4 Semantic Terms
When discussing MPI procedures the following semantic terms are used.

nonblocking A procedure is nonblocking if the procedure may return before the opera-
tion completes, and before the user is allowed to reuse resources (such as buffers)
specified in the call. A nonblocking request is started by the call that initiates it,
e.g., MPI_ISEND. The word complete is used with respect to operations, requests,
and communications. An operation completes when the user is allowed to reuse
resources, and any output buffers have been updated; i.e. a call to MPI_TEST will
return flag = true. A request is completed by a call to wait, which returns, or
a test or get status call which returns flag = true. This completing call has two ef-
fects: the status is extracted from the request; in the case of test and wait, if the
request was nonpersistent, it is freed, and becomes inactive if it was persistent. A
communication completes when all participating operations complete.

blocking A procedure is blocking if return from the procedure indicates the user is allowed
to reuse resources specified in the call.

local A procedure is local if completion of the procedure depends only on the local executing
process.

non-local A procedure is non-local if completion of the operation may require the exe-
cution of some MPI procedure on another process. Such an operation may require
communication occurring with another user process.
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Annex B
Change-Log

This annex summarizes changes from the previous version of the MPI standard to the version
presented by this document. Only changes (i.e., clarifications and new features) are pre-
sented that may cause implementation effort in the MPI libraries. Editorial modifications,
formatting, typo corrections and minor clarifications are not shown.

B.1 Changes from Version 2.0 to Version 2.1

1. Section 3.2.2 on page 27, Section 16.1.6 on page 453, and Annex A.1 on page 491.
In addition, the MPI_LONG_LONG should be added as an optional type; it is a syn-
onym for MPI_LONG_LONG_INT.

2. Section 3.2.2 on page 27, Section 16.1.6 on page 453, and Annex A.1 on page 491.

MPI_LONG_LONG_INT, MPI_LONG_LONG (as synonym), MPI_UNSIGNED_LONG_LONG,

MPI_SIGNED_CHAR, and MPI_WCHAR are moved from optional to official and they
are therefore defined for all three language bindings.

3. Section 3.2.5 on page 31.
MPI_GET_COUNT with zero-length datatypes: The value returned as the
count argument of MPI_GET_COUNT for a datatype of length zero where zero bytes
have been transferred is zero. If the number of bytes transferred is greater than zero,
MPI_UNDEFINED is returned.

4. Section 4.1 on page 77.
General rule about derived datatypes: Most datatype constructors have replication
count or block length arguments. Allowed values are nonnegative integers. If the
value is zero, no elements are generated in the type map and there is no effect on
datatype bounds or extent.

ot

. Section 4.3 on page 127.
MPI_BYTE should be used to send and receive data that is packed using

MPI_PACK_EXTERNAL.

6. Section 5.9.6 on page 171.
If comm is an intercommunicator in MPI_ALLREDUCE, then both groups should pro-
vide count and datatype arguments that specify the same type signature (i.e., it is not
necessary that both groups provide the same count value).

562
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A.4.16 Construction / Destruction

namespace MPI {

(CLASS): : (CLASS) ()
(CLASS): :~(CLASS) )

3
A.4.17 Copy / Assignment
namespace MPI {

(CLASS): : (CLASS)(const (CLASS)& data)
(CLASS)& (CLASS)::operator=(const (CLASS)& data)

};

A.4.18 Comparison

Since Status instances are not handles to underlying MPI objects, the operator==() and
operator!=() functions are not defined on the Status class.

namespace MPI {

bool (CLASS)::operator==(const (CLASS)& data) const

bool (CLASS)::operator!=(const (CLASS)& data) const

};

A.4.19 Inter-language Operability

Since there are no C++ MPI::STATUS_IGNORE and MPI::STATUSES_IGNORE objects, the
result of promoting the C or Fortran handles (MPI_STATUS_IGNORE and
MPI_STATUSES_IGNORE) to C++ is undefined.

namespace MPI {

(CLASS)& (CLASS): :operator=(const MPI_(CLASS)& data)
(CLASS): : (CLASS) (const MPI_(CLASS)& data)

(CLASS): :operator MPI_(CLASS)() const

};
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12 CHAPTER 2. MPI TERMS AND CONVENTIONS

collective A procedure is collective if all processes in a process group need to invoke the
procedure. A collective call may or may not be synchronizing. Collective calls over
the same communicator must be executed in the same order by all members of the
process group.

predefined A predefined datatype is a datatype with a predefined (constant) name (such
as MPI_INT, MPI_FLOAT_INT, or MPI_UB) or a datatype constructed with
MPI_TYPE_CREATE_F90_INTEGER, MPI_TYPE_CREATE_F90_REAL, or
MPI_TYPE_CREATE_F90_COMPLEX. The former are named whereas the latter are
unnamed.

derived A derived datatype is any datatype that is not predefined.

portable A datatype is portable, if it is a predefined datatype, or it is derived from a
portable datatype using only the type constructors MPI_TYPE_CONTIGUOUS,
MPI_TYPE_VECTOR, MPI_TYPE_INDEXED, MPI_TYPE_CREATE_INDEXED_BLOCK.

MPI_TYPE_CREATE_SUBARRAY, MPI_TYPE_DUP, and MPI_TYPE_CREATE_DARRAY.

Such a datatype is portable because all displacements in the datatype are in terms
of extents of one predefined datatype. Therefore, if such a datatype fits a data lay-
out in one memory, it will fit the corresponding data layout in another memory, if
the same declarations were used, even if the two systems have different architec-
tures. On the other hand, if a datatype was constructed using
MPI_TYPE_CREATE_HINDEXED, MPI_TYPE_CREATE_HVECTOR or
MPI_TYPE_CREATE_STRUCT, then the datatype contains explicit byte displace-
ments (e.g., providing padding to meet alignment restrictions). These displacements
are unlikely to be chosen correctly if they fit data layout on one memory, but are
used for data layouts on another process, running on a processor with a different
architecture.

equivalent Two datatypes are equivalent if they appear to have been created with the same
sequence of calls (and arguments) and thus have the same typemap. Two equivalent
datatypes do not necessarily have the same cached attributes or the same names.

2.5 Data Types

2.5.1 Opaque Objects

MPI manages system memory that is used for buffering messages and for storing internal
representations of various MPI objects such as groups, communicators, datatypes, etc. This
memory is not directly accessible to the user, and objects stored there are opaque: their
size and shape is not visible to the user. Opaque objects are accessed via handles, which
exist in user space. MPI procedures that operate on opaque objects are passed handle
arguments to access these objects. In addition to their use by MPI calls for object access,
handles can participate in assignments and comparisons.

In Fortran, all handles have type INTEGER. In C and C++, a different handle type is
defined for each category of objects. In addition, handles themselves are distinct objects
in C++. The C and C++ types must support the use of the assignment and equality
operators.



2.5. DATA TYPES 13

Advice to implementors.  In Fortran, the handle can be an index into a table of
opaque objects in a system table; in C it can be such an index or a pointer to the
object. C++ handles can simply “wrap up” a table index or pointer.

(End of advice to implementors.)

Opaque objects are allocated and deallocated by calls that are specific to each object
type. These are listed in the sections where the objects are described. The calls accept a
handle argument of matching type. In an allocate call this is an OUT argument that returns
a valid reference to the object. In a call to deallocate this is an INOUT argument which
returns with an “invalid handle” value. MPI provides an “invalid handle” constant for each
object type. Comparisons to this constant are used to test for validity of the handle.

A call to a deallocate routine invalidates the handle and marks the object for deal-
location. The object is not accessible to the user after the call. However, MPI need not
deallocate the object immediately. Any operation pending (at the time of the deallocate)
that involves this object will complete normally; the object will be deallocated afterwards.

An opaque object and its handle are significant only at the process where the object
was created and cannot be transferred to another process.

MPI provides certain predefined opaque objects and predefined, static handles to these
objects. The user must not free such objects. In C++4, this is enforced by declaring the
handles to these predefined objects to be static const.

Rationale.  This design hides the internal representation used for MPI data struc-
tures, thus allowing similar calls in C, C++, and Fortran. It also avoids conflicts with
the typing rules in these languages, and easily allows future extensions of functional-
ity. The mechanism for opaque objects used here loosely follows the POSIX Fortran
binding standard.

The explicit separation of handles in user space and objects in system space allows
space-reclaiming and deallocation calls to be made at appropriate points in the user
program. If the opaque objects were in user space, one would have to be very careful
not to go out of scope before any pending operation requiring that object completed.
The specified design allows an object to be marked for deallocation, the user program
can then go out of scope, and the object itself still persists until any pending operations
are complete.

The requirement that handles support assignment/comparison is made since such
operations are common. This restricts the domain of possible implementations. The
alternative would have been to allow handles to have been an arbitrary, opaque type.
This would force the introduction of routines to do assignment and comparison, adding
complexity, and was therefore ruled out. (End of rationale.)

Advice to users. A user may accidently create a dangling reference by assigning to a
handle the value of another handle, and then deallocating the object associated with
these handles. Conversely, if a handle variable is deallocated before the associated
object is freed, then the object becomes inaccessible (this may occur, for example, if
the handle is a local variable within a subroutine, and the subroutine is exited before
the associated object is deallocated). It is the user’s responsibility to avoid adding or
deleting references to opaque objects, except as a result of MPI calls that allocate or
deallocate such objects. (End of advice to users.)
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void File::Write_shared(const void* buf, int count,
const Datatype& datatype, Status& status)

void File::Write_shared(const void* buf, int count,
const Datatype& datatype)

};

A.4.12 Language Bindings C++ Bindings
namespace MPI {
static Datatype Datatype::Create_f90_complex(int p, int r)
static Datatype Datatype::Create_f90_integer(int r)
static Datatype Datatype::Create_f90_real(int p, int r)
Exception: :Exception(int error_code)
int Exception::Get_error_class() const
int Exception::Get_error_code() const
const char* Exception::Get_error_string() const

static Datatype Datatype::Match_size(int typeclass, int size)
};
A.4.13 Profiling Interface C++ Bindings

namespace MPI {

void Pcontrol(const int level, ...)
};

A.4.14 Deprecated C++ Bindings

namespace MPI {

};

A.4.15 C++ Bindings on all MPI Classes

The C++ language requires all classes to have four special functions: a default constructor,
a copy constructor, a destructor, and an assignment operator. The bindings for these func-
tions are listed below; their semantics are discussed in Section 16.1.5. The two constructors
are not virtual. The bindings prototype functions are using the type (CLASS) rather than
listing each function for every MPI class. The token (CLASS) can be replaced with valid MPI-
2 class names, such as Group, Datatype, etc., except when noted. In addition, bindings are
provided for comparison and inter-language operability from Sections 16.1.5 and 16.1.9.
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void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

File:

File:

File:

File:

File:

File:

File:

File:

File:

File:

File:

File:

File:

File:

File:

File:

File:

File:

File:

File:

File:

:Set_view(0Offset disp, const Datatype& etype,

const Datatype& filetype, const charx datarep,
const Info& info)

:Sync()

:Write_all_begin(const void* buf, int count,

const Datatype& datatype)

:Write_all(const void* buf, int count,

const Datatype& datatype, Status& status)

:Write_all(const void* buf, int count,

const Datatype& datatype)

:Write_all_end(const void* buf, Status& status)
:Write_all_end(const void* buf)

:Write_at_all_begin(Offset offset, const void* buf, int count,

const Datatype& datatype)

:Write_at_all_end(const void* buf, Status& status)
:Write_at_all_end(const void* buf)

:Write_at_all(Offset offset, const void* buf, int count,

const Datatype& datatype, Status& status)

:Write_at_all(Offset offset, const void* buf, int count,

const Datatype& datatype)

:Write_at(Offset offset, const void* buf, int count,

const Datatype& datatype, Status& status)

:Write_at(0ffset offset, const void* buf, int count,

const Datatype& datatype)

:Write(const void* buf, int count, const Datatype& datatype,

Status& status)

:Write(const void* buf, int count, const Datatype& datatype)

:Write_ordered_begin(const void* buf, int count,

const Datatype& datatype)

:Write_ordered(const void* buf, int count,

const Datatype& datatype, Status& status)

:Write_ordered(const void* buf, int count,

const Datatype& datatype)

:Write_ordered_end(const void* buf, Status& status)

:Write_ordered_end(const void* buf)
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Advice to implementors. The intended semantics of opaque objects is that opaque
objects are separate from one another; each call to allocate such an object copies
all the information required for the object. Implementations may avoid excessive
copying by substituting referencing for copying. For example, a derived datatype
may contain references to its components, rather then copies of its components; a
call to MPI_COMM_GROUP may return a reference to the group associated with the
communicator, rather than a copy of this group. In such cases, the implementation
must maintain reference counts, and allocate and deallocate objects in such a way that
the visible effect is as if the objects were copied. (End of advice to implementors.)

2.5.2  Array Arguments

An MPI call may need an argument that is an array of opaque objects, or an array of
handles. The array-of-handles is a regular array with entries that are handles to objects
of the same type in consecutive locations in the array. Whenever such an array is used,
an additional len argument is required to indicate the number of valid entries (unless this
number can be derived otherwise). The valid entries are at the beginning of the array;
len indicates how many of them there are, and need not be the size of the entire array.
The same approach is followed for other array arguments. In some cases NULL handles are
considered valid entries. When a NULL argument is desired for an array of statuses, one
uses MPI_STATUSES_IGNORE.

2.5.3 State

MPI procedures use at various places arguments with state types. The values of such a data
type are all identified by names, and no operation is defined on them. For example, the
MPI_TYPE_CREATE_SUBARRAY routine has a state argument order with values
MPI_ORDER_C and MPI_ORDER_FORTRAN.

2.5.4 Named Constants

MPI procedures sometimes assign a special meaning to a special value of a basic type argu-
ment; e.g., tag is an integer-valued argument of point-to-point communication operations,
with a special wild-card value, MPI_ANY_TAG. Such arguments will have a range of regular
values, which is a proper subrange of the range of values of the corresponding basic type;
special values (such as MPI_ANY_TAG) will be outside the regular range. The range of regu-
lar values, such as tag, can be queried using environmental inquiry functions (Chapter 7 of
the MPI-1 document). The range of other values, such as source, depends on values given
by other MPI routines (in the case of source it is the communicator size).

MPI also provides predefined named constant handles, such as MPI_COMM_WORLD.

All named constants, with the exceptions noted below for Fortran, can be used in
initialization expressions or assignments. These constants do not change values during
execution. Opaque objects accessed by constant handles are defined and do not change
value between MPI initialization (MPI_INIT) and MPI completion (MPI_FINALIZE).

The constants that cannot be used in initialization expressions or assignments in For-
tran are:

MPI_BOTTOM
MPI_STATUS_IGNORE
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MPI_STATUSES_IGNORE
MPI_ERRCODES_IGNORE
MPI_IN_PLACE
MPI_ARGV_NULL
MPI_ARGVS_NULL

Advice to implementors. In Fortran the implementation of these special constants
may require the use of language constructs that are outside the Fortran standard.
Using special values for the constants (e.g., by defining them through parameter
statements) is not possible because an implementation cannot distinguish these val-
ues from legal data. Typically, these constants are implemented as predefined static
variables (e.g., a variable in an MPI-declared COMMON block), relying on the fact that
the target compiler passes data by address. Inside the subroutine, this address can
be extracted by some mechanism outside the Fortran standard (e.g., by Fortran ex-
tensions or by implementing the function in C). (End of advice to implementors.)

2.5.5 Choice

MPI functions sometimes use arguments with a choice (or union) data type. Distinct calls
to the same routine may pass by reference actual arguments of different types. The mecha-
nism for providing such arguments will differ from language to language. For Fortran, the
document uses <type> to represent a choice variable; for C and C++, we use void *.

2.5.6 Addresses

Some MPI procedures use address arguments that represent an absolute address in the
calling program. The datatype of such an argument is MPI_Aint in C, MPI::Aint in C++ and
INTEGER (KIND=MPI_ADDRESS_KIND) in Fortran. There is the MPI constant MPI_BOTTOM
to indicate the start of the address range.

2.5.7 File Offsets

For I/O there is a need to give the size, displacement, and offset into a file. These quantities
can easily be larger than 32 bits which can be the default size of a Fortran integer. To
overcome this, these quantities are declared to be INTEGER (KIND=MPI_OFFSET_KIND) in
Fortran. In C one uses MPI_Offset whereas in C++ one uses MPI::Offset.

2.6 Language Binding

This section defines the rules for MPI language binding in general and for Fortran, [SO C,
and C++, in particular. (Note that ANSI C has been replaced by ISO C.) Defined here are
various object representations, as well as the naming conventions used for expressing this
standard. The actual calling sequences are defined elsewhere.

MPI bindings are for Fortran 90, though they are designed to be usable in Fortran 77
environments.

Since the word PARAMETER is a keyword in the Fortran language, we use the word
“argument” to denote the arguments to a subroutine. These are normally referred to
as parameters in C and C++, however, we expect that C and C++ programmers will
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File::
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:Read_at_all_begin(Offset offset, void* buf, int count,

const Datatype& datatype)

:Read_at_all_end(void* buf, Status& status)
:Read_at_all_end(void* buf)

:Read_at_all(0ffset offset, void* buf, int count,

const Datatype& datatype, Status& status)

:Read_at_all(0ffset offset, void* buf, int count,

const Datatype& datatype)

:Read_at (Offset offset, void* buf, int count,

const Datatype& datatype, Status& status)

:Read_at (Offset offset, void* buf, int count,

const Datatype& datatype)

:Read_ordered_begin(void* buf, int count,

const Datatype& datatype)

:Read_ordered_end(void* buf, Status& status)
:Read_ordered_end(void* buf)

:Read_ordered(void* buf, int count, const Datatype& datatype,

Status& status)

:Read_ordered(void* buf, int count, const Datatype& datatype)

:Read_shared(void* buf, int count, const Datatype& datatype,

Status& status)

:Read_shared(void* buf, int count, const Datatype& datatype)

:Read(void* buf, int count, const Datatype& datatype, Status&

status)

Read(void* buf, int count, const Datatype& datatype)

Register_datarep(const char* datarep,

File:

File:

File:

File:

File:

Datarep_conversion_function* read_conversion_fn,
Datarep_conversion_function* write_conversion_£fn,
Datarep_extent_function* dtype_file_extent_fn,
void* extra_state)

:Seek (0ffset offset, int whence)
:Seek_shared (Offset offset, int whence)
:Set_atomicity(bool flag)
:Set_info(const Info& info)

:Set_size(Offset size)
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void File::Close()

static void File::Delete(const char* filename, const Info& info)
int File::Get_amode() const

bool File::Get_atomicity() conmst

Offset File::Get_byte_offset(const Offset disp) const
Group File::Get_group() const

Info File::Get_info() const

Offset File::Get_position() const

Offset File::Get_position_shared() const

Offset File::Get_size() const

Aint File::Get_type_extent(const Datatype& datatype) const

void File::Get_view(Offset& disp, Datatype& etype, Datatype& filetype,
char* datarep) const

Request File::Iread_at(Offset offset, void* buf, int count,
const Datatype& datatype)

Request File::Iread_shared(void* buf, int count,
const Datatype& datatype)

Request File::Iread(void* buf, int count, const Datatype& datatype)

Request File::Iwrite_at(Offset offset, const void* buf, int count,
const Datatype& datatype)

Request File::Iwrite(const void* buf, int count,
const Datatype& datatype)

Request File::Iwrite_shared(const void* buf, int count,
const Datatype& datatype)

static File File::Open(const Intracomm& comm, const char* filename,
int amode, const Info& info)

void File::Preallocate(Offset size)

void File::Read_all_begin(void#* buf, int count, const Datatype& datatype)
void File::Read_all_end(void* buf, Status& status)

void File::Read_all_end(void* buf)

void File::Read_all(voidx* buf, int count, const Datatype& datatype,
Status& status)

void File::Read_all(void* buf, int count, const Datatype& datatype)

26

27

28

29

30

16 CHAPTER 2. MPI TERMS AND CONVENTIONS

understand the word “argument” (which has no specific meaning in C/C++), thus allowing
us to avoid unnecessary confusion for Fortran programmers.

Since Fortran is case insensitive, linkers may use either lower case or upper case when
resolving Fortran names. Users of case sensitive languages should avoid the “mpi_” and
“pmpi_" prefixes.

2.6.1 Deprecated Names and Functions

A number of chapters refer to deprecated or replaced MPI-1 constructs. These are constructs
that continue to be part of the MPI standard, as documented in Chapter 15, but that users
are recommended not to continue using, since better solutions were provided with MPI-2.
For example, the Fortran binding for MPI-1 functions that have address arguments uses
INTEGER. This is not consistent with the C binding, and causes problems on machines with
32 bit INTEGERs and 64 bit addresses. In MPI-2, these functions were given new names with
new bindings for the address arguments. The use of the old functions is deprecated. For
consistency, here and in a few other cases, new C functions are also provided, even though
the new functions are equivalent to the old functions. The old names are deprecated.
Another example is provided by the MPI-1 predefined datatypes MPI_UB and MPI_LB. They
are deprecated, since their use is awkward and error-prone. The MPI-2 function
MPI_TYPE_CREATE_RESIZED provides a more convenient mechanism to achieve the same
effect.

Table 2.1 shows a list of all of the deprecated constructs. Note that the constants
MPI_LB and MPI_UB are replaced by the function MPI_TYPE_CREATE_RESIZED; this is
because their principal use was as input datatypes to MPI_TYPE_STRUCT to create resized
datatypes. Also note that some C typedefs and Fortran subroutine names are included in
this list; they are the types of callback functions.

2.6.2 Fortran Binding Issues

Originally, MPI-1.1 provided bindings for Fortran 77. These bindings are retained, but they
are now interpreted in the context of the Fortran 90 standard. MPI can still be used with
most Fortran 77 compilers, as noted below. When the term Fortran is used it means Fortran
90.

All MPI names have an MPI_ prefix, and all characters are capitals. Programs must
not declare variables, parameters, or functions with names beginning with the prefix MPI_.
To avoid conflicting with the profiling interface, programs should also avoid functions with
the prefix PMPI_. This is mandated to avoid possible name collisions.

All MPI Fortran subroutines have a return code in the last argument. A few MPI
operations which are functions do not have the return code argument. The return code value
for successful completion is MPI_SUCCESS. Other error codes are implementation dependent;
see the error codes in Chapter 8 and Annex A.

Constants representing the maximum length of a string are one smaller in Fortran than
in C and C++ as discussed in Section 16.3.9.

Handles are represented in Fortran as INTEGERs. Binary-valued variables are of type
LOGICAL.

Array arguments are indexed from one.

The MPI Fortran binding is inconsistent with the Fortran 90 standard in several re-
spects. These inconsistencies, such as register optimization problems, have implications for
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Deprecated

MPI-2 Replacement

MPI_ADDRESS
MPI_TYPE_HINDEXED
MPI_TYPE_HVECTOR
MPI_TYPE_STRUCT

MPI_GET_ADDRESS
MPI_TYPE_CREATE_HINDEXED
MPI_TYPE_CREATE_HVECTOR
MPI_TYPE_CREATE_STRUCT

MPI_TYPE_EXTENT

MPI_TYPE_GET_EXTENT

MPI_TYPE_UB MPI_TYPE_GET_EXTENT
MPI_TYPE_LB MPI_TYPE_GET_EXTENT
MPI_LB MPI_TYPE_CREATE_RESIZED
MPI_UB MPI_TYPE_CREATE_RESIZED

MPI_ERRHANDLER_CREATE

MPI_ERRHANDLER_GET

MPI_ERRHANDLER_SET
MPI_Handler_function

MPI_COMM_CREATE_ERRHANDLER
MPI_COMM_GET_ERRHANDLER
MPI_COMM_SET_ERRHANDLER
MPI_Comm_errhandler_fn

MPI_KEYVAL_CREATE
MPI_KEYVAL_FREE
MPI_DUP_FN
MPI_NULL_COPY_FN
MPI_NULL_DELETE_FN
MPI_Copy_function
COPY_FUNCTION
MPI_Delete_function
DELETE_FUNCTION

MPI_COMM_CREATE_KEYVAL
MPI_COMM_FREE_KEYVAL
MPI_COMM_DUP_FN
MPI_COMM_NULL_COPY_FN
MPI_COMM_NULL_DELETE_FN
MPI_Comm_copy_attr_function
COMM_COPY_ATTR_FN
MPI_Comm_delete_attr_function
COMM_DELETE_ATTR_FN

MPI_ATTR_DELETE
MPI_ATTR_GET
MPI_ATTR_PUT

MPI_COMM_DELETE_ATTR
MPI_COMM_GET_ATTR
MPI_COMM_SET_ATTR

Table 2.1: Deprecated constructs

17

user codes that are discussed in detail in Section 16.2.2. They are also inconsistent with

Fortran 77.

e An MPI subroutine with a choice argument may be called with different argument

types.

scalar argument.

arguments are not copied on entrance to or exit from the subroutine.

An MPI subroutine with an assumed-size dummy argument may be passed an actual

Many MPI routines assume that actual arguments are passed by address and that

e An MPI implementation may read or modify user data (e.g., communication buffers
used by nonblocking communications) concurrently with a user program executing

outside MPI calls.

Several named “constants,” such as MPI_BOTTOM, MPI_STATUS_IGNORE, and
MPI_ERRCODES_IGNORE, are not ordinary Fortran constants and require a special
implementation. See Section 2.5.4 on page 14 for more information.
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void Win::
Group Win:

void Win::

void
void

void

void
bool
void

void

};

Win:
Win:

Win:

Win:
Win:
Win:

Win:
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Free()
:Get_group() const

Get(void *origin_addr, int origin_count, const Datatype&
origin_datatype, int target_rank, Aint target_disp, int
target_count, const Datatype& target_datatype) const

:Lock(int lock_type, int rank, int assert) const
:Post (const Group& group, int assert) const

:Put (const void* origin_addr, int origin_count, const Datatype&

origin_datatype, int target_rank, Aint target_disp, int
target_count, const Datatype& target_datatype) const

:Start (const Group& group, int assert) const
:Test () const
:Unlock(int rank) const

:Wait() const

A.4.10 External Interfaces C++ Bindings

namespace MPI {

void Grequest::Complete ()

int Init_thread(int& argc, char**& argv, int required)

int Init_thread(int required)

bool Is_thread_main()

int Query_thread()

void Status::Set_cancelled(bool flag)

void Status::Set_elements(const Datatype& datatype, int count)

static Grequest Grequest::Start(const Grequest::Query_function query_fn,

};

A4.11

const Grequest::Free_function free_fn,
const Grequest::Cancel_function cancel_fn, void *extra_state)

I/O C++ Bindings

namespace MPI {
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Intercomm Intracomm::Connect(const char* port_name, const Info& info,
int root) const

void Comm::Disconnect ()
static Intercomm Comm::Get_parent()
static Intercomm Comm::Join(const int fd)

void Lookup_name(const char* service_name, const Info& info,
char* port_name)

void Open_port(const Info& info, char* port_name)

void Publish_name(const char* service_name, const Info& info,
const char* port_name)

Intercomm Intracomm::Spawn(const char* command, const char* argv[],
int maxprocs, const Info& info, int root) const

Intercomm Intracomm::Spawn(const char* command, const char* argv[],
int maxprocs, const Info& info, int root,
int array_of_errcodes[]) const

Intercomm Intracomm::Spawn_multiple(int count,
const char* array_of_commands[], const char** array_of_argv[],
const int array_of_maxprocs[], const Info array_of_infol[],
int root, int array_of_errcodes[])

Intercomm Intracomm::Spawn_multiple(int count,
const char* array_of_commands[], const char** array_of_argv[],
const int array_of_maxprocs[], const Info array_of_infol[],
int root)

void Unpublish_name(const char* service_name, const Info& info,
const char* port_name)

};

A.4.9 One-Sided Communications C++ Bindings

namespace MPI {

void Win::Accumulate(const void* origin_addr, int origin_count, const
Datatype& origin_datatype, int target_rank, Aint target_disp,
int target_count, const Datatype& target_datatype, const Op&
op) const

void Win::Complete() const

static Win Win::Create(const void* base, Aint size, int disp_unit, const
Info& info, const Intracomm& comm)

void Win::Fence(int assert) const

1
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Additionally, MPI is inconsistent with Fortran 77 in a number of ways, as noted below.
e MPI identifiers exceed 6 characters.
e MPI identifiers may contain underscores after the first character.

e MPI requires an include file, mpif.h. On systems that do not support include files,
the implementation should specify the values of named constants.

e Many routines in MPI| have KIND-parameterized integers (e.g., MPI_ADDRESS_KIND
and MPI_OFFSET_KIND) that hold address information. On systems that do not sup-
port Fortran 90-style parameterized types, INTEGER*8 or INTEGER should be used
instead.

e The memory allocation routine MPI_ALLOC_MEM cannot be usefully used in Fortran
without a language extension that allows the allocated memory to be associated with
a Fortran variable.

2.6.3 C Binding Issues

We use the ISO C declaration format. All MPI names have an MPI_ prefix, defined constants
are in all capital letters, and defined types and functions have one capital letter after the
prefix. Programs must not declare variables or functions with names beginning with the
prefix MPI_. To support the profiling interface, programs should not declare functions with
names beginning with the prefix PMPI_.

The definition of named constants, function prototypes, and type definitions must be
supplied in an include file mpi.h.

Almost all C functions return an error code. The successful return code will be
MPI_SUCCESS, but failure return codes are implementation dependent.

Type declarations are provided for handles to each category of opaque objects.

Array arguments are indexed from zero.

Logical flags are integers with value 0 meaning “false” and a non-zero value meaning
“true.”

Choice arguments are pointers of type void *.

Address arguments are of MPI defined type MPI_Aint. File displacements are of type
MPI_Offset. MPI_Aint is defined to be an integer of the size needed to hold any valid address
on the target architecture. MPI_Offset is defined to be an integer of the size needed to hold
any valid file size on the target architecture.

2.6.4 C++ Binding Issues

There are places in the standard that give rules for C and not for C++. In these cases,
the C rule should be applied to the C++ case, as appropriate. In particular, the values of
constants given in the text are the ones for C and Fortran. A cross index of these with the
C++ names is given in Annex A.

We use the [SO C++ declaration format. All MPI names are declared within the scope
of a namespace called MPI and therefore are referenced with an MPI:: prefix. Defined
constants are in all capital letters, and class names, defined types, and functions have only
their first letter capitalized. Programs must not declare variables or functions in the MPI
namespace. This is mandated to avoid possible name collisions.
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The definition of named constants, function prototypes, and type definitions must be
supplied in an include file mpi.h.

Advice to implementors. The file mpi.h may contain both the C and C++ defini-
tions. Usually one can simply use the defined value (generally __cplusplus, but not
required) to see if one is using C++ to protect the C++ definitions. It is possible
that a C compiler will require that the source protected this way be legal C code.
In this case, all the C4++ definitions can be placed in a different include file and the
“#include” directive can be used to include the necessary C++ definitions in the
mpi.h file. (End of advice to implementors.)

C++ functions that create objects or return information usually place the object or
information in the return value. Since the language neutral prototypes of MPI functions
include the C++ return value as an OUT parameter, semantic descriptions of MPI functions
refer to the C++ return value by that parameter name. The remaining C++ functions
return void.

In some circumstances, MPI permits users to indicate that they do not want a return
value. For example, the user may indicate that the status is not filled in. Unlike C and
Fortran where this is achieved through a special input value, in C++ this is done by having
two bindings where one has the optional argument and one does not.

C++ functions do not return error codes. If the default error handler has been set
to MPI::ERRORS_THROW_EXCEPTIONS, the C++ exception mechanism is used to signal an
error by throwing an MPI: :Exception object.

It should be noted that the default error handler (i.e., MPI::ERRORS_ARE_FATAL) on a
given type has not changed. User error handlers are also permitted. MPI::ERRORS_RETURN
simply returns control to the calling function; there is no provision for the user to retrieve
the error code.

User callback functions that return integer error codes should not throw exceptions;
the returned error will be handled by the MPI implementation by invoking the appropriate
error handler.

Advice to users. C+-+ programmers that want to handle MPI errors on their own
should use the MPI::ERRORS_THROW_EXCEPTIONS error handler, rather than
MPI::ERRORS_RETURN, that is used for that purpose in C. Care should be taken using
exceptions in mixed language situations. (End of advice to users.)

Opaque object handles must be objects in themselves, and have the assignment and
equality operators overridden to perform semantically like their C and Fortran counterparts.

Array arguments are indexed from zero.

Logical flags are of type bool.

Choice arguments are pointers of type void *.

Address arguments are of MPl-defined integer type MPI::Aint, defined to be an integer
of the size needed to hold any valid address on the target architecture. Analogously,
MPI::Offset is an integer to hold file offsets.

Most MPI functions are methods of MPI C++ classes. MPI class names are generated
from the language neutral MPI types by dropping the MPI_ prefix and scoping the type
within the MPI namespace. For example, MPI_DATATYPE becomes MPI: :Datatype.

The names of MPI functions generally follow the naming rules given. In some circum-
stances, the MPI function is related to a function defined already for MPI-1 with a name
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void Get_processor_name(char* name, int& resultlen)

void Get_version(int& version, int& subversion)

void Init
void Init

bool Is_f

(int& argc, char**& argv)
O

inalized()

bool Is_initialized()

void Comm::Set_errhandler(const Errhandler& errhandler)

void File

void Win:

::Set_errhandler (const Errhandler& errhandler)

:Set_errhandler(const Errhandler& errhandler)

double Wtick()

double Wtime()

};

A.4.7 The Info Object C++ Bindings

namespace MPI {

static Info Info::Create()

void Info

Info Info:

void Info:

bool Info:

int Info:
void Info
bool Info

void Info

};

::Delete(const char* key)

:Dup() const

:Free()

:Get (const char* key, int valuelen, char* value) const
:Get_nkeys() const

::Get_nthkey(int n, char* key) const
::Get_valuelen(const char* key, int& valuelen) const

::Set(const char* key, const char* value)

A.4.8 Process Creation and Management C++ Bindings

namespace MPI {

Intercomm

Intracomm: :Accept(const char* port_name, const Info& info,
int root) const

void Close_port(const char* port_name)
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void Graphcomm::Get_topo(int maxindex, int maxedges, int index[],
int edges[]) const

int Comm::Get_topology() const

int Cartcomm::Map(int ndims, const int dims[], const bool periods[])
const

int Graphcomm::Map(int nnodes, const int index[], const int edges[])
const

void Cartcomm::Shift(int direction, int disp, int& rank_source,
int& rank_dest) const

Cartcomm Cartcomm::Sub(const bool remain_dims[]) const

A.4.6 MPI Environmenta Management C++ Bindings

namespace MPI {

void Comm::Abort(int errorcode)

int Add_error_class()

int Add_error_code(int errorclass)

void Add_error_string(int errorcode, const char* string)
void* Alloc_mem(Aint size, const Info& info)

void Comm::Call_errhandler(int errorcode) const

void File::Call_errhandler(int errorcode) const

void Win::Call_errhandler(int errorcode) const
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static Errhandler Comm::Create_errhandler(Comm::Errhandler_fn* function)

static Errhandler File::Create_errhandler(File::Errhandler_fn* function)

static Errhandler Win::Create_errhandler (Win::Errhandler_fn* function)
void Finalize()

void Free_mem(void *base)

void Errhandler::Free()

Errhandler Comm::Get_errhandler() const

Errhandler File::Get_errhandler() const

Errhandler Win::Get_errhandler() conmst

int Get_error_class(int errorcode)

void Get_error_string(int errorcode, char* name, int& resultlen)
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that does not follow the naming conventions. In this circumstance, the language neutral
name is in analogy to the MPI name even though this gives an MPI-2 name that violates the
naming conventions. The C and Fortran names are the same as the language neutral name
in this case. However, the C++ names do reflect the naming rules and can differ from the C
and Fortran names. Thus, the analogous name in C++ to the MPI name may be different
than the language neutral name. This results in the C4++ name differing from the language
neutral name. An example of this is the language neutral name of MPI_FINALIZED and a
C++ name of MPI::ls_finalized.

In C++, function typedefs are made publicly within appropriate classes. However,
these declarations then become somewhat cumbersome, as with the following:
typedef MPI::Grequest::Query_function();

would look like the following:

namespace MPI {
class Request {
//
};

class Grequest : public MPI::Request {

/]

typedef Query_function(void* extra_state, MPI::Status& status);
};
3

Rather than including this scaffolding when declaring C++ typedefs, we use an abbreviated
form. In particular, we explicitly indicate the class and namespace scope for the typedef
of the function. Thus, the example above is shown in the text as follows:

typedef int MPI::Grequest::Query_function(void* extra_state,
MPI::Status& status)

The C++ bindings presented in Annex A.4 and throughout this document were gener-
ated by applying a simple set of name generation rules to the MPI function specifications.
While these guidelines may be sufficient in most cases, they may not be suitable for all
situations. In cases of ambiguity or where a specific semantic statement is desired, these
guidelines may be superseded as the situation dictates.

1. All functions, types, and constants are declared within the scope of a namespace called
MPI.

2. Arrays of MPI handles are always left in the argument list (whether they are IN or
OUT arguments).

3. If the argument list of an MPI function contains a scalar IN handle, and it makes
sense to define the function as a method of the object corresponding to that handle,
the function is made a member function of the corresponding MPI class. The member
functions are named according to the corresponding MPI function name, but without
the “MPI_" prefix and without the object name prefix (if applicable). In addition:
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(a) The scalar IN handle is dropped from the argument list, and this corresponds
to the dropped argument.

(b) The function is declared const.

4. MPI functions are made into class functions (static) when they belong on a class but
do not have a unique scalar IN or INOUT parameter of that class.

5. If the argument list contains a single OUT argument that is not of type MPI_STATUS
(or an array), that argument is dropped from the list and the function returns that
value.

Example 2.1 The C++ binding for MPI_COMM_SIZE is
int MPI::Comm::Get_size(void) const.

6. If there are multiple OUT arguments in the argument list, one is chosen as the return
value and is removed from the list.

7. If the argument list does not contain any OUT arguments, the function returns void.

Example 2.2 The C++ binding for MPI_REQUEST_FREE is
void MPI::Request::Free(void)

8. MPI functions to which the above rules do not apply are not members of any class,
but are defined in the MPI namespace.

Example 2.3 The C++ binding for MPI_BUFFER_ATTACH is
void MPI::Attach_buffer(void* buffer, int size).

9. All class names, defined types, and function names have only their first letter capital-
ized. Defined constants are in all capital letters.
10. Any IN pointer, reference, or array argument must be declared const.

11. Handles are passed by reference.

12. Array arguments are denoted with square brackets ([1), not pointers, as this is more
semantically precise.

2.6.5 Functions and Macros

An implementation is allowed to implement MPI_WTIME, MPI_WTICK, PMPI_WTIME,
PMPI_WTICK, and the handle-conversion functions (MPI_Group_f2c, etc.) in Section 16.3.4,
and no others, as macros in C.

Advice to implementors. Implementors should document which routines are imple-
mented as macros. (End of advice to implementors.)

Advice to users. If these routines are implemented as macros, they will not work
with the MPI profiling interface. (End of advice to users.)
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bool Comm::Is_inter() const

Intracomm Intercomm::Merge(bool high) const

Group Group::Range_excl(int n, const int ranges[][3]) const

Group Group::Range_incl(int n, const int ranges[][3]) const

void Comm::Set_attr(int comm_keyval, const void* attribute_val) const
void Datatype::Set_attr(int type_keyval, const void* attribute_val)
void Win::Set_attr(int win_keyval, const void* attribute_val)

void Comm::Set_name(const char* comm_name)

void Datatype::Set_name(const char* type_name)

void Win::Set_name(const char* win_name)

Intercomm Intercomm::Split(int color, int key) const

Intracomm Intracomm::Split(int color, int key) const

static void Group::Translate_ranks (const Group& groupl, int n,
const int ranksi[], const Group& group2, int ranks2[])

static Group Group::Union(const Group& groupl, const Group& group2)

};

A.45 Process Topologies C++ Bindings

namespace MPI {

void Compute_dims(int nnodes, int ndims, int dims[])

Cartcomm Intracomm::Create_cart(int ndims, const int dims[],
const bool periods[], bool reorder) const

Graphcomm Intracomm::Create_graph(int nnodes, const int index[],
const int edges[], bool reorder) const

int Cartcomm::Get_cart_rank(const int coords[]) const

void Cartcomm::Get_coords(int rank, int maxdims, int coords[]) const
int Cartcomm: :Get_dim() const

void Graphcomm::Get_dims(int nnodes[], int nedges[]) comst

int Graphcomm::Get_neighbors_count(int rank) const

void Graphcomm::Get_neighbors(int rank, int maxneighbors, int
neighbors[]) const

void Cartcomm::Get_topo(int maxdims, int dims[], bool periods[],
int coords[]) comst
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static int Win::Create_keyval(Win::Copy_attr_function* win_copy_attr_fn,
Win::Delete_attr_function* win_delete_attr_fn,
void* extra_state)

void Comm::Delete_attr(int comm_keyval)

void Datatype::Delete_attr(int type_keyval)

void Win::Delete_attr(int win_keyval)

static Group Group::Difference(const Group& groupl, const Group& group2)
Cartcomm Cartcomm::Dup() const

Graphcomm Graphcomm: :Dup() const

Intercomm Intercomm::Dup() const

Intracomm Intracomm::Dup() const

Group Group::Excl(int n, const int ranks[]) const

static void Comm::Free_keyval(int& comm_keyval)

static void Datatype::Free_keyval(int& type_keyval)

static void Win::Free_keyval(int& win_keyval)

void Comm: :Free()

void Group::Free()

bool Comm::Get_attr(int comm_keyval, void* attribute_val) const
bool Datatype::Get_attr(int type_keyval, void* attribute_val) const
bool Win::Get_attr(int win_keyval, void* attribute_val) const
Group Comm: :Get_group() const

void Comm: :Get_name(char* comm_name, int& resultlen) const
void Datatype::Get_name(char* type_name, int& resultlen) const
void Win::Get_name(char* win_name, int& resultlen) const

int Comm::Get_rank() const

int Group::Get_rank() const

Group Intercomm::Get_remote_group() const

int Intercomm::Get_remote_size() const

int Comm::Get_size() const

int Group::Get_size() const

Group Group::Incl(int n, const int ranks[]) const

static Group Group::Intersect(const Group& groupl, const Group& group2)

26

27

28

29

30

22 CHAPTER 2. MPI TERMS AND CONVENTIONS

2.7 Processes

An MPI program consists of autonomous processes, executing their own code, in an MIMD
style. The codes executed by each process need not be identical. The processes communicate
via calls to MPIl communication primitives. Typically, each process executes in its own
address space, although shared-memory implementations of MPI are possible.

This document specifies the behavior of a parallel program assuming that only MPI
calls are used. The interaction of an MPI program with other possible means of commu-
nication, I/O, and process management is not specified. Unless otherwise stated in the
specification of the standard, MPI places no requirements on the result of its interaction
with external mechanisms that provide similar or equivalent functionality. This includes,
but is not limited to, interactions with external mechanisms for process control, shared and
remote memory access, file system access and control, interprocess communication, process
signaling, and terminal I/O. High quality implementations should strive to make the results
of such interactions intuitive to users, and attempt to document restrictions where deemed
necessary.

Advice to implementors. Implementations that support such additional mechanisms
for functionality supported within MPI are expected to document how these interact
with MPL. (End of advice to implementors.)

The interaction of MPI and threads is defined in Section 12.4.

2.8 Error Handling

MPI provides the user with reliable message transmission. A message sent is always received
correctly, and the user does not need to check for transmission errors, time-outs, or other
error conditions. In other words, MPI does not provide mechanisms for dealing with failures
in the communication system. If the MPIl implementation is built on an unreliable underly-
ing mechanism, then it is the job of the implementor of the MPI subsystem to insulate the
user from this unreliability, or to reflect unrecoverable errors as failures. Whenever possible,
such failures will be reflected as errors in the relevant communication call. Similarly, MPI
itself provides no mechanisms for handling processor failures.

Of course, MPI programs may still be erroneous. A program error can occur when
an MPI call is made with an incorrect argument (non-existing destination in a send oper-
ation, buffer too small in a receive operation, etc.). This type of error would occur in any
implementation. In addition, a resource error may occur when a program exceeds the
amount of available system resources (number of pending messages, system buffers, etc.).
The occurrence of this type of error depends on the amount of available resources in the
system and the resource allocation mechanism used; this may differ from system to system.
A high-quality implementation will provide generous limits on the important resources so
as to alleviate the portability problem this represents.

In C and Fortran, almost all MPI calls return a code that indicates successful completion
of the operation. Whenever possible, MPI calls return an error code if an error occurred
during the call. By default, an error detected during the execution of the MPI library
causes the parallel computation to abort, except for file operations. However, MPI provides
mechanisms for users to change this default and to handle recoverable errors. The user
may specify that no error is fatal, and handle error codes returned by MPI calls by himself
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or herself. Also, the user may provide his or her own error-handling routines, which will
be invoked whenever an MPI call returns abnormally. The MPI error handling facilities
are described in Section 8.3. The return values of C++ functions are not error codes.
If the default error handler has been set to MPI::ERRORS_THROW_EXCEPTIONS, the C++
exception mechanism is used to signal an error by throwing an MPI: :Exception object. Sce
also Section 16.1.8 on page 457.

Several factors limit the ability of MPI calls to return with meaningful error codes
when an error occurs. MPl may not be able to detect some errors; other errors may be too
expensive to detect in normal execution mode; finally some errors may be “catastrophic”
and may prevent MPI from returning control to the caller in a consistent state.

Another subtle issue arises because of the nature of asynchronous communications: MPI
calls may initiate operations that continue asynchronously after the call returned. Thus, the
operation may return with a code indicating successful completion, yet later cause an error
exception to be raised. If there is a subsequent call that relates to the same operation (e.g.,
a call that verifies that an asynchronous operation has completed) then the error argument
associated with this call will be used to indicate the nature of the error. In a few cases, the
error may occur after all calls that relate to the operation have completed, so that no error
value can be used to indicate the nature of the error (e.g., an error on the receiver in a send
with the ready mode). Such an error must be treated as fatal, since information cannot be
returned for the user to recover from it.

This document does not specify the state of a computation after an erroneous MPI call
has occurred. The desired behavior is that a relevant error code be returned, and the effect
of the error be localized to the greatest possible extent. E.g., it is highly desirable that an
erroneous receive call will not cause any part of the receiver’s memory to be overwritten,
beyond the area specified for receiving the message.

Implementations may go beyond this document in supporting in a meaningful manner
MPI calls that are defined here to be erroneous. For example, MPI specifies strict type
matching rules between matching send and receive operations: it is erroneous to send a
floating point variable and receive an integer. Implementations may go beyond these type
matching rules, and provide automatic type conversion in such situations. It will be helpful
to generate warnings for such non-conforming behavior.

MPI defines a way for users to create new error codes as defined in Section 8.5.

2.9 Implementation Issues

There are a number of areas where an MPI implementation may interact with the operating
environment and system. While MPI does not mandate that any services (such as signal
handling) be provided, it does strongly suggest the behavior to be provided if those services
are available. This is an important point in achieving portability across platforms that
provide the same set of services.

2.9.1 Independence of Basic Runtime Routines

MPI programs require that library routines that are part of the basic language environment
(such as write in Fortran and printf and malloc in SO C) and are executed after
MPI_INIT and before MPI_FINALIZE operate independently and that their completion is
independent of the action of other processes in an MPI program.
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void Op::Init(User_function* function, bool commute)

void Comm::Reduce(const void* sendbuf, void* recvbuf, int count,
const Datatype& datatype, const Op& op, int root) const = 0

void Comm::Reduce_scatter(const void* sendbuf, void* recvbuf,
int recvcounts[], const Datatype& datatype, const Op& op)
const = 0

void Intracomm::Scan(const void* sendbuf, void* recvbuf, int count, const
Datatype& datatype, const Op& op) const

void Comm::Scatter(const void* sendbuf, int sendcount, const
Datatype& sendtype, void* recvbuf, int recvcount,
const Datatype& recvtype, int root) const = 0

void Comm::Scatterv(const void* sendbuf, const int sendcounts[],
const int displs[], const Datatype& sendtype, void* recvbuf,
int recvcount, const Datatype& recvtype, int root) comnst = 0

};

A.4.4  Groups, Contexts, Communicators, and Caching C++ Bindings

namespace MPI {

Comm& Comm: :Clone() const = 0

Cartcomm& Cartcomm::Clone() const

Graphcomm& Graphcomm: :Clone() const

Intercomm& Intercomm::Clone() const

Intracomm& Intracomm::Clone() const

static int Comm::Compare(const Comm& comml, const Comm& comm2)
static int Group::Compare(const Group& groupl, const Group& group2)
Intercomm Intercomm::Create(const Group& group) const

Intracomm Intracomm::Create(const Group& group) const

Intercomm Intracomm::Create_intercomm(int local_leader, const
Comm& peer_comm, int remote_leader, int tag) const

static int Comm::Create_keyval(Comm: :Copy_attr_functionx
comm_copy_attr_fn,
Comm: :Delete_attr_function* comm_delete_attr_fn,
void* extra_state)

static int Datatype::Create_keyval(Datatype::Copy_attr_functionx
type_copy_attr_fn, Datatype::Delete_attr_function*
type_delete_attr_fn, void* extra_state)
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void Datatype::Unpack_external(const char* datarep, const void#* inbuf,
Aint insize, Aint& position, void* outbuf, int outcount) const

};

A.4.3 Collective Communication C++ Bindings

namespace MPI {

void Comm::Allgather(const void* sendbuf, int sendcount, const
Datatype& sendtype, void* recvbuf, int recvcount,
const Datatype& recvtype) const = 0

void Comm::Allgatherv(const void* sendbuf, int sendcount, const
Datatype& sendtype, void* recvbuf, const int recvcounts[],
const int displs[], const Datatype& recvtype) const = 0

void Comm::Allreduce(const void* sendbuf, void* recvbuf, int count, const
Datatype& datatype, const Op& op) const = 0

void Comm::Alltoall(const void* sendbuf, int sendcount, const
Datatype& sendtype, void* recvbuf, int recvcount,
const Datatype& recvtype) const = 0

void Comm::Alltoallv(const void* sendbuf, const int sendcounts[],
const int sdispls[], const Datatype& sendtype, void* recvbuf,
const int recvcounts[], const int rdispls[],
const Datatype& recvtype) const = 0

void Comm::Alltoallw(const void* sendbuf, const int sendcounts[], const
int sdispls[], const Datatype sendtypes([], void* recvbuf,
const int recvcounts[], const int rdispls[], const Datatype
recvtypes[]) const = 0

void Comm::Barrier() const = 0

void Comm::Bcast(void* buffer, int count, const Datatype& datatype,
int root) const = 0

void Intracomm::Exscan(const void* sendbuf, void* recvbuf, int count,
const Datatype& datatype, const Op& op) const

void Op::Free()

void Comm::Gather(const void* sendbuf, int sendcount, const
Datatype& sendtype, void* recvbuf, int recvcount,
const Datatype& recvtype, int root) const = 0

void Comm::Gatherv(const void* sendbuf, int sendcount, const
Datatype& sendtype, void* recvbuf, const int recvcounts[],
const int displs[], const Datatype& recvtype, int root)
const = 0
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Note that this in no way prevents the creation of library routines that provide parallel
services whose operation is collective. However, the following program is expected to com-
plete in an ISO C environment regardless of the size of MPI_COMM_WORLD (assuming that
printf is available at the executing nodes).

int rank;

MPI_Init((void *)0, (void *)0);
MPI_Comm_rank (MPI_COMM_WORLD, &rank) ;

if (rank == 0) printf("Starting program\n");
MPI_Finalize();

The corresponding Fortran and C++ programs are also expected to complete.

An example of what is not required is any particular ordering of the action of these
routines when called by several tasks. For example, MPI makes neither requirements nor
recommendations for the output from the following program (again assuming that I/O is
available at the executing nodes).

MPI_Comm_rank (MPI_COMM_WORLD, &rank);
printf ("Output from task rank %d\n", rank);

In addition, calls that fail because of resource exhaustion or other error are not con-
sidered a violation of the requirements here (however, they are required to complete, just
not to complete successfully).

2.9.2 Interaction with Signals

MPI does not specify the interaction of processes with signals and does not require that MPI
be signal safe. The implementation may reserve some signals for its own use. It is required
that the implementation document which signals it uses, and it is strongly recommended
that it not use SIGALRM, SIGFPE, or SIGIO. Implementations may also prohibit the use of
MPI calls from within signal handlers.

In multithreaded environments, users can avoid conflicts between signals and the MPI
library by catching signals only on threads that do not execute MPI calls. High quality
single-threaded implementations will be signal safe: an MPI call suspended by a signal will
resume and complete normally after the signal is handled.

2.10 Examples

The examples in this document are for illustration purposes only. They are not intended
to specify the standard. Furthermore, the examples have not been carefully checked or
verified.



Chapter 3

Point-to-Point Communication

3.1 Introduction

Sending and receiving of messages by processes is the basic MPl communication mechanism.
The basic point-to-point communication operations are send and receive. Their use is
illustrated in the example below.

#include "mpi.h"
main( argc, argv )

int argc;
char **argv;
{

char message[20];

int myrank;

MPI_Status status;

MPI_Init( &argc, &argv );

MPI_Comm_rank( MPI_COMM_WORLD, &myrank );

if (myrank == 0) /* code for process zero */

{
strcpy (message, "Hello, there");
MPI_Send(message, strlen(message)+1, MPI_CHAR, 1, 99, MPI_COMM_WORLD) ;
}
else if (myrank == 1) /* code for process one */
{
MPI_Recv(message, 20, MPI_CHAR, 0, 99, MPI_COMM_WORLD, &status);
printf("received :%s:\n", message);
}

MPI_Finalize();

In this example, process zero (myrank = 0) sends a message to process one using the
send operation MPI_SEND. The operation specifies a send buffer in the sender memory
from which the message data is taken. In the example above, the send buffer consists of
the storage containing the variable message in the memory of process zero. The location,
size and type of the send buffer are specified by the first three parameters of the send
operation. The message sent will contain the 13 characters of this variable. In addition,
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Datatype Datatype::Create_hvector(int count, int blocklength, Aint
stride) const

Datatype Datatype::Create_indexed_block(int count, int blocklength,
const int array_of_displacements[]) const

Datatype Datatype::Create_indexed(int count,
const int array_of_blocklengths[],
const int array_of_displacements[]) const

Datatype Datatype::Create_resized(const Aint lb, const Aint extent) const

static Datatype Datatype::Create_struct(int count,
const int array_of_blocklengths[], const Aint
array_of_displacements[], const Datatype array_of_types[])

Datatype Datatype::Create_subarray(int ndims, const int array_of_sizes[],
const int array_of_subsizes[], const int array_of_starts[],
int order) const

Datatype Datatype::Create_vector(int count, int blocklength, int stride)
const

Datatype Datatype::Dup() const
void Datatype: :Free()
Aint Get_address(void* location)

void Datatype::Get_contents(int max_integers, int max_addresses,
int max_datatypes, int array_of_integersl[],
Aint array_of_addresses[], Datatype array_of_datatypes[])
const

int Status::Get_elements(const Datatype& datatype) const

void Datatype::Get_envelope(int& num_integers, int& num_addresses,
int& num_datatypes, int& combiner) const

void Datatype::Get_extent (Aint& 1b, Aint& extent) const
int Datatype::Get_size() const
void Datatype::Get_true_extent (Aint& true_lb, Aint& true_extent) const

void Datatype::Pack(const void* inbuf, int incount, void *outbuf,
int outsize, int& position, const Comm &comm) const

void Datatype::Pack_external(const char* datarep, const void* inbuf,
int incount, void* outbuf, Aint outsize, Aint& position) const

Aint Datatype::Pack_external_size(const char* datarep, int incount) const
int Datatype::Pack_size(int incount, const Comm& comm) const

void Datatype::Unpack(const void* inbuf, int insize, void *outbuf,
int outcount, int& position, const Comm& comm) const
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static bool Request::Testany(int count, Request array_of_requests[],
int& index, Status& status)

static bool Request::Testany(int count, Request array_of_requests[],
int& index)

bool Request::Test()
bool Request::Test(Status& status)

static int Request::Testsome(int incount, Request array_of_requests[],
int array_of_indices[], Status array_of_statuses[])

static int Request::Testsome(int incount, Request array_of_requests[],
int array_of_indices[])

static void Request::Waitall(int count, Request array_of_requests[],
Status array_of_statuses[])

static void Request::Waitall(int count, Request array_of_requests[])

static int Request::Waitany(int count, Request array_of_requests[],
Status& status)

static int Request::Waitany(int count, Request array_of_requests[])
void Request::Wait(Status& status)

static int Request::Waitsome(int incount, Request array_of_requests[],
int array_of_indices[], Status array_of_statuses[])

static int Request::Waitsome(int incount, Request array_of_requests[],
int array_of_indices[])

void Request::Wait()

A.4.2 Datatypes C++ Bindings

namespace MPI {

void Datatype: :Commit ()
Datatype Datatype::Create_contiguous(int count) const

Datatype Datatype::Create_darray(int size, int rank, int ndims,
const int array_of_gsizes[], const int array_of_distribs[],
const int array_of_dargs[], const int array_of_psizes[],
int order) const

Datatype Datatype::Create_hindexed(int count,
const int array_of_blocklengths[],
const Aint array_of_displacements[]) const
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the send operation associates an envelope with the message. This envelope specifies the
message destination and contains distinguishing information that can be used by the receive
operation to select a particular message. The last three parameters of the send operation,
along with the rank of the sender, specify the envelope for the message sent. Process one
(myrank = 1) receives this message with the receive operation MPI_RECV. The message to
be received is selected according to the value of its envelope, and the message data is stored
into the receive buffer. In the example above, the receive buffer consists of the storage
containing the string message in the memory of process one. The first three parameters
of the receive operation specify the location, size and type of the receive buffer. The next
three parameters are used for selecting the incoming message. The last parameter is used
to return information on the message just received.

The next sections describe the blocking send and receive operations. We discuss send,
receive, blocking communication semantics, type matching requirements, type conversion
in heterogeneous environments, and more general communication modes. Nonblocking
communication is addressed next, followed by channel-like constructs and send-receive
operations, Nonblocking communication is addressed next, followed by channel-like con-
structs and send-receive operations, ending with a description of the “dummy” process,
MPI_PROC_NULL.

3.2 Blocking Send and Receive Operations
3.2.1 Blocking Send

The syntax of the blocking send operation is given below.

MPI_SEND(buf, count, datatype, dest, tag, comm)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (nonnegative inte-
ger)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

int MPI_Send(void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

MPI_SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF (%)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

void MPI::Comm::Send(const void* buf, int count, const
MPI::Datatype& datatype, int dest, int tag) const

The blocking semantics of this call are described in Section 3.4.



3.2. BLOCKING SEND AND RECEIVE OPERATIONS 27

3.2.2 Message Data

The send buffer specified by the MPI_SEND operation consists of count successive entries of
the type indicated by datatype, starting with the entry at address buf. Note that we specify
the message length in terms of number of elements, not number of bytes. The former is
machine independent and closer to the application level.

The data part of the message consists of a sequence of count values, each of the type
indicated by datatype. count may be zero, in which case the data part of the message is
empty. The basic datatypes that can be specified for message data values correspond to the
basic datatypes of the host language. Possible values of this argument for Fortran and the
corresponding Fortran types are listed in Table 3.1.

MPI datatype Fortran datatype
MPI_INTEGER INTEGER
MPI_REAL REAL
MPI_DOUBLE_PRECISION | DOUBLE PRECISION
MPI_COMPLEX COMPLEX
MPI_LOGICAL LOGICAL
MPI_CHARACTER CHARACTER (1)
MPI_BYTE

MPI_PACKED

Table 3.1: Predefined MPI datatypes corresponding to Fortran datatypes

Possible values for this argument for C and the corresponding C types are listed in
Table 3.2.

The datatypes MPI_BYTE and MPI_PACKED do not correspond to a Fortran or C
datatype. A value of type MPI_BYTE consists of a byte (8 binary digits). A byte is
uninterpreted and is different from a character. Different machines may have different
representations for characters, or may use more than one byte to represent characters. On
the other hand, a byte has the same binary value on all machines. The use of the type
MPI_PACKED is explained in Section 4.2.

MPI requires support of these datatypes, which match the basic datatypes of Fortran
and ISO C. Additional MPI datatypes should be provided if the host language has additional
data types: MPI_DOUBLE_COMPLEX for double precision complex in Fortran declared to
be of type DOUBLE COMPLEX; MPI_REAL2, MPI_REAL4 and MPI_REALS8 for Fortran
reals, declared to be of type REAL*2, REAL*4 and REAL*8, respectively; MPI_INTEGER1
MPI_INTEGER2 and MPI_INTEGER4 for Fortran integers, declared to be of type
INTEGER*1, INTEGER*2 and INTEGER*4, respectively; etc.

Rationale. One goal of the design is to allow for MPI to be implemented as a
library, with no need for additional preprocessing or compilation. Thus, one cannot
assume that a communication call has information on the datatype of variables in the
communication buffer; this information must be supplied by an explicit argument.
The need for such datatype information will become clear in Section 3.3.2. (End of
rationale.)
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void Comm::Recv(void* buf, int count, const Datatype& datatype,
int source, int tag) const

void Comm::Recv(void* buf, int count, const Datatype& datatype,
int source, int tag, Status& status) const

void Comm::Rsend(const void* buf, int count, const Datatype& datatype,
int dest, int tag) const

Prequest Comm::Rsend_init(const void* buf, int count, const
Datatype& datatype, int dest, int tag) const

void Comm::Send(const void* buf, int count, const Datatype& datatype,
int dest, int tag) const

Prequest Comm::Send_init(const void* buf, int count, const
Datatype& datatype, int dest, int tag) comnst

void Comm: :Sendrecv(const void *sendbuf, int sendcount, const
Datatype& sendtype, int dest, int sendtag, void *recvbuf,
int recvcount, const Datatype& recvtype, int source,
int recvtag) const

void Comm::Sendrecv(const void *sendbuf, int sendcount, const
Datatype& sendtype, int dest, int sendtag, void *recvbuf,
int recvcount, const Datatype& recvtype, int source,
int recvtag, Status& status) const

void Comm::Sendrecv_replace(void* buf, int count, const
Datatype& datatype, int dest, int sendtag, int source,
int recvtag) const

void Comm::Sendrecv_replace(void* buf, int count, const
Datatype& datatype, int dest, int sendtag, int source,
int recvtag, Status& status) const

void Status::Set_error(int error)
void Status::Set_source(int source)
void Status::Set_tag(int tag)

void Comm::Ssend(const void* buf, int count, const Datatype& datatype,
int dest, int tag) const

Prequest Comm::Ssend_init(const void* buf, int count, const
Datatype& datatype, int dest, int tag) comst

static void Prequest::Startall(int count, Prequest array_of_requests[])
void Prequest::Start()

static bool Request::Testall(int count, Request array_of_requests[],
Status array_of_statuses[])

static bool Request::Testall(int count, Request array_of_requests[])
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A.4  C++ Bindings

A.4.1 Point-to-Point Communication C++ Bindings

namespace MPI {

void Attach_buffer(void* buffer, int size)

void Comm::Bsend(const void* buf, int count, const Datatype& datatype,
int dest, int tag) const

Prequest Comm::Bsend_init(const void* buf, int count, const
Datatype& datatype, int dest, int tag) const

void Request::Cancel() const

int Detach_buffer(void*& buffer)

void Request::Free()

int Status::Get_count(const Datatype& datatype) const
int Status::Get_error() const

int Status::Get_source() const

bool Request::Get_status() const

bool Request::Get_status(Status& status) const

int Status::Get_tag() const

Request Comm::Ibsend(const void* buf, int count, const
Datatype& datatype, int dest, int tag) const

bool Comm::Iprobe(int source, int tag) const
bool Comm::Iprobe(int source, int tag, Status& status) const

Request Comm::Irecv(void* buf, int count, const Datatype& datatype,
int source, int tag) const

Request Comm::Irsend(const void* buf, int count, const
Datatype& datatype, int dest, int tag) const

bool Status::Is_cancelled() const

Request Comm::Isend(const void* buf, int count, const Datatype& datatype,
int dest, int tag) const

Request Comm::Issend(const void* buf, int count, const
Datatype& datatype, int dest, int tag) const

void Comm::Probe(int source, int tag) const
void Comm::Probe(int source, int tag, Status& status) const

Prequest Comm::Recv_init(void* buf, int count, const Datatype& datatype,
int source, int tag) const
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MPI datatype C datatype

MPI_CHAR signed char
(treated as printable character)

MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long int
MPI_LONG_LONG_INT signed long long int
MPI_LONG_LONG (as a synonym) | signed long long int
MPI_SIGNED_CHAR signed char

(treated as integral value)
unsigned char

(treated as integral value)
unsigned short int
unsigned int

unsigned long int
unsigned long long int

MPI_UNSIGNED_CHAR

MPI_UNSIGNED_SHORT
MPI_UNSIGNED
MPI_UNSIGNED_LONG
MPI_UNSIGNED_LONG_LONG

MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long double

MPI_WCHAR wchar_t

(defined in <stddef.h>)
(treated as printable character)
MPI_BYTE
MPI_PACKED

Table 3.2: Predefined MPI datatypes corresponding to C datatypes

3.2.3 Message Envelope

In addition to the data part, messages carry information that can be used to distinguish
messages and selectively receive them. This information consists of a fixed number of fields,
which we collectively call the message envelope. These fields are

source
destination
tag
communicator

The message source is implicitly determined by the identity of the message sender. The
other fields are specified by arguments in the send operation.

The message destination is specified by the dest argument.

The integer-valued message tag is specified by the tag argument. This integer can be
used by the program to distinguish different types of messages. The range of valid tag
values is 0,...,UB, where the value of UB is implementation dependent. It can be found by
querying the value of the attribute MPI_TAG_UB, as described in Chapter 8. MPI requires
that UB be no less than 32767.

The comm argument specifies the communicator that is used for the send operation.
Communicators are explained in Chapter 6; below is a brief summary of their usage.



3.2. BLOCKING SEND AND RECEIVE OPERATIONS 29

A communicator specifies the communication context for a communication operation.
Each communication context provides a separate “communication universe:” messages are
always received within the context they were sent, and messages sent in different contexts
do not interfere.

The communicator also specifies the set of processes that share this communication
context. This process group is ordered and processes are identified by their rank within
this group. Thus, the range of valid values for dest is 0, ... , n-1, where n is the number of
processes in the group. (If the communicator is an inter-communicator, then destinations
are identified by their rank in the remote group. See Chapter 6.)

A predefined communicator MPI_COMM_WORLD is provided by MPI. It allows com-
munication with all processes that are accessible after MPI initialization and processes are
identified by their rank in the group of MPI_COMM_WORLD.

Advice to users.  Users that are comfortable with the notion of a flat name space
for processes, and a single communication context, as offered by most existing com-
munication libraries, need only use the predefined variable MPI_COMM_WORLD as the
comm argument. This will allow communication with all the processes available at
initialization time.

Users may define new communicators, as explained in Chapter 6. Communicators
provide an important encapsulation mechanism for libraries and modules. They allow
modules to have their own disjoint communication universe and their own process
numbering scheme. (End of advice to users.)

Advice to implementors.  The message envelope would normally be encoded by a
fixed-length message header. However, the actual encoding is implementation depen-
dent. Some of the information (e.g., source or destination) may be implicit, and need
not be explicitly carried by messages. Also, processes may be identified by relative
ranks, or absolute ids, etc. (End of advice to implementors.)

3.2.4 Blocking Receive

The syntax of the blocking receive operation is given below.

MPI_RECV (buf, count, datatype, source, tag, comm, status)

ouT buf initial address of receive buffer (choice)

IN count number of elements in receive buffer (non-negative in-
teger)

IN datatype datatype of each receive buffer element (handle)

IN source rank of source (integer)

IN tag message tag (integer)

IN comm communicator (handle)

ouT status status object (Status)

int MPI_Recv(void* buf, int count, MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Status *status)
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INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERR
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EXTERNAL FUNCTION
INTEGER ERRHANDLER, IERROR

MPI_ERRHANDLER_GET (COMM, ERRHANDLER, IERROR)
INTEGER COMM, ERRHANDLER, IERROR

MPI_ERRHANDLER_SET(COMM, ERRHANDLER, IERROR)
INTEGER COMM, ERRHANDLER, IERROR

MPI_KEYVAL_CREATE(COPY_FN, DELETE_FN, KEYVAL, EXTRA_STATE, IERROR)
EXTERNAL COPY_FN, DELETE_FN
INTEGER KEYVAL, EXTRA_STATE, IERROR

MPI_KEYVAL_FREE(KEYVAL, IERROR)
INTEGER KEYVAL, IERROR

MPI_NULL_COPY_FN(OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_OUT, FLAG, IERR)
INTEGER OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_OUT, IERR
LOGICAL FLAG

MPI_NULL_DELETE_FN(COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERROR)
INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERROR

MPI_TYPE_EXTENT (DATATYPE, EXTENT, IERROR)
INTEGER DATATYPE, EXTENT, IERROR

MPI_TYPE_HINDEXED(COUNT, ARRAY_OF_BLOCKLENGTHS, ARRAY_OF_DISPLACEMENTS,
OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_DISPLACEMENTS(x*),
OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_HVECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_LB( DATATYPE, DISPLACEMENT, IERROR)
INTEGER DATATYPE, DISPLACEMENT, IERROR

MPI_TYPE_STRUCT (COUNT, ARRAY_OF_BLOCKLENGTHS, ARRAY_OF_DISPLACEMENTS,
ARRAY_OF_TYPES, NEWTYPE, IERROR)
INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_DISPLACEMENTS (),
ARRAY_OF_TYPES (%), NEWTYPE, IERROR

MPI_TYPE_UB( DATATYPE, DISPLACEMENT, IERROR)
INTEGER DATATYPE, DISPLACEMENT, IERROR

SUBROUTINE COPY_FUNCTION(OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_OUT, FLAG, IERR)
INTEGER OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_OUT, IERR
LOGICAL FLAG

SUBROUTINE DELETE_FUNCTION(COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERR)
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MPI_RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS, IERROR)
<type> BUF (*)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE),
IERROR

void MPI::Comm::Recv(void* buf, int count, const MPI::Datatype& datatype,
int source, int tag, MPI::Status& status) const

void MPI::Comm::Recv(void* buf, int count, const MPI::Datatype& datatype,
int source, int tag) const

The blocking semantics of this call are described in Section 3.4.

The receive buffer consists of the storage containing count consecutive elements of the
type specified by datatype, starting at address buf. The length of the received message must
be less than or equal to the length of the receive buffer. An overflow error occurs if all
incoming data does not fit, without truncation, into the receive buffer.

If a message that is shorter than the receive buffer arrives, then only those locations
corresponding to the (shorter) message are modified.

Advice to users. The MPI_PROBE function described in Section 3.8 can be used to
receive messages of unknown length. (End of advice to users.)

Advice to implementors. Even though no specific behavior is mandated by MPI for
erroneous programs, the recommended handling of overflow situations is to return in
status information about the source and tag of the incoming message. The receive
operation will return an error code. A quality implementation will also ensure that
no memory that is outside the receive buffer will ever be overwritten.

In the case of a message shorter than the receive buffer, MPI is quite strict in that it
allows no modification of the other locations. A more lenient statement would allow
for some optimizations but this is not allowed. The implementation must be ready to
end a copy into the receiver memory exactly at the end of the receive buffer, even if
it is an odd address. (End of advice to implementors.)

The selection of a message by a receive operation is governed by the value of the
message envelope. A message can be received by a receive operation if its envelope matches
the source, tag and comm values specified by the receive operation. The receiver may
specify a wildcard MPI_ANY_SOURCE value for source, and/or a wildcard MPI_ANY_TAG
value for tag, indicating that any source and/or tag are acceptable. It cannot specify a
wildcard value for comm. Thus, a message can be received by a receive operation only
if it is addressed to the receiving process, has a matching communicator, has matching
source unless source=MPI_ANY_SOURCE in the pattern, and has a matching tag unless
tag=MPI_ANY_TAG in the pattern.

The message tag is specified by the tag argument of the receive operation. The
argument source, if different from MPI_ANY_SOURCE, is specified as a rank within the
process group associated with that same communicator (remote process group, for in-
tercommunicators). Thus, the range of valid values for the source argument is {0,...,n-
1}U{MPI_ANY_SOURCE}, where n is the number of processes in this group.

Note the asymmetry between send and receive operations: A receive operation may
accept messages from an arbitrary sender, on the other hand, a send operation must specify
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a unique receiver. This matches a “push” communication mechanism, where data transfer
is effected by the sender (rather than a “pull” mechanism, where data transfer is effected
by the receiver).

Source = destination is allowed, that is, a process can send a message to itself. (How-
ever, it is unsafe to do so with the blocking send and receive operations described above,
since this may lead to deadlock. See Section 3.5.)

Advice to implementors. Message context and other communicator information can
be implemented as an additional tag field. It differs from the regular message tag
in that wild card matching is not allowed on this field, and that value setting for
this field is controlled by communicator manipulation functions. (End of advice to
implementors.)

3.2.5 Return Status

The source or tag of a received message may not be known if wildcard values were used
in the receive operation. Also, if multiple requests are completed by a single MPI function
(see Section 3.7.5), a distinct error code may need to be returned for each request. The
information is returned by the status argument of MPI_RECV. The type of status is MPI-
defined. Status variables need to be explicitly allocated by the user, that is, they are not
system objects.

In C, status is a structure that contains three fields named MPI_SOURCE, MPI_TAG,
and MPI_ERROR; the structure may contain additional fields. Thus,
status.MPI_SOURCE, status.MPI_TAG and status.MPI_ERROR contain the source, tag, and
error code, respectively, of the received message.

In Fortran, status is an array of INTEGERs of size MPI_STATUS_SIZE. The constants
MPI_SOURCE, MPI_TAG and MPI_ERROR are the indices of the entries that store the source,
tag and error fields. Thus, status(MPI_SOURCE), status(MPI_TAG) and
status(MPI_ERROR) contain, respectively, the source, tag and error code of the received
message.

In C++, the status object is handled through the following methods:
int MPI::Status::Get_source() const

void MPI::Status::Set_source(int source)
int MPI::Status::Get_tag() const

void MPI::Status::Set_tag(int tag)

int MPI::Status::Get_error() const

void MPI::Status::Set_error(int error)

In general, message-passing calls do not modify the value of the error code field of
status variables. This field may be updated only by the functions in Section 3.7.5 which
return multiple statuses. The field is updated if and only if such function returns with an
error code of MPI_LERR_IN_STATUS.

Rationale. The error field in status is not needed for calls that return only one status,
such as MPI_WAIT, since that would only duplicate the information returned by the
function itself. The current design avoids the additional overhead of setting it, in such
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CHARACTER* (*) DATAREP

EXTERNAL READ_CONVERSION_FN, WRITE_CONVERSION_FN, DTYPE_FILE_EXTENT_FN
INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_STATE

INTEGER IERROR

A.3.12 Language Bindings Fortran Bindings

MPI_SIZEOF (X, SIZE, IERROR)
<type> X
INTEGER SIZE, IERROR

MPI_TYPE_CREATE_F90_COMPLEX(P, R, NEWTYPE, IERROR)
INTEGER P, R, NEWTYPE, IERROR

MPI_TYPE_CREATE_F9O_INTEGER(R, NEWTYPE, IERROR)
INTEGER R, NEWTYPE, IERROR

MPI_TYPE_CREATE_F90_REAL(P, R, NEWTYPE, IERROR)
INTEGER P, R, NEWTYPE, IERROR

MPI_TYPE_MATCH_SIZE(TYPECLASS, SIZE, TYPE, IERROR)
INTEGER TYPECLASS, SIZE, TYPE, IERROR

A.3.13 Profiling Interface Fortran Bindings

MPI_PCONTROL (LEVEL)
INTEGER LEVEL,

A.3.14 Deprecated Fortran Bindings

MPI_ADDRESS(LOCATION, ADDRESS, IERROR)
<type> LOCATION (*)
INTEGER ADDRESS, IERROR

MPI_ATTR_DELETE(COMM, KEYVAL, IERROR)
INTEGER COMM, KEYVAL, IERROR

MPI_ATTR_GET(COMM, KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)
INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, IERROR
LOGICAL FLAG

MPI_ATTR_PUT(COMM, KEYVAL, ATTRIBUTE_VAL, IERROR)
INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, IERROR

MPI_DUP_FN(OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_OUT, FLAG, IERR)
INTEGER OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_OUT, IERR
LOGICAL FLAG

MPI_ERRHANDLER_CREATE(FUNCTION, ERRHANDLER, IERROR)
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MPI_FILE_WRITE_ALL_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)
<type> BUF (%)
INTEGER FH, COUNT, DATATYPE, IERROR

MPI_FILE_WRITE_ALL_END(FH, BUF, STATUS, IERROR)
<type> BUF (*)
INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF (%)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_AT_ALL_BEGIN(FH, OFFSET, BUF, COUNT, DATATYPE, IERROR)
<type> BUF (%)
INTEGER FH, COUNT, DATATYPE, IERROR
INTEGER (KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_WRITE_AT_ALL_END(FH, BUF, STATUS, IERROR)
<type> BUF (%)
INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_AT_ALL(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF (%)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
INTEGER (KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_WRITE_AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF (%)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
INTEGER (KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_WRITE(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF (%)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_ORDERED_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)
<type> BUF (%)
INTEGER FH, COUNT, DATATYPE, IERROR

MPI_FILE_WRITE_ORDERED_END(FH, BUF, STATUS, IERROR)
<type> BUF (%)
INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_ORDERED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF (%)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF (%)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_REGISTER_DATAREP (DATAREP, READ_CONVERSION_FN, WRITE_CONVERSION_FN,
DTYPE_FILE_EXTENT_FN, EXTRA_STATE, IERROR)
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cases. The field is needed for calls that return multiple statuses, since each request
may have had a different failure. (End of rationale.)

The status argument also returns information on the length of the message received.
However, this information is not directly available as a field of the status variable and a call
to MPI_GET_COUNT is required to “decode” this information.

MPI_GET_COUNT (status, datatype, count)
IN status return status of receive operation (Status)
IN datatype

ouT count

datatype of each receive buffer entry (handle)

number of received entries (integer)

int MPI_Get_count(MPI_Status *status, MPI_Datatype datatype, int *count)

MPI_GET_COUNT (STATUS, DATATYPE, COUNT, IERROR)
INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR

int MPI::Status::Get_count(const MPI::Datatype& datatype) const

Returns the number of entries received. (Again, we count entries, each of type datatype,
not bytes.) The datatype argument should match the argument provided by the receive call
that set the status variable. (We shall later see, in Section 4.1.11, that MPI_GET_COUNT
may return, in certain situations, the value MPI_UNDEFINED.)

Rationale.  Some message-passing libraries use INOUT count, tag and

source arguments, thus using them both to specify the selection criteria for incoming
messages and return the actual envelope values of the received message. The use of a
separate status argument prevents errors that are often attached with INOUT argument
(e.g., using the MPI_ANY_TAG constant as the tag in a receive). Some libraries use
calls that refer implicitly to the “last message received.” This is not thread safe.

The datatype argument is passed to MPI_GET_COUNT so as to improve performance.
A message might be received without counting the number of elements it contains,
and the count value is often not needed. Also, this allows the same function to be
used after a call to MPI_PROBE or MPI_IPROBE. With a status from MPI_PROBE
or MPI_IPROBE, the same datatypes are allowed as in a call to MPI_RECV to receive
this message. (End of rationale.)

The value returned as the count argument of MPI_GET_COUNT for a datatype of length
zero where zero bytes have been transferred is zero. If the number of bytes transfered is
greater than zero, MPI_UNDEFINED is returned.

Rationale. Zero-length datatypes may be created in a number of cases. An important
case is MPI_TYPE_CREATE_DARRAY, where the definition of the particular darray
results in an empty block on some MPI process. Programs written in an SPMD style
will not check for this special case and may want to use MPI_GET_COUNT to check

the status. (End of rationale.
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Advice to users. The buffer size required for the receive can be affected by data con-
versions and by the stride of the receive datatype. In most cases, the safest approach
is to use the same datatype with MPI_GET_COUNT and the receive. (End of advice

to users.)

All send and receive operations use the buf, count, datatype, source, dest, tag, comm and
status arguments in the same way as the blocking MPI_SEND and MPI_RECV operations
described in this section.

3.2.6 Passing MPI_STATUS_IGNORE for Status

Every call to MPI_RECV includes a status argument, wherein the system can return details
about the message received. There are also a number of other MPI calls where status
is returned. An object of type MPI_STATUS is not an MPI opaque object; its structure
is declared in mpi.h and mpif.h, and it exists in the user’s program. In many cases,
application programs are constructed so that it is unnecessary for them to examine the
status fields. In these cases, it is a waste for the user to allocate a status object, and it is
particularly wasteful for the MPI implementation to fill in fields in this object.

To cope with this problem, there are two predefined constants, MPI_STATUS_IGNORE
and MPI_STATUSES_IGNORE, which when passed to a receive, wait, or test function, inform
the implementation that the status fields are not to be filled in. Note that
MPI_STATUS_IGNORE is not a special type of MPI_STATUS object; rather, it is a special
value for the argument. In C one would expect it to be NULL, not the address of a special
MPI_STATUS.

MPI_STATUS_IGNORE, and the array version MPI_STATUSES_IGNORE, can be used every-
where a status argument is passed to a receive, wait, or test function. MPI_STATUS_IGNORE
cannot be used when status is an IN argument. Note that in Fortran MPI_STATUS_IGNORE
and MPI_STATUSES_IGNORE are objects like MPI_BOTTOM (not usable for initialization or
assignment). See Section 2.5.4.

In general, this optimization can apply to all functions for which status or an array of
statuses is an OUT argument. Note that this converts status into an INOUT argument. The
functions that can be passed MPI_STATUS_IGNORE are all the various forms of MPI_RECV,
MPI_TEST, and MPI_WAIT, as well as MPI_REQUEST_GET_STATUS. When an array is
passed, as in the MPI_{TEST|WAIT }{ALL|SOME} functions, a separate constant,
MPI_STATUSES_IGNORE, is passed for the array argument. It is possible for an MPI function
to return MPI_ERR_IN_STATUS even when MPI_STATUS_IGNORE or MPI_STATUSES_IGNORE
has been passed to that function.

MPI_STATUS_IGNORE and MPI_STATUSES_IGNORE are not required to have the same
values in C and Fortran.

It is not allowed to have some of the statuses in an array of statuses for
MPI_{TEST|WAIT }{ALL|SOME} functions set to MPI_STATUS_IGNORE; one either specifies
ignoring all of the statuses in such a call with MPI_STATUSES_IGNORE, or none of them by
passing normal statuses in all positions in the array of statuses.

There are no C++ bindings for MPI_STATUS_IGNORE or MPI_STATUSES_IGNORE. To
allow an OUT or INOUT MPI::Status argument to be ignored, all MPI C++ bindings that
have OUT or INOUT MPI::Status parameters are overloaded with a second version that
omits the OUT or INOUT MPI::Status parameter.

Example 3.1 The C++ bindings for MPI_PROBE are:
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INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
INTEGER (KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_READ_AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF (x)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
INTEGER (KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_READ(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF (¥)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_ORDERED_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)
<type> BUF (%)
INTEGER FH, COUNT, DATATYPE, IERROR

MPI_FILE_READ_ORDERED_END(FH, BUF, STATUS, IERROR)
<type> BUF (%)
INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_ORDERED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF (%)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_SEEK(FH, OFFSET, WHENCE, IERROR)
INTEGER FH, WHENCE, IERROR
INTEGER (KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_SEEK_SHARED(FH, OFFSET, WHENCE, IERROR)
INTEGER FH, WHENCE, IERROR
INTEGER (KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_SET_ATOMICITY(FH, FLAG, IERROR)
INTEGER FH, IERROR
LOGICAL FLAG

MPI_FILE_SET_INFO(FH, INFO, IERROR)
INTEGER FH, INFO, IERROR

MPI_FILE_SET_SIZE(FH, SIZE, IERROR)
INTEGER FH, IERROR
INTEGER (KIND=MPI_OFFSET_KIND) SIZE

MPI_FILE_SET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, INFO, IERROR)
INTEGER FH, ETYPE, FILETYPE, INFO, IERROR
CHARACTER#* () DATAREP
INTEGER (KIND=MPI_OFFSET_KIND) DISP

MPI_FILE_SYNC(FH, IERROR)
INTEGER FH, IERROR
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INTEGER (KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_IREAD(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)
<type> BUF (%)
INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI_FILE_IREAD_SHARED(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)
<type> BUF (%)
INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI_FILE_IWRITE_AT(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)
<type> BUF (%)
INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
INTEGER (KIND=MPI_QOFFSET_KIND) OFFSET

MPI_FILE_IWRITE(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)
<type> BUF (%)
INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI_FILE_IWRITE_SHARED(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)
<type> BUF (%)
INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI_FILE_OPEN(COMM, FILENAME, AMODE, INFO, FH, IERROR)
CHARACTER* (*) FILENAME
INTEGER COMM, AMODE, INFO, FH, IERROR

MPI_FILE_PREALLOCATE(FH, SIZE, IERROR)
INTEGER FH, IERROR
INTEGER (KIND=MPI_OFFSET_KIND) SIZE

MPI_FILE_READ_ALL_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)
<type> BUF (%)
INTEGER FH, COUNT, DATATYPE, IERROR

MPI_FILE_READ_ALL_END(FH, BUF, STATUS, IERROR)
<type> BUF (%)
INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF (%)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_AT_ALL_BEGIN(FH, OFFSET, BUF, COUNT, DATATYPE, IERROR)
<type> BUF (%)
INTEGER FH, COUNT, DATATYPE, IERROR
INTEGER (KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_READ_AT_ALL_END(FH, BUF, STATUS, IERROR)
<type> BUF (%)
INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_AT_ALL(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF (%)
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void MPI::Comm::Probe(int source, int tag, MPI::Status& status) const
void MPI::Comm::Probe(int source, int tag) const

3.3 Data Type Matching and Data Conversion

3.3.1 Type Matching Rules
One can think of message transfer as consisting of the following three phases.
1. Data is pulled out of the send buffer and a message is assembled.
2. A message is transferred from sender to receiver.
3. Data is pulled from the incoming message and disassembled into the receive buffer.

Type matching has to be observed at each of these three phases: The type of each
variable in the sender buffer has to match the type specified for that entry by the send
operation; the type specified by the send operation has to match the type specified by the
receive operation; and the type of each variable in the receive buffer has to match the type
specified for that entry by the receive operation. A program that fails to observe these three
rules is erroneous.

To define type matching more precisely, we need to deal with two issues: matching of
types of the host language with types specified in communication operations; and matching
of types at sender and receiver.

The types of a send and receive match (phase two) if both operations use identical
names. That is, MPI_INTEGER matches MPI_INTEGER, MPI_REAL matches MPI_REAL,
and so on. There is one exception to this rule, discussed in Section 4.2, the type
MPI_PACKED can match any other type.

The type of a variable in a host program matches the type specified in the commu-
nication operation if the datatype name used by that operation corresponds to the basic
type of the host program variable. For example, an entry with type name MPI_INTEGER
matches a Fortran variable of type INTEGER. A table giving this correspondence for Fortran
and C appears in Section 3.2.2. There are two exceptions to this last rule: an entry with
type name MPI_BYTE or MPI_PACKED can be used to match any byte of storage (on a
byte-addressable machine), irrespective of the datatype of the variable that contains this
byte. The type MPI_PACKED is used to send data that has been explicitly packed, or
receive data that will be explicitly unpacked, see Section 4.2. The type MPI_BYTE allows
one to transfer the binary value of a byte in memory unchanged.

To summarize, the type matching rules fall into the three categories below.

e Communication of typed values (e.g., with datatype different from MPI_BYTE), where
the datatypes of the corresponding entries in the sender program, in the send call, in
the receive call and in the receiver program must all match.

e Communication of untyped values (e.g., of datatype MPI_BYTE), where both sender
and receiver use the datatype MPI_BYTE. In this case, there are no requirements on
the types of the corresponding entries in the sender and the receiver programs, nor is
it required that they be the same.

e Communication involving packed data, where MPI_PACKED is used.
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The following examples illustrate the first two cases.

Example 3.2 Sender and receiver specify matching types.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN
CALL MPI_SEND(a(1), 10, MPI_REAL, 1, tag, comm, ierr)
ELSE IF (rank.EQ.1) THEN
CALL MPI_RECV(b(1), 15, MPI_REAL, O, tag, comm, status, ierr)
END IF

This code is correct if both a and b are real arrays of size > 10. (In Fortran, it might
be correct to use this code even if a or b have size < 10: e.g., when a(1) can be equivalenced
to an array with ten reals.)

Example 3.3 Sender and receiver do not specify matching types.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN
CALL MPI_SEND(a(1), 10, MPI_REAL, 1, tag, comm, ierr)
ELSE IF (rank.EQ.1) THEN
CALL MPI_RECV(b(1), 40, MPI_BYTE, O, tag, comm, status, ierr)
END IF

This code is erroneous, since sender and receiver do not provide matching datatype
arguments.

Example 3.4 Sender and receiver specify communication of untyped values.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN
CALL MPI_SEND(a(1), 40, MPI_BYTE, 1, tag, comm, ierr)
ELSE IF (rank.EQ.1) THEN
CALL MPI_RECV(b(1), 60, MPI_BYTE, O, tag, comm, status, ierr)
END IF

This code is correct, irrespective of the type and size of a and b (unless this results in
an out of bound memory access).

Advice to users. If a buffer of type MPI_BYTE is passed as an argument to MPI_SEND,
then MPI will send the data stored at contiguous locations, starting from the address
indicated by the buf argument. This may have unexpected results when the data
layout is not as a casual user would expect it to be. For example, some Fortran
compilers implement variables of type CHARACTER as a structure that contains the
character length and a pointer to the actual string. In such an environment, sending
and receiving a Fortran CHARACTER variable using the MPI_BYTE type will not have
the anticipated result of transferring the character string. For this reason, the user is
advised to use typed communications whenever possible. (End of advice to users.)
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MPI_STATUS_SET_ELEMENTS (STATUS, DATATYPE, COUNT, IERROR)
INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR

A.3.11 1/O Fortran Bindings

MPI_FILE_CLOSE(FH, IERROR)
INTEGER FH, IERROR

MPI_FILE_DELETE(FILENAME, INFO, IERROR)
CHARACTER* (*) FILENAME
INTEGER INFO, IERROR

MPI_FILE_GET_AMODE(FH, AMODE, IERROR)
INTEGER FH, AMODE, IERROR

MPI_FILE_GET_ATOMICITY(FH, FLAG, IERROR)
INTEGER FH, IERROR
LOGICAL FLAG

MPI_FILE_GET_BYTE_OFFSET(FH, OFFSET, DISP, IERROR)
INTEGER FH, IERROR
INTEGER (KIND=MPI_OFFSET_KIND) OFFSET, DISP

MPI_FILE_GET_GROUP(FH, GROUP, IERROR)
INTEGER FH, GROUP, IERROR

MPI_FILE_GET_INFO(FH, INFO_USED, IERROR)
INTEGER FH, INFO_USED, IERROR

MPI_FILE_GET_POSITION(FH, OFFSET, IERROR)
INTEGER FH, IERROR
INTEGER (KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_GET_POSITION_SHARED(FH, OFFSET, IERROR)
INTEGER FH, IERROR
INTEGER (KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_GET_SIZE(FH, SIZE, IERROR)
INTEGER FH, IERROR
INTEGER (KIND=MPI_OFFSET_KIND) SIZE

MPI_FILE_GET_TYPE_EXTENT(FH, DATATYPE, EXTENT, IERROR)
INTEGER FH, DATATYPE, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) EXTENT

MPI_FILE_GET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, IERROR)
INTEGER FH, ETYPE, FILETYPE, IERROR
CHARACTER#* (*x) DATAREP
INTEGER (KIND=MPI_OFFSET_KIND) DISP

MPI_FILE_IREAD_AT(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)
<type> BUF(¥)
INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
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INTEGER DISP_UNIT, INFO, COMM, WIN, IERROR

MPI_WIN_FENCE(ASSERT, WIN, IERROR)
INTEGER ASSERT, WIN, IERROR

MPI_WIN_FREE(WIN, IERROR)
INTEGER WIN, IERROR

MPI_WIN_GET_GROUP(WIN, GROUP, IERROR)
INTEGER WIN, GROUP, IERROR

MPI_WIN_LOCK(LOCK_TYPE, RANK, ASSERT, WIN, IERROR)
INTEGER LOCK_TYPE, RANK, ASSERT, WIN, IERROR

MPI_WIN_POST(GROUP, ASSERT, WIN, IERROR)
INTEGER GROUP, ASSERT, WIN, IERROR

MPI_WIN_START(GROUP, ASSERT, WIN, IERROR)
INTEGER GROUP, ASSERT, WIN, IERROR

MPI_WIN_TEST(WIN, FLAG, IERROR)
INTEGER WIN, IERROR
LOGICAL FLAG

MPI_WIN_UNLOCK(RANK, WIN, IERROR)
INTEGER RANK, WIN, IERROR

MPI_WIN_WAIT(WIN, IERROR)
INTEGER WIN, IERROR

A.3.10 External Interfaces Fortran Bindings

MPI_GREQUEST_COMPLETE (REQUEST, IERROR)
INTEGER REQUEST, IERROR

MPI_GREQUEST_START(QUERY_FN, FREE_FN, CANCEL_FN, EXTRA_STATE, REQUEST,
IERROR)
INTEGER REQUEST, IERROR
EXTERNAL QUERY_FN, FREE_FN, CANCEL_FN
INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_STATE

MPI_INIT_THREAD (REQUIRED, PROVIDED, IERROR)
INTEGER REQUIRED, PROVIDED, IERROR

MPI_IS_THREAD_MAIN(FLAG, IERROR)
LOGICAL FLAG
INTEGER IERROR

MPI_QUERY_THREAD (PROVIDED, IERROR)
INTEGER PROVIDED, IERROR

MPI_STATUS_SET_CANCELLED(STATUS, FLAG, IERROR)
INTEGER STATUS(MPI_STATUS_SIZE), IERROR
LOGICAL FLAG
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Type MPI_CHARACTER

The type MPI_CHARACTER matches one character of a Fortran variable of type CHARACTER,
rather then the entire character string stored in the variable. Fortran variables of type
CHARACTER or substrings are transferred as if they were arrays of characters. This is
illustrated in the example below.

Example 3.5 Transfer of Fortran CHARACTERs.

CHARACTER*10 a
CHARACTER*10 b

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_SEND(a, 5, MPI_CHARACTER, 1, tag, comm, ierr)

ELSE IF (rank.EQ.1) THEN

CALL MPI_RECV(b(6:10), 5, MPI_CHARACTER, O, tag, comm, status, ierr)

END IF

The last five characters of string b at process 1 are replaced by the first five characters

of string a at process 0.

Rationale. The alternative choice would be for MPI_CHARACTER to match a char-
acter of arbitrary length. This runs into problems.

A Fortran character variable is a constant length string, with no special termina-
tion symbol. There is no fixed convention on how to represent characters, and how
to store their length. Some compilers pass a character argument to a routine as a
pair of arguments, one holding the address of the string and the other holding the
length of string. Consider the case of an MP| communication call that is passed a
communication buffer with type defined by a derived datatype (Section 4.1). If this
communicator buffer contains variables of type CHARACTER then the information on
their length will not be passed to the MPI routine.

This problem forces us to provide explicit information on character length with the
MPI call. One could add a length parameter to the type MPI_CHARACTER, but this
does not add much convenience and the same functionality can be achieved by defining
a suitable derived datatype. (End of rationale.)

Advice to implementors. Some compilers pass Fortran CHARACTER arguments as a
structure with a length and a pointer to the actual string. In such an environment,
the MPI call needs to dereference the pointer in order to reach the string. (End of
advice to implementors.)

3.3.2 Data Conversion

One of the goals of MPI is to support parallel computations across heterogeneous environ-
ments. Communication in a heterogeneous environment may require data conversions. We
use the following terminology.

type conversion changes the datatype of a value, e.g., by rounding a REAL to an INTEGER.
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representation conversion changes the binary representation of a value, e.g., from Hex
floating point to IEEE floating point.

The type matching rules imply that MPl communication never entails type conversion.
On the other hand, MPI requires that a representation conversion be performed when a
typed value is transferred across environments that use different representations for the
datatype of this value. MPI does not specify rules for representation conversion. Such
conversion is expected to preserve integer, logical or character values, and to convert a
floating point value to the nearest value that can be represented on the target system.

Overflow and underflow exceptions may occur during floating point conversions. Con-
version of integers or characters may also lead to exceptions when a value that can be
represented in one system cannot be represented in the other system. An exception occur-
ring during representation conversion results in a failure of the communication. An error
occurs either in the send operation, or the receive operation, or both.

If a value sent in a message is untyped (i.e., of type MPI_BYTE), then the binary
representation of the byte stored at the receiver is identical to the binary representation
of the byte loaded at the sender. This holds true, whether sender and receiver run in the
same or in distinct environments. No representation conversion is required. (Note that
representation conversion may occur when values of type MPI_CHARACTER or MPI_CHAR
are transferred, for example, from an EBCDIC encoding to an ASCII encoding.)

No conversion need occur when an MPI program executes in a homogeneous system,
where all processes run in the same environment.

Consider the three examples, 3.2-3.4. The first program is correct, assuming that a and
b are REAL arrays of size > 10. If the sender and receiver execute in different environments,
then the ten real values that are fetched from the send buffer will be converted to the
representation for reals on the receiver site before they are stored in the receive buffer.
While the number of real elements fetched from the send buffer equal the number of real
elements stored in the receive buffer, the number of bytes stored need not equal the number
of bytes loaded. For example, the sender may use a four byte representation and the receiver
an eight byte representation for reals.

The second program is erroneous, and its behavior is undefined.

The third program is correct. The exact same sequence of forty bytes that were loaded
from the send buffer will be stored in the receive buffer, even if sender and receiver run in
a different environment. The message sent has exactly the same length (in bytes) and the
same binary representation as the message received. If a and b are of different types, or if
they are of the same type but different data representations are used, then the bits stored
in the receive buffer may encode values that are different from the values they encoded in
the send buffer.

Data representation conversion also applies to the envelope of a message: source, des-
tination and tag are all integers that may need to be converted.

Advice to implementors. The current definition does not require messages to carry
data type information. Both sender and receiver provide complete data type infor-
mation. In a heterogeneous environment, one can either use a machine independent
encoding such as XDR, or have the receiver convert from the sender representation
to its own, or even have the sender do the conversion.

Additional type information might be added to messages in order to allow the sys-
tem to detect mismatches between datatype at sender and receiver. This might be
particularly useful in a slower but safer debug mode. (End of advice to implementors.)
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ARRAY_OF_MAXPROCS, ARRAY_OF_INFO, ROOT, COMM, INTERCOMM,
ARRAY_OF_ERRCODES, IERROR)
INTEGER COUNT, ARRAY_OF_INFO(*), ARRAY_OF_MAXPROCS(x), ROOT, COMM,
INTERCOMM, ARRAY_OF_ERRCODES(*), IERROR
CHARACTER* (*) ARRAY_OF_COMMANDS (*) , ARRAY_OF_ARGV(COUNT, *)

MPI_LOOKUP_NAME (SERVICE_NAME, INFO, PORT_NAME, IERROR)
CHARACTER* (*) SERVICE_NAME, PORT_NAME
INTEGER INFO, IERROR

MPI_OPEN_PORT(INFO, PORT_NAME, IERROR)
CHARACTER* (¥) PORT_NAME
INTEGER INFO, IERROR

MPI_PUBLISH_NAME(SERVICE_NAME, INFO, PORT_NAME, IERROR)
INTEGER INFO, IERROR
CHARACTER* (*) SERVICE_NAME, PORT_NAME

MPI_UNPUBLISH_NAME (SERVICE_NAME, INFO, PORT_NAME, IERROR)
INTEGER INFO, IERROR
CHARACTER* (*) SERVICE_NAME, PORT_NAME

A.3.9 One-Sided Communications Fortran Bindings

MPI_ACCUMULATE (ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,
TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, OP, WIN, IERROR)
<type> ORIGIN_ADDR(*)
INTEGER (KIND=MPI_ADDRESS_KIND) TARGET_DISP
INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE,TARGET_RANK, TARGET_COUNT,
TARGET_DATATYPE, 0P, WIN, IERROR

MPI_GET (ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,
TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, WIN, IERROR)
<type> ORIGIN_ADDR(*)
INTEGER (KIND=MPT_ADDRESS_KIND) TARGET_DISP
INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,
TARGET_DATATYPE, WIN, IERROR

MPI_PUT(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,
TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, WIN, IERROR)
<type> ORIGIN_ADDR(x)
INTEGER (KIND=MPI_ADDRESS_KIND) TARGET_DISP
INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,
TARGET_DATATYPE, WIN, IERROR

MPI_WIN_COMPLETE(WIN, IERROR)
INTEGER WIN, IERROR

MPI_WIN_CREATE(BASE, SIZE, DISP_UNIT, INFO, COMM, WIN, IERROR)
<type> BASE(*)
INTEGER (KIND=MPI_ADDRESS_KIND) SIZE
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INTEGER INFO, IERROR

MPI_INFO_GET(INFO, KEY, VALUELEN, VALUE, FLAG, IERROR)
INTEGER INFO, VALUELEN, IERROR
CHARACTER* (*) KEY, VALUE
LOGICAL FLAG

MPI_INFO_GET_NKEYS(INFO, NKEYS, IERROR)
INTEGER INFO, NKEYS, IERROR

MPI_INFO_GET_NTHKEY(INFO, N, KEY, IERROR)
INTEGER INFO, N, IERROR
CHARACTER* (x) KEY

MPI_INFO_GET_VALUELEN (INFO, KEY, VALUELEN, FLAG, IERROR)
INTEGER INFO, VALUELEN, IERROR
LOGICAL FLAG
CHARACTER* (*) KEY

MPI_INFO_SET(INFO, KEY, VALUE, IERROR)
INTEGER INFO, IERROR
CHARACTER* (*) KEY, VALUE

A.3.8 Process Creation and Management Fortran Bindings

MPI_CLOSE_PORT (PORT_NAME, IERROR)
CHARACTER* (x) PORT_NAME
INTEGER IERROR

MPI_COMM_ACCEPT (PORT_NAME, INFO, ROOT, COMM, NEWCOMM, IERROR)
CHARACTER* (x) PORT_NAME
INTEGER INFO, ROOT, COMM, NEWCOMM, IERROR

MPI_COMM_CONNECT (PORT_NAME, INFO, ROOT, COMM, NEWCOMM, IERROR)
CHARACTER* (x) PORT_NAME
INTEGER INFO, ROOT, COMM, NEWCOMM, IERROR

MPI_COMM_DISCONNECT(COMM, IERROR)
INTEGER COMM, IERROR

MPI_COMM_GET_PARENT (PARENT, IERROR)
INTEGER PARENT, IERROR

MPI_COMM_JOIN(FD, INTERCOMM, IERROR)
INTEGER FD, INTERCOMM, IERROR

MPI_COMM_SPAWN(COMMAND, ARGV, MAXPROCS, INFO, ROOT, COMM, INTERCOMM,

ARRAY_OF_ERRCODES, IERROR)
CHARACTER* (%) COMMAND, ARGV (%)

INTEGER INFO, MAXPROCS, ROOT, COMM, INTERCOMM, ARRAY_OF_ERRCODES(x),

IERROR

MPI_COMM_SPAWN_MULTIPLE(COUNT, ARRAY_OF_COMMANDS, ARRAY_OF_ARGV,
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MPI requires support for inter-language communication, i.e., if messages are sent by a
C or C++ process and received by a Fortran process, or vice-versa. The behavior is defined

in Section 16.3 on page 478.

3.4 Communication Modes

The send call described in Section 3.2.1 is blocking: it does not return until the message
data and envelope have been safely stored away so that the sender is free to access and
overwrite the send buffer. The message might be copied directly into the matching receive
buffer, or it might be copied into a temporary system buffer.

Message buffering decouples the send and receive operations. A blocking send can com-
plete as soon as the message was buffered, even if no matching receive has been executed by
the receiver. On the other hand, message buffering can be expensive, as it entails additional
memory-to-memory copying, and it requires the allocation of memory for buffering. MPI
offers the choice of several communication modes that allow one to control the choice of the
communication protocol.

The send call described in Section 3.2.1 uses the standard communication mode. In
this mode, it is up to MPI to decide whether outgoing messages will be buffered. MPIl may
buffer outgoing messages. In such a case, the send call may complete before a matching
receive is invoked. On the other hand, buffer space may be unavailable, or MPl may choose
not to buffer outgoing messages, for performance reasons. In this case, the send call will
not complete until a matching receive has been posted, and the data has been moved to the
receiver.

Thus, a send in standard mode can be started whether or not a matching receive has
been posted. It may complete before a matching receive is posted. The standard mode send
is non-local: successful completion of the send operation may depend on the occurrence
of a matching receive.

Rationale. The reluctance of MPI to mandate whether standard sends are buffering
or not stems from the desire to achieve portable programs. Since any system will run
out of buffer resources as message sizes are increased, and some implementations may
want to provide little buffering, MPI takes the position that correct (and therefore,
portable) programs do not rely on system buffering in standard mode. Buffering may
improve the performance of a correct program, but it doesn’t affect the result of the
program. If the user wishes to guarantee a certain amount of buffering, the user-
provided buffer system of Section 3.6 should be used, along with the buffered-mode
send. (End of rationale.)

There are three additional communication modes.

A buffered mode send operation can be started whether or not a matching receive
has been posted. It may complete before a matching receive is posted. However, unlike
the standard send, this operation is local, and its completion does not depend on the
occurrence of a matching receive. Thus, if a send is executed and no matching receive is
posted, then MPI must buffer the outgoing message, so as to allow the send call to complete.
An error will occur if there is insufficient buffer space. The amount of available buffer space
is controlled by the user — see Section 3.6. Buffer allocation by the user may be required
for the buffered mode to be effective.
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A send that uses the synchronous mode can be started whether or not a matching
receive was posted. However, the send will complete successfully only if a matching receive is
posted, and the receive operation has started to receive the message sent by the synchronous
send. Thus, the completion of a synchronous send not only indicates that the send buffer
can be reused, but it also indicates that the receiver has reached a certain point in its
execution, namely that it has started executing the matching receive. If both sends and
receives are blocking operations then the use of the synchronous mode provides synchronous
communication semantics: a communication does not complete at either end before both
processes rendezvous at the communication. A send executed in this mode is non-local.

A send that uses the ready communication mode may be started only if the matching
receive is already posted. Otherwise, the operation is erroneous and its outcome is unde-
fined. On some systems, this allows the removal of a hand-shake operation that is otherwise
required and results in improved performance. The completion of the send operation does
not depend on the status of a matching receive, and merely indicates that the send buffer
can be reused. A send operation that uses the ready mode has the same semantics as a
standard send operation, or a synchronous send operation; it is merely that the sender
provides additional information to the system (namely that a matching receive is already
posted), that can save some overhead. In a correct program, therefore, a ready send could
be replaced by a standard send with no effect on the behavior of the program other than
performance.

Three additional send functions are provided for the three additional communication
modes. The communication mode is indicated by a one letter prefix: B for buffered, S for
synchronous, and R for ready.

MPI_BSEND (buf, count, datatype, dest, tag, comm)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (non-negative inte-
ger)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

int MPI_Bsend(void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

MPI_BSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF (%)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

void MPI::Comm: :Bsend(const void* buf, int count, const
MPI::Datatype& datatype, int dest, int tag) const

Send in buffered mode.
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MPI_FILE_SET_ERRHANDLER(FILE, ERRHANDLER, IERROR)
INTEGER FILE, ERRHANDLER, IERROR

MPI_FINALIZED(FLAG, IERROR)
LOGICAL FLAG
INTEGER IERROR

MPI_FINALIZE(IERROR)
INTEGER IERROR

MPI_FREE_MEM(BASE, IERROR)
<type> BASE(*)
INTEGER IERROR

MPI_GET_PROCESSOR_NAME( NAME, RESULTLEN, IERROR)
CHARACTER* () NAME
INTEGER RESULTLEN, IERROR

MPI_GET_VERSION(VERSION, SUBVERSION, IERROR)
INTEGER VERSION, SUBVERSION, IERROR

MPI_INITIALIZED(FLAG, IERROR)
LOGICAL FLAG
INTEGER IERROR

MPI_INIT(IERROR)
INTEGER IERROR

MPI_WIN_CALL_ERRHANDLER(WIN, ERRORCODE, IERROR)
INTEGER WIN, ERRORCODE, IERROR

MPI_WIN_CREATE_ERRHANDLER(FUNCTION, ERRHANDLER, IERROR)
EXTERNAL FUNCTION
INTEGER ERRHANDLER, IERROR

MPI_WIN_GET_ERRHANDLER(WIN, ERRHANDLER, IERROR)
INTEGER WIN, ERRHANDLER, IERROR

MPI_WIN_SET_ERRHANDLER(WIN, ERRHANDLER, IERROR)
INTEGER WIN, ERRHANDLER, IERROR

A.3.7 The Info Object Fortran Bindings

MPI_INFO_CREATE(INFO, IERROR)
INTEGER INFO, IERROR

MPI_INFO_DELETE(INFO, KEY, IERROR)
INTEGER INFO, IERROR
CHARACTER* (*) KEY

MPI_INFO_DUP(INFO, NEWINFO, IERROR)
INTEGER INFO, NEWINFO, IERROR

MPI_INFO_FREE(INFO, IERROR)



A.3. FORTRAN BINDINGS 533 40 CHAPTER 3. POINT-TO-POINT COMMUNICATION

A.3.6 MPI Environmenta Management Fortran Bindings ! ! MPI_SSEND (buf, count, datatype, dest, tag, comm)
2 2
DOUBLE PRECISION MPI_WTICK() , s IN buf initial address of send buffer (choice)
DOUBLE PRECISION MPI_WTIME() 4 4 IN count IlllI;lbOI‘ of elements in send buffer (non-negative inte-
5 5 ger
MPT_ABORT (COMM, ERRORCODE, TERROR) 6 6 IN datatype datatype of each send buffer element (handle)
INTEGER COMM, ERRORCODE, IERROR - .
IN dest rank of destination (integer)
MPI_ADD_ERROR_CLASS (ERRORCLASS, IERROR) ¢ i " ,
INTEGER ERRORCLASS, IERROR o o tag message tag (integer)
0 0 IN comm communicator (handle)
MPI_ADD_ERROR_CODE (ERRORCLASS, ERRORCODE, IERROR) 1 11
INTEGER ERRORCLASS, ERRORCODE, IERROR 12 12

int MPI_Ssend(void* buf, int count, MPI_Datatype datatype, int dest,

MPI_ADD_ERROR_STRING(ERRORCODE, STRING, IERROR) int tag, MPI_Comm comm)

INTEGER ERRORCODE, IERROR " ” AT .
CHARACTER* (%) STRING 15 15 MPI_iS:END iBg{l;};(C()JUNT, DATATYPE, DEST, TAG, COMM, IERROR)
16 16 ype *
MPI_ALLOC_MEM(SIZE, INFO, BASEPTR, IERROR) 17 17 INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR
INTEGER INFO, IERROR 18 18 . . .
INTEGER (KIND=MPT_ADDRESS_KIND) SIZE, BASEPTR i, 0 void MPI::Comm: :Ssend(const void* buf, int count, const
MPI::Datatype& datatype, int dest, int tag) const
MPI_COMM_CALL_ERRHANDLER(COMM, ERRORCODE, IERROR) * 0 Send i . q
INTEGER COMM, ERRORCODE, IERROR 2 21 cid m synchronous mode.
22 22
MPI_COMM_CREATE_ERRHANDLER (FUNCTION, ERRHANDLER, IERROR) 2 2
EXTERNAL FUNCTION o on MPI_RSEND (buf, count, datatype, dest, tag, comm)
INTEGER ERRHANDLER, IERROR 25 25 IN buf initial address of send buffer (choice)
MPI_COMM_GET_ERRHANDLER (COMM, ERRHANDLER, IERROR) 2 2 IN count number of elements in send buffer (non-negative inte-
INTEGER COMM, ERRHANDLER, IERROR ” “ ger)
28 28
MPI_COMM_SET_ERRHANDLER (COMM, ERRHANDLER, IERROR) 2 29 IN datatype datatype of each send buffer element (handle)
INTEGER COMM, ERRHANDLER, IERROR 30 30 IN dest rank of destination (integer)
31 31 .
MPI_ERRHANDLER_FREE (ERRHANDLER, IERROR) N " IN tag message tag (integer)
INTEGER ERRHANDLER, IERROR - ‘ IN comm communicator (handle)
33 33
MPI_ERROR_CLASS (ERRORCODE, ERRORCLASS, IERROR) 34 34
INTEGER ERRORCODE, ERRORCLASS, IERROR 35 35 int MPI_Rsend(void* buf, int count, MPI_Datatype datatype, int dest,
36 36 int tag, MPI_Comm comm)
MPI_ERROR_STRING(ERRORCODE, STRING, RESULTLEN, IERROR) 4 4
INTEGER ERRORCODE, RESULTLEN, IERROR ;8 us MPI_RSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
CHARACTER* (*) STRING " N <type> BUF (%)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR
MPI_FILE_CALL_ERRHANDLER(FH, ERRORCODE, IERROR) 40 40
INTEGER FH, ERRORCODE, IERROR 41 a1 void MPI::Comm::Rsend(const void* buf, int count, const
42 42 MPI::Datatype& datatype, int dest, int tag) const
MPI_FILE_CREATE_ERRHANDLER (FUNCTION, ERRHANDLER, IERROR) 1 13
EXTERNAL FUNCTION “ “ Send in ready mode.
INTEGER ERRHANDLER, IERROR - - There is only one receive operation, but it matches any of the send modes. The receive
o o operation described in the last section is blocking: it returns only after the receive buffer
MPI_FILE_GET_ERRHANDLER(FILE, ERRHANDLER, IERROR) contains the newly received message. A receive can complete before the matching send has
INTEGER FILE, ERRHANDLER, IERROR ar a7

" " completed (of course, it can complete only after the matching send has started).
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In a multi-threaded implementation of MPI, the system may de-schedule a thread that
is blocked on a send or receive operation, and schedule another thread for execution in the
same address space. In such a case it is the user’s responsibility not to access or modify a
communication buffer until the communication completes. Otherwise, the outcome of the
computation is undefined.

Rationale.  We prohibit read accesses to a send buffer while it is being used, even
though the send operation is not supposed to alter the content of this buffer. This
may seem more stringent than necessary, but the additional restriction causes little
loss of functionality and allows better performance on some systems — consider the
case where data transfer is done by a DMA engine that is not cache-coherent with the
main processor. (End of rationale.)

Advice to implementors. Since a synchronous send cannot complete before a matching
receive is posted, one will not normally buffer messages sent by such an operation.

It is recommended to choose buffering over blocking the sender, whenever possible,
for standard sends. The programmer can signal his or her preference for blocking the
sender until a matching receive occurs by using the synchronous send mode.

A possible communication protocol for the various communication modes is outlined
below.

ready send: The message is sent as soon as possible.

synchronous send: The sender sends a request-to-send message. The receiver stores
this request. When a matching receive is posted, the receiver sends back a permission-
to-send message, and the sender now sends the message.

standard send: First protocol may be used for short messages, and second protocol for
long messages.

buffered send: The sender copies the message into a buffer and then sends it with a
nonblocking send (using the same protocol as for standard send).

Additional control messages might be needed for flow control and error recovery. Of
course, there are many other possible protocols.

Ready send can be implemented as a standard send. In this case there will be no
performance advantage (or disadvantage) for the use of ready send.

A standard send can be implemented as a synchronous send. In such a case, no data
buffering is needed. However, users may expect some buffering.

In a multi-threaded environment, the execution of a blocking communication should
block only the executing thread, allowing the thread scheduler to de-schedule this
thread and schedule another thread for execution. (End of advice to implementors.)

3.5 Semantics of Point-to-Point Communication

A valid MPI implementation guarantees certain general properties of point-to-point com-
munication, which are described in this section.
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A.3.5 Process Topologies Fortran Bindings

MPI_CART_COORDS (COMM, RANK, MAXDIMS, COORDS, IERROR)
INTEGER COMM, RANK, MAXDIMS, COORDS(*), IERROR

MPI_CART_CREATE(COMM_OLD, NDIMS, DIMS, PERIODS, REORDER, COMM_CART, IERROR)
INTEGER COMM_OLD, NDIMS, DIMS(*), COMM_CART, IERROR
LOGICAL PERIODS(*), REORDER

MPI_CARTDIM_GET (COMM, NDIMS, IERROR)
INTEGER COMM, NDIMS, IERROR

MPI_CART_GET(COMM, MAXDIMS, DIMS, PERIODS, COORDS, IERROR)
INTEGER COMM, MAXDIMS, DIMS(*), COORDS(*), IERROR
LOGICAL PERIODS(x)

MPI_CART_MAP(COMM, NDIMS, DIMS, PERIODS, NEWRANK, IERROR)
INTEGER COMM, NDIMS, DIMS(*), NEWRANK, IERROR
LOGICAL PERIODS(*)

MPI_CART_RANK(COMM, COORDS, RANK, IERROR)
INTEGER COMM, COORDS(*), RANK, IERROR

MPI_CART_SHIFT(COMM, DIRECTION, DISP, RANK_SOURCE, RANK_DEST, IERROR)
INTEGER COMM, DIRECTION, DISP, RANK_SOURCE, RANK_DEST, IERROR

MPI_CART_SUB(COMM, REMAIN_DIMS, NEWCOMM, IERROR)
INTEGER COMM, NEWCOMM, IERROR
LOGICAL REMAIN_DIMS(*)

MPI_DIMS_CREATE(NNODES, NDIMS, DIMS, IERROR)
INTEGER NNODES, NDIMS, DIMS(*), IERROR

MPI_GRAPH_CREATE(COMM_OLD, NNODES, INDEX, EDGES, REORDER, COMM_GRAPH,
IERROR)
INTEGER COMM_OLD, NNODES, INDEX(*), EDGES(*), COMM_GRAPH, IERROR
LOGICAL REORDER

MPI_GRAPHDIMS_GET(COMM, NNODES, NEDGES, IERROR)
INTEGER COMM, NNODES, NEDGES, IERROR

MPI_GRAPH_GET(COMM, MAXINDEX, MAXEDGES, INDEX, EDGES, IERROR)
INTEGER COMM, MAXINDEX, MAXEDGES, INDEX(%*), EDGES(*), IERROR

MPI_GRAPH_MAP(COMM, NNODES, INDEX, EDGES, NEWRANK, IERROR)
INTEGER COMM, NNODES, INDEX(*), EDGES(*), NEWRANK, IERROR

MPI_GRAPH_NEIGHBORS(COMM, RANK, MAXNEIGHBORS, NEIGHBORS, IERROR)
INTEGER COMM, RANK, MAXNEIGHBORS, NEIGHBORS(*), IERROR

MPI_GRAPH_NEIGHBORS_COUNT(COMM, RANK, NNEIGHBORS, IERROR)
INTEGER COMM, RANK, NNEIGHBORS, IERROR

MPI_TOPO_TEST(COMM, STATUS, IERROR)
INTEGER COMM, STATUS, IERROR
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INTEGER TYPE, IERROR
CHARACTER* (%) TYPE_NAME

MPI_WIN_CREATE_KEYVAL (WIN_COPY_ATTR_FN, WIN_DELETE_ATTR_FN, WIN_KEYVAL,
EXTRA_STATE, IERROR)
EXTERNAL WIN_COPY_ATTR_FN, WIN_DELETE_ATTR_FN
INTEGER WIN_KEYVAL, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_STATE

MPI_WIN_DELETE_ATTR(WIN, WIN_KEYVAL, IERROR)
INTEGER WIN, WIN_KEYVAL, IERROR

MPI_WIN_DUP_FN(OLDWIN, WIN_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_OUT, FLAG, IERROR)
INTEGER OLDWIN, WIN_KEYVAL, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_OUT
LOGICAL FLAG

MPI_WIN_FREE_KEYVAL(WIN_KEYVAL, IERROR)
INTEGER WIN_KEYVAL, IERROR

MPI_WIN_GET_ATTR(WIN, WIN_KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)
INTEGER WIN, WIN_KEYVAL, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL
LOGICAL FLAG

MPI_WIN_GET_NAME(WIN, WIN_NAME, RESULTLEN, IERROR)
INTEGER WIN, RESULTLEN, IERROR
CHARACTER* (*) WIN_NAME

MPI_WIN_NULL_COPY_FN(OLDWIN, WIN_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_OUT, FLAG, IERROR)
INTEGER OLDWIN, WIN_KEYVAL, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_QOUT
LOGICAL FLAG

MPI_WIN_NULL_DELETE_FN(WIN, WIN_KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERROR)
INTEGER WIN, WIN_KEYVAL, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

MPI_WIN_SET_ATTR(WIN, WIN_KEYVAL, ATTRIBUTE_VAL, IERROR)
INTEGER WIN, WIN_KEYVAL, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

MPI_WIN_SET_NAME(WIN, WIN_NAME, IERROR)
INTEGER WIN, IERROR
CHARACTER* (*) WIN_NAME
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Order Messages are non-overtaking: If a sender sends two messages in succession to the
same destination, and both match the same receive, then this operation cannot receive the
second message if the first one is still pending. If a receiver posts two receives in succession,
and both match the same message, then the second receive operation cannot be satisfied
by this message, if the first one is still pending. This requirement facilitates matching of
sends to receives. It guarantees that message-passing code is deterministic, if processes are
single-threaded and the wildcard MPI_ANY_SOURCE is not used in receives. (Some of the
calls described later, such as MPI_CANCEL or MPI_WAITANY, are additional sources of
nondeterminism.)

If a process has a single thread of execution, then any two communications executed
by this process are ordered. On the other hand, if the process is multi-threaded, then the
semantics of thread execution may not define a relative order between two send operations
executed by two distinct threads. The operations are logically concurrent, even if one
physically precedes the other. In such a case, the two messages sent can be received in
any order. Similarly, if two receive operations that are logically concurrent receive two
successively sent messages, then the two messages can match the two receives in either
order.

Example 3.6 An example of non-overtaking messages.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN
CALL MPI_BSEND(bufl, count, MPI_REAL, 1, tag, comm, ierr)
CALL MPI_BSEND(buf2, count, MPI_REAL, 1, tag, comm, ierr)
ELSE IF (rank.EQ.1) THEN
CALL MPI_RECV(bufil, count, MPI_REAL, O, MPI_ANY_TAG, comm, status, ierr)
CALL MPI_RECV(buf2, count, MPI_REAL, O, tag, comm, status, ierr)
END IF

The message sent by the first send must be received by the first receive, and the message
sent by the second send must be received by the second receive.

Progress If a pair of matching send and receives have been initiated on two processes, then
at least one of these two operations will complete, independently of other actions in the
system: the send operation will complete, unless the receive is satisfied by another message,
and completes; the receive operation will complete, unless the message sent is consumed by
another matching receive that was posted at the same destination process.

Example 3.7 An example of two, intertwined matching pairs.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN
CALL MPI_BSEND(bufl, count, MPI_REAL, 1, tagl, comm, ierr)
CALL MPI_SSEND(buf2, count, MPI_REAL, 1, tag2, comm, ierr)
ELSE IF (rank.EQ.1) THEN
CALL MPI_RECV(bufl, count, MPI_REAL, O, tag2, comm, status, ierr)
CALL MPI_RECV(buf2, count, MPI_REAL, O, tagl, comm, status, ierr)
END IF
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Both processes invoke their first communication call. Since the first send of process zero
uses the buffered mode, it must complete, irrespective of the state of process one. Since
no matching receive is posted, the message will be copied into buffer space. (If insufficient
buffer space is available, then the program will fail.) The second send is then invoked. At
that point, a matching pair of send and receive operation is enabled, and both operations
must complete. Process one next invokes its second receive call, which will be satisfied by
the buffered message. Note that process one received the messages in the reverse order they
were sent.

Fairness MPI makes no guarantee of fairness in the handling of communication. Suppose
that a send is posted. Then it is possible that the destination process repeatedly posts a
receive that matches this send, yet the message is never received, because it is each time
overtaken by another message, sent from another source. Similarly, suppose that a receive
was posted by a multi-threaded process. Then it is possible that messages that match this
receive are repeatedly received, yet the receive is never satisfied, because it is overtaken
by other receives posted at this node (by other executing threads). It is the programmer’s
responsibility to prevent starvation in such situations.

Resource limitations Any pending communication operation consumes system resources
that are limited. Errors may occur when lack of resources prevent the execution of an MPI
call. A quality implementation will use a (small) fixed amount of resources for each pending
send in the ready or synchronous mode and for each pending receive. However, buffer space
may be consumed to store messages sent in standard mode, and must be consumed to store
messages sent in buffered mode, when no matching receive is available. The amount of space
available for buffering will be much smaller than program data memory on many systems.
Then, it will be easy to write programs that overrun available buffer space.

MPI allows the user to provide buffer memory for messages sent in the buffered mode.
Furthermore, MPI specifies a detailed operational model for the use of this buffer. An MPI
implementation is required to do no worse than implied by this model. This allows users to
avoid buffer overflows when they use buffered sends. Buffer allocation and use is described
in Section 3.6.

A buffered send operation that cannot complete because of a lack of buffer space is
erroneous. When such a situation is detected, an error is signalled that may cause the
program to terminate abnormally. On the other hand, a standard send operation that
cannot, complete because of lack of buffer space will merely block, waiting for buffer space
to become available or for a matching receive to be posted. This behavior is preferable in
many situations. Consider a situation where a producer repeatedly produces new values
and sends them to a consumer. Assume that the producer produces new values faster
than the consumer can consume them. If buffered sends are used, then a buffer overflow
will result. Additional synchronization has to be added to the program so as to prevent
this from occurring. If standard sends are used, then the producer will be automatically
throttled, as its send operations will block when buffer space is unavailable.

In some situations, a lack of buffer space leads to deadlock situations. This is illustrated
by the examples below.

Example 3.8 An exchange of messages.

CALL MPI_COMM_RANK(comm, rank, ierr)

40

41

42

43

44

45

20

21

22

23

24

530 ANNEX A. LANGUAGE BINDINGS SUMMARY

TAG, NEWINTERCOMM, IERROR)
INTEGER LOCAL_COMM, LOCAL_LEADER, PEER_COMM, REMOTE_LEADER, TAG,
NEWINTERCOMM, IERROR

MPI_INTERCOMM_MERGE (INTERCOMM, HIGH, INTRACOMM, IERROR)
INTEGER INTERCOMM, INTRACOMM, IERROR
LOGICAL HIGH

MPI_TYPE_CREATE_KEYVAL (TYPE_COPY_ATTR_FN, TYPE_DELETE_ATTR_FN, TYPE_KEYVAL,
EXTRA_STATE, IERROR)
EXTERNAL TYPE_COPY_ATTR_FN, TYPE_DELETE_ATTR_FN
INTEGER TYPE_KEYVAL, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_STATE

MPI_TYPE_DELETE_ATTR(TYPE, TYPE_KEYVAL, IERROR)
INTEGER TYPE, TYPE_KEYVAL, IERROR

MPI_TYPE_DUP_FN(OLDTYPE, TYPE_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_OUT, FLAG, IERROR)
INTEGER OLDTYPE, TYPE_KEYVAL, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_QOUT
LOGICAL FLAG

MPI_TYPE_FREE_KEYVAL(TYPE_KEYVAL, IERROR)
INTEGER TYPE_KEYVAL, IERROR

MPI_TYPE_GET_ATTR(TYPE, TYPE_KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)
INTEGER TYPE, TYPE_KEYVAL, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL
LOGICAL FLAG

MPI_TYPE_GET_NAME(TYPE, TYPE_NAME, RESULTLEN, IERROR)
INTEGER TYPE, RESULTLEN, IERROR
CHARACTER* () TYPE_NAME

MPI_TYPE_NULL_COPY_FN(OLDTYPE, TYPE_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_OUT, FLAG, IERROR)
INTEGER OLDTYPE, TYPE_KEYVAL, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_QOUT
LOGICAL FLAG

MPI_TYPE_NULL_DELETE_FN(TYPE, TYPE_KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE,
IERROR)
INTEGER TYPE, TYPE_KEYVAL, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

MPI_TYPE_SET_ATTR(TYPE, TYPE_KEYVAL, ATTRIBUTE_VAL, IERROR)
INTEGER TYPE, TYPE_KEYVAL, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

MPI_TYPE_SET_NAME(TYPE, TYPE_NAME, IERROR)
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MPI_COMM_SET_ATTR(COMM, COMM_KEYVAL, ATTRIBUTE_VAL, IERROR)
INTEGER COMM, COMM_KEYVAL, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

MPI_COMM_SET_NAME(COMM, COMM_NAME, IERROR)
INTEGER COMM, IERROR
CHARACTER* (%) COMM_NAME

MPI_COMM_SIZE(COMM, SIZE, IERROR)
INTEGER COMM, SIZE, IERROR

MPI_COMM_SPLIT(COMM, COLOR, KEY, NEWCOMM, IERROR)
INTEGER COMM, COLOR, KEY, NEWCOMM, IERROR

MPI_COMM_TEST_INTER(COMM, FLAG, IERROR)
INTEGER COMM, IERROR
LOGICAL FLAG

MPI_GROUP_COMPARE(GROUP1, GROUP2, RESULT, IERROR)
INTEGER GROUP1, GROUP2, RESULT, IERROR

MPI_GROUP_DIFFERENCE(GROUP1, GROUP2, NEWGROUP, IERROR)
INTEGER GROUP1, GROUP2, NEWGROUP, IERROR

MPI_GROUP_EXCL(GROUP, N, RANKS, NEWGROUP, IERROR)
INTEGER GROUP, N, RANKS(*), NEWGROUP, IERROR

MPI_GROUP_FREE(GROUP, IERROR)
INTEGER GROUP, IERROR

MPI_GROUP_INCL(GROUP, N, RANKS, NEWGROUP, IERROR)
INTEGER GROUP, N, RANKS(*), NEWGROUP, IERROR

MPI_GROUP_INTERSECTION(GROUP1, GROUP2, NEWGROUP, IERROR)
INTEGER GROUP1, GROUP2, NEWGROUP, IERROR

MPI_GROUP_RANGE_EXCL(GROUP, N, RANGES, NEWGROUP, IERROR)
INTEGER GROUP, N, RANGES(3,*), NEWGROUP, IERROR

MPI_GROUP_RANGE_INCL(GROUP, N, RANGES, NEWGROUP, IERROR)
INTEGER GROUP, N, RANGES(3,*), NEWGROUP, IERROR

MPI_GROUP_RANK(GROUP, RANK, IERROR)
INTEGER GROUP, RANK, IERROR

MPI_GROUP_SIZE(GROUP, SIZE, IERROR)
INTEGER GROUP, SIZE, IERROR

MPI_GROUP_TRANSLATE_RANKS(GROUP1, N, RANKS1, GROUP2, RANKS2, IERROR)
INTEGER GROUP1, N, RANKS1(x), GROUP2, RANKS2(*), IERROR

MPI_GROUP_UNION(GROUP1, GROUP2, NEWGROUP, IERROR)
INTEGER GROUP1, GROUP2, NEWGROUP, IERROR

MPI_INTERCOMM_CREATE(LOCAL_COMM, LOCAL_LEADER, PEER_COMM, REMOTE_LEADER,
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IF (rank.EQ.0) THEN
CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)
CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)
ELSE IF (rank.EQ.1) THEN
CALL MPI_RECV(recvbuf, count, MPI_REAL, O, tag, comm, status, ierr)
CALL MPI_SEND(sendbuf, count, MPI_REAL, O, tag, comm, ierr)
END IF

This program will succeed even if no buffer space for data is available. The standard send
operation can be replaced, in this example, with a synchronous send.

Example 3.9 An errant attempt to exchange messages.

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN
CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)
CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)

ELSE IF (rank.EQ.1) THEN
CALL MPI_RECV(recvbuf, count, MPI_REAL, O, tag, comm, status, ierr)
CALL MPI_SEND(sendbuf, count, MPI_REAL, O, tag, comm, ierr)

END IF

The receive operation of the first process must complete before its send, and can complete
only if the matching send of the second processor is executed. The receive operation of the
second process must complete before its send and can complete only if the matching send
of the first process is executed. This program will always deadlock. The same holds for any
other send mode.

Example 3.10 An exchange that relies on buffering.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)

CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)
ELSE IF (rank.EQ.1) THEN

CALL MPI_SEND(sendbuf, count, MPI_REAL, O, tag, comm, ierr)

CALL MPI_RECV(recvbuf, count, MPI_REAL, O, tag, comm, status, ierr)
END IF

The message sent by each process has to be copied out before the send operation returns
and the receive operation starts. For the program to complete, it is necessary that at least
one of the two messages sent be buffered. Thus, this program can succeed only if the
communication system can buffer at least count words of data.

Advice to users. When standard send operations are used, then a deadlock situation
may occur where both processes are blocked because buffer space is not available. The
same will certainly happen, if the synchronous mode is used. If the buffered mode is
used, and not enough buffer space is available, then the program will not complete
either. However, rather than a deadlock situation, we shall have a buffer overflow
€error.
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A program is “safe” if no message buffering is required for the program to complete. ! ! INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_STATE
One can replace all sends in such program with synchronous sends, and the pro- 2 2 MPT_COMM_DELETE_ATTR(COMM, COMM_KEYVAL, TERROR)
gram will still run correctly. This conservative programming style provides the best 3 3 _INTE(;ER CDMI;l coMM KE\,{VAL EERROR ’
portability, since program completion does not depend on the amount of buffer space 4 4 ’ - ’

available or on the communication protocol used. 5 MPI_COMM_DUP(COMM, NEWCOMM, IERROR)

Many programmers prefer to have more leeway and opt to use the “unsafe” program- ’ ¢ INTEGER COMM, NEWCOMM, IERROR

ming style shown in example 3.10. In such cases, the use of standard sends is likely ! T MPI_COMM_DUP_FN(OLDCOMM, COMM_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN
. . . 8 8 - - - > - > - ) - - >
to provide the best compromise between performance and robustness: quality imple- ATTRIBUTE_VAL_QUT, FLAG, IERROR)
. S « . 9 . 9 9 - - 3 B
mentations will provide sufficient buffering so that “common practice” programs will INTEGER OLDCOMM. COMM KEYVAL . TERROR
10 10 > — 5
not deadlock. The buffered send mode can be used for programs that require more INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE VAL IN
- L . . . 11 11 - - - B — —LiN,
bl%{‘ferlng, or in situations wh.ere the programmer wants more co.rltfrol. This 'rnode b b ATTRIBUTE_VAL_OUT
might also be used for debugging purposes, as buffer overflow conditions are easier to LOGICAL FLAG
. P 13 13
diagnose than deadlock conditions.
" "' MPI_COMM_FREE(COMM, IERROR)

Nonblocking message-passing operations, as described in Section 3.7, can be used to
avoid the need for buffering outgoing messages. This prevents deadlocks due to lack
of buffer space, and improves performance, by allowing overlap of computation and 1 . MPI_COMM_FREE_KEYVAL (COMM_KEYVAL, IERROR)
communication, and avoiding the overheads of allocating buffers and copying messages 18 18 INTEGER COMM_KEYVAL, IERROR

into buffers. (End of advice to users.)

INTEGER COMM, IERROR

MPI_COMM_GET_ATTR(COMM, COMM_KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)

2 20 INTEGER COMM, COMM_KEYVAL, IERROR
21 21 _
3.6 Buffer Allocation and Usage N " INTEGER (KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL
LOGICAL FLAG
. . . 23 23
A user may specify a buffer to be used for buffering messages sent in buffered mode. Buffer- o o MPI_COMM_GET_NAME(COMM, COMM_NAME, RESULTLEN, TERROR)
ing is done by the sender. 2 » INTEGER COMM, RESULTLEN, IERROR
26 26 CHARACTER* () COMM_NAME
MPI_BUFFER_ATTACH(buffer, size) 7 *" MPI_COMM_GROUP(COMM, GROUP, IERROR)
28 28
IN buffer initial buffer address (choice) 2 . INTEGER COMM, GROUP, IERROR
IN size buffer size, in bytes (non-negative integer) 30 30 MPI_COMM_NULL_COPY_FN(OLDCOMM, COMM_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,
31 31 ATTRIBUTE_VAL_QOUT, FLAG, IERROR)
int MPI_Buffer_attach(void* buffer, int size) 32 32 INTEGER OLDCOMM, COMM_KEYVAL, IERROR
33 33 INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,
MPI_BUFFER_ATTACH(BUFFER, SIZE, IERROR) a s ATTRIBUTE VAL OUT
<type> BUFFER (%) - 35 LOGICAL FLAG
INTEGER SIZE, IERROR ; )
MPI_COMM_NULL_DELETE_FN(COMM, COMM_KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE,
void MPI::Attach_buffer(void* buffer, int size) 37 37 IERROR)
38 38
Provides to MPI a buffer in the user’s memory to be used for buffering outgoing mes- 40 INTEGER COMM, COMM_KEYVAL, IERROR
sages. The buffer is used only by messages sent in buffered mode. Only one buffer can be 0 o INTEGER (KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE
attached to a process at a time. m 41 MPI_COMM_RANK(COMM, RANK, IERROR)
42 42 INTEGER COMM, RANK, IERROR
. 43 43
MPI_BUFFER_DETACH (buffer_addr, size) " .,  MPI_COMM_REMOTE_GROUP(COMM, GROUP, IERROR)
ouT buffer_addr initial buffer address (choice) 5 5 INTEGER COMM, GROUP, IERROR
ouT size buffer size, in bytes (non-negative integer) 16 16 MPI_COMM_REMOTE_SIZE(COMM, SIZE, IERROR)
a7 47 INTEGER COMM, SIZE, IERROR

int MPI_Buffer_detach(void* buffer_addr, int* size) a8 8
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INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR

MPI_GATHERV (SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,
RECVTYPE, ROOT, COMM, IERROR)
<type> SENDBUF (*), RECVBUF ()
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, ROOT,
COMM, IERROR

MPI_OP_CREATE( FUNCTION, COMMUTE, OP, IERROR)
EXTERNAL FUNCTION
LOGICAL COMMUTE
INTEGER 0P, IERROR

MPI_OP_FREE( OP, IERROR)
INTEGER 0P, IERROR

MPI_REDUCE_SCATTER (SENDBUF, RECVBUF, RECVCOUNTS, DATATYPE, OP, COMM,
IERROR)
<type> SENDBUF (x), RECVBUF (*)
INTEGER RECVCOUNTS (*), DATATYPE, OP, COMM, IERROR

MPI_REDUCE (SENDBUF, RECVBUF, COUNT, DATATYPE, OP, ROOT, COMM, IERROR)
<type> SENDBUF (*), RECVBUF (%)
INTEGER COUNT, DATATYPE, OP, ROOT, COMM, IERROR

MPI_SCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)
<type> SENDBUF (*), RECVBUF (%)
INTEGER COUNT, DATATYPE, OP, COMM, IERROR

MPI_SCATTER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
ROOT, COMM, IERROR)
<type> SENDBUF (*), RECVBUF (%)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR

MPI_SCATTERV (SENDBUF, SENDCOUNTS, DISPLS, SENDTYPE, RECVBUF, RECVCOUNT,
RECVTYPE, ROOT, COMM, IERROR)
<type> SENDBUF (%), RECVBUF ()
INTEGER SENDCOUNTS(*), DISPLS(*), SENDTYPE, RECVCOUNT, RECVTYPE, ROOT,
COMM, IERROR

A.3.4  Groups, Contexts, Communicators, and Caching Fortran Bindings

MPI_COMM_COMPARE(COMM1, COMM2, RESULT, IERROR)
INTEGER COMM1, COMM2, RESULT, IERROR

MPI_COMM_CREATE(COMM, GROUP, NEWCOMM, IERROR)
INTEGER COMM, GROUP, NEWCOMM, IERROR

MPI_COMM_CREATE_KEYVAL (COMM_COPY_ATTR_FN, COMM_DELETE_ATTR_FN, COMM_KEYVAL,
EXTRA_STATE, IERROR)
EXTERNAL COMM_COPY_ATTR_FN, COMM_DELETE_ATTR_FN
INTEGER COMM_KEYVAL, IERROR
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MPI_BUFFER_DETACH(BUFFER_ADDR, SIZE, IERROR)
<type> BUFFER_ADDR (%)
INTEGER SIZE, IERROR

int MPI::Detach_buffer(void*& buffer)

Detach the buffer currently associated with MPI. The call returns the address and the
size of the detached buffer. This operation will block until all messages currently in the
buffer have been transmitted. Upon return of this function, the user may reuse or deallocate
the space taken by the buffer.

Example 3.11 Calls to attach and detach buffers.

#define BUFFSIZE 10000

int size

char *buff;

MPI_Buffer_attach( malloc(BUFFSIZE), BUFFSIZE);

/* a buffer of 10000 bytes can now be used by MPI_Bsend */
MPI_Buffer_detach( &buff, &size);

/* Buffer size reduced to zero */

MPI_Buffer_attach( buff, size);

/* Buffer of 10000 bytes available again */

Advice to users.  Even though the C functions MPI_Buffer_attach and
MPI_Buffer_detach both have a first argument of type void*, these arguments are used
differently: A pointer to the buffer is passed to MPI_Buffer_attach; the address of the
pointer is passed to MPI_Buffer_detach, so that this call can return the pointer value.
(End of advice to users.)

Rationale.  Both arguments are defined to be of type void* (rather than

void* and void**, respectively), so as to avoid complex type casts. E.g., in the last
example, &buff, which is of type char**, can be passed as argument to
MPI_Buffer_detach without type casting. If the formal parameter had type void**
then we would need a type cast before and after the call. (End of rationale.)

The statements made in this section describe the behavior of MPI for buffered-mode
sends. When no buffer is currently associated, MPI behaves as if a zero-sized buffer is
associated with the process.

MPI must provide as much buffering for outgoing messages as if outgoing message
data were buffered by the sending process, in the specified buffer space, using a circular,
contiguous-space allocation policy. We outline below a model implementation that defines
this policy. MPI may provide more buffering, and may use a better buffer allocation algo-
rithm than described below. On the other hand, MPI may signal an error whenever the
simple buffering allocator described below would run out of space. In particular, if no buffer
is explicitly associated with the process, then any buffered send may cause an error.

MPI does not provide mechanisms for querying or controlling buffering done by standard
mode sends. It is expected that vendors will provide such information for their implemen-
tations.

Rationale. There is a wide spectrum of possible implementations of buffered com-
munication: buffering can be done at sender, at receiver, or both; buffers can be



3.7. NONBLOCKING COMMUNICATION 47

dedicated to one sender-receiver pair, or be shared by all communications; buffering
can be done in real or in virtual memory; it can use dedicated memory, or memory
shared by other processes; buffer space may be allocated statically or be changed dy-
namically; etc. It does not seem feasible to provide a portable mechanism for querying
or controlling buffering that would be compatible with all these choices, yet provide
meaningful information. (End of rationale.)

3.6.1 Model Implementation of Buffered Mode

The model implementation uses the packing and unpacking functions described in Sec-
tion 4.2 and the nonblocking communication functions described in Section 3.7.

We assume that a circular queue of pending message entries (PME) is maintained.
Each entry contains a communication request handle that identifies a pending nonblocking
send, a pointer to the next entry and the packed message data. The entries are stored in
successive locations in the buffer. Free space is available between the queue tail and the
queue head.

A buffered send call results in the execution of the following code.

e Traverse sequentially the PME queue from head towards the tail, deleting all entries
for communications that have completed, up to the first entry with an uncompleted
request; update queue head to point to that entry.

Compute the number, n, of bytes needed to store an entry for the new message. An up-
per bound on n can be computed as follows: A call to the function
MPI_PACK_SIZE(count, datatype, comm, size), with the count, datatype and comm
arguments used in the MPI_BSEND call, returns an upper bound on the amount
of space needed to buffer the message data (see Section 4.2). The MPI constant
MPI_BSEND_OVERHEAD provides an upper bound on the additional space consumed
by the entry (e.g., for pointers or envelope information).

e Find the next contiguous empty space of n bytes in buffer (space following queue tail,
or space at start of buffer if queue tail is too close to end of buffer). If space is not
found then raise buffer overflow error.

e Append to end of PME queue in contiguous space the new entry that contains request
handle, next pointer and packed message data; MPI_PACK is used to pack data.

Post nonblocking send (standard mode) for packed data.

e Return

3.7 Nonblocking Communication

One can improve performance on many systems by overlapping communication and com-
putation. This is especially true on systems where communication can be executed au-
tonomously by an intelligent communication controller. Light-weight threads are one mech-
anism for achieving such overlap. An alternative mechanism that often leads to better
performance is to use nonblocking communication. A nonblocking send start call ini-
tiates the send operation, but does not complete it. The send start call can return before
the message was copied out of the send buffer. A separate send complete call is needed
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IERROR)
<type> INBUF(x), OUTBUF (*)
INTEGER INSIZE, POSITION, OUTCOUNT, DATATYPE, COMM, IERROR

A.3.3 Collective Communication Fortran Bindings

MPI_ALLGATHER (SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
COMM, IERROR)
<type> SENDBUF (x), RECVBUF (%)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

MPI_ALLGATHERV (SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,
RECVTYPE, COMM, IERROR)
<type> SENDBUF (%), RECVBUF (x)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, COMM,
IERROR

MPI_ALLREDUCE (SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)
<type> SENDBUF (*), RECVBUF ()
INTEGER COUNT, DATATYPE, OP, COMM, IERROR

MPI_ALLTOALL (SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
COMM, IERROR)
<type> SENDBUF (%), RECVBUF (x)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

MPI_ALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF, RECVCOUNTS,
RDISPLS, RECVTYPE, COMM, IERROR)
<type> SENDBUF (), RECVBUF (*)
INTEGER SENDCOUNTS (), SDISPLS(), SENDTYPE, RECVCOUNTS(*), RDISPLS(x),
RECVTYPE, COMM, IERROR

MPI_ALLTOALLW(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF, RECVCOUNTS,
RDISPLS, RECVTYPES, COMM, IERROR)
<type> SENDBUF (), RECVBUF (*)
INTEGER SENDCOUNTS (%), SDISPLS(%), SENDTYPES(#), RECVCOUNTS (%),
RDISPLS (%), RECVTYPES(x), COMM, IERROR

MPI_BARRIER(COMM, IERROR)
INTEGER COMM, IERROR

MPI_BCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR)
<type> BUFFER (%)
INTEGER COUNT, DATATYPE, ROOT, COMM, IERROR

MPI_EXSCAN (SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)
<type> SENDBUF (*), RECVBUF (%)
INTEGER COUNT, DATATYPE, OP, COMM, IERROR

MPI_GATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
ROOT, COMM, IERROR)
<type> SENDBUF (*), RECVBUF (%)
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IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) ARRAY_OF_DISPLACEMENTS (*)

MPI_TYPE_CREATE_SUBARRAY(NDIMS, ARRAY_OF_SIZES, ARRAY_OF_SUBSIZES,
ARRAY_OF_STARTS, ORDER, OLDTYPE, NEWTYPE, IERROR)
INTEGER NDIMS, ARRAY_OF_SIZES(*), ARRAY_OF_SUBSIZES(x*),
ARRAY_OF_STARTS(*), ORDER, OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_DUP(TYPE, NEWTYPE, IERROR)
INTEGER TYPE, NEWTYPE, IERROR

MPI_TYPE_FREE(DATATYPE, IERROR)
INTEGER DATATYPE, IERROR

MPI_TYPE_GET_CONTENTS (DATATYPE, MAX_INTEGERS, MAX_ADDRESSES, MAX_DATATYPES,
ARRAY_OF __INTEGERS, ARRAY_OF_ADDRESSES, ARRAY_OF_DATATYPES,
IERROR)
INTEGER DATATYPE, MAX_INTEGERS, MAX_ADDRESSES, MAX_DATATYPES,
ARRAY_OF_INTEGERS(*), ARRAY_OF_DATATYPES(*), IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) ARRAY_OF_ADDRESSES(*)

MPI_TYPE_GET_ENVELOPE (DATATYPE, NUM_INTEGERS, NUM_ADDRESSES, NUM_DATATYPES,
COMBINER, IERROR)
INTEGER DATATYPE, NUM_INTEGERS, NUM_ADDRESSES, NUM_DATATYPES, COMBINER,
IERROR

MPI_TYPE_GET_EXTENT(DATATYPE, LB, EXTENT, IERROR)
INTEGER DATATYPE, IERROR
INTEGER(KIND = MPI_ADDRESS_KIND) LB, EXTENT

MPI_TYPE_GET_TRUE_EXTENT (DATATYPE, TRUE_LB, TRUE_EXTENT, IERROR)
INTEGER DATATYPE, IERROR
INTEGER(KIND = MPI_ADDRESS_KIND) TRUE_LB, TRUE_EXTENT

MPI_TYPE_INDEXED(COUNT, ARRAY_OF_BLOCKLENGTHS, ARRAY_OF_DISPLACEMENTS,
OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_DISPLACEMENTS(*),
OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_SIZE(DATATYPE, SIZE, IERROR)
INTEGER DATATYPE, SIZE, IERROR

MPI_TYPE_VECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR

MPI_UNPACK_EXTERNAL (DATAREP, INBUF, INSIZE, POSITION, OUTBUF, OUTCOUNT,
DATATYPE, IERROR)
INTEGER OUTCOUNT, DATATYPE, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) INSIZE, POSITION
CHARACTER* (*) DATAREP
<type> INBUF (), OUTBUF (%)

MPI_UNPACK(INBUF, INSIZE, POSITION, OUTBUF, QOUTCOUNT, DATATYPE, COMM,
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to complete the communication, i.e., to verify that the data has been copied out of the send
buffer. With suitable hardware, the transfer of data out of the sender memory may proceed
concurrently with computations done at the sender after the send was initiated and before it
completed. Similarly, a nonblocking receive start call initiates the receive operation, but
does not complete it. The call can return before a message is stored into the receive buffer.
A separate receive complete call is needed to complete the receive operation and verify
that the data has been received into the receive buffer. With suitable hardware, the transfer
of data into the receiver memory may proceed concurrently with computations done after
the receive was initiated and before it completed. The use of nonblocking receives may also
avoid system buffering and memory-to-memory copying, as information is provided early
on the location of the receive buffer.

Nonblocking send start calls can use the same four modes as blocking sends: standard,
buffered, synchronous and ready. These carry the same meaning. Sends of all modes, ready
excepted, can be started whether a matching receive has been posted or not; a nonblocking
ready send can be started only if a matching receive is posted. In all cases, the send start call
is local: it returns immediately, irrespective of the status of other processes. If the call causes
some system resource to be exhausted, then it will fail and return an error code. Quality
implementations of MPI should ensure that this happens only in “pathological” cases. That
is, an MPI implementation should be able to support a large number of pending nonblocking
operations.

The send-complete call returns when data has been copied out of the send buffer. It
may carry additional meaning, depending on the send mode.

If the send mode is synchronous, then the send can complete only if a matching receive
has started. That is, a receive has been posted, and has been matched with the send. In
this case, the send-complete call is non-local. Note that a synchronous, nonblocking send
may complete, if matched by a nonblocking receive, before the receive complete call occurs.
(It can complete as soon as the sender “knows” the transfer will complete, but before the
receiver “knows” the transfer will complete.)

If the send mode is buffered then the message must be buffered if there is no pending
receive. In this case, the send-complete call is local, and must succeed irrespective of the
status of a matching receive.

If the send mode is standard then the send-complete call may return before a matching
receive is posted, if the message is buffered. On the other hand, the send-complete may not
complete until a matching receive is posted, and the message was copied into the receive
buffer.

Nonblocking sends can be matched with blocking receives, and vice-versa.

Advice to users. The completion of a send operation may be delayed, for standard
mode, and must be delayed, for synchronous mode, until a matching receive is posted.
The use of nonblocking sends in these two cases allows the sender to proceed ahead
of the receiver, so that the computation is more tolerant of fluctuations in the speeds
of the two processes.

Nonblocking sends in the buffered and ready modes have a more limited impact. A
nonblocking send will return as soon as possible, whereas a blocking send will return
after the data has been copied out of the sender memory. The use of nonblocking
sends is advantageous in these cases only if data copying can be concurrent with
computation.
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The message-passing model implies that communication is initiated by the sender.
The communication will generally have lower overhead if a receive is already posted
when the sender initiates the communication (data can be moved directly to the
receive buffer, and there is no need to queue a pending send request). However, a
receive operation can complete only after the matching send has occurred. The use
of nonblocking receives allows one to achieve lower communication overheads without
blocking the receiver while it waits for the send. (End of advice to users.)

3.7.1 Communication Request Objects

Nonblocking communications use opaque request objects to identify communication oper-
ations and match the operation that initiates the communication with the operation that
terminates it. These are system objects that are accessed via a handle. A request object
identifies various properties of a communication operation, such as the send mode, the com-
munication buffer that is associated with it, its context, the tag and destination arguments
to be used for a send, or the tag and source arguments to be used for a receive. In addition,
this object stores information about the status of the pending communication operation.

3.7.2 Communication Initiation

We use the same naming conventions as for blocking communication: a prefix of B, S, or
R is used for buffered, synchronous or ready mode. In addition a prefix of | (for immediate)
indicates that the call is nonblocking.

MPI_ISEND(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (non-negative inte-
ger)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

ouT request communication request (handle)

int MPI_Isend(void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm, MPI_Request *request)

MPI_ISEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF (%)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI::Request MPI::Comm::Isend(const void* buf, int count, const
MPI::Datatype& datatype, int dest, int tag) const

Start a standard mode, nonblocking send.
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MPI_PACK_EXTERNAL (DATAREP, INBUF, INCOUNT, DATATYPE, OUTBUF, OUTSIZE,
POSITION, IERROR)
INTEGER INCOUNT, DATATYPE, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) QUTSIZE, POSITION
CHARACTER* (*) DATAREP
<type> INBUF(x), OUTBUF (*)

MPI_PACK_EXTERNAL_SIZE(DATAREP, INCOUNT, DATATYPE, SIZE, IERROR)
INTEGER INCOUNT, DATATYPE, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) SIZE
CHARACTER#* (*) DATAREP

MPI_PACK (INBUF, INCOUNT, DATATYPE, OUTBUF, OUTSIZE, POSITION, COMM, IERROR)
<type> INBUF (%), OUTBUF (%)
INTEGER INCOUNT, DATATYPE, OUTSIZE, POSITION, COMM, IERROR

MPI_PACK_SIZE(INCOUNT, DATATYPE, COMM, SIZE, IERROR)
INTEGER INCOUNT, DATATYPE, COMM, SIZE, IERROR

MPI_TYPE_COMMIT (DATATYPE, IERROR)
INTEGER DATATYPE, IERROR

MPI_TYPE_CONTIGUOUS(COUNT, OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_CREATE_DARRAY(SIZE, RANK, NDIMS, ARRAY_OF_GSIZES,
ARRAY_OF _DISTRIBS, ARRAY_OF_DARGS, ARRAY_OF_PSIZES, ORDER,
OLDTYPE, NEWTYPE, IERROR)
INTEGER SIZE, RANK, NDIMS, ARRAY_OF_GSIZES(*), ARRAY_OF_DISTRIBS(*),
ARRAY_OF_DARGS(*), ARRAY_OF_PSIZES(*), ORDER, OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_CREATE_HINDEXED(COUNT, ARRAY_OF_BLOCKLENGTHS,
ARRAY_OF_DISPLACEMENTS, OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), OLDTYPE, NEWTYPE, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) ARRAY_OF_DISPLACEMENTS (*)

MPI_TYPE_CREATE_HVECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE,
IERROR)
INTEGER COUNT, BLOCKLENGTH, OLDTYPE, NEWTYPE, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) STRIDE

MPI_TYPE_CREATE_INDEXED_BLOCK(COUNT, BLOCKLENGTH, ARRAY_OF_DISPLACEMENTS,
OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, BLOCKLENGTH, ARRAY_OF_DISPLACEMENTS(*), OLDTYPE,
NEWTYPE, IERROR

MPI_TYPE_CREATE_RESIZED(OLDTYPE, LB, EXTENT, NEWTYPE, IERROR)
INTEGER OLDTYPE, NEWTYPE, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) LB, EXTENT

MPI_TYPE_CREATE_STRUCT (COUNT, ARRAY_OF_BLOCKLENGTHS,
ARRAY_OF_DISPLACEMENTS, ARRAY_OF_TYPES, NEWTYPE, IERROR)
INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_TYPES(x*), NEWTYPE,
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MPI_START (REQUEST, IERROR)
INTEGER REQUEST, IERROR

MPI_TESTALL(COUNT, ARRAY_OF_REQUESTS, FLAG, ARRAY_OF_STATUSES, IERROR)
LOGICAL FLAG
INTEGER COUNT, ARRAY_OF_REQUESTS(*),
ARRAY_OF_STATUSES (MPI_STATUS_SIZE,*), IERROR

MPI_TESTANY (COUNT, ARRAY_OF_REQUESTS, INDEX, FLAG, STATUS, IERROR)
LOGICAL FLAG
INTEGER COUNT, ARRAY_OF_REQUESTS(*), INDEX, STATUS(MPI_STATUS_SIZE),
IERROR

MPI_TEST_CANCELLED(STATUS, FLAG, IERROR)
LOGICAL FLAG
INTEGER STATUS(MPI_STATUS_SIZE), IERROR

MPI_TEST(REQUEST, FLAG, STATUS, IERROR)
LOGICAL FLAG
INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR

MPI_TESTSOME (INCOUNT, ARRAY_OF_REQUESTS, OUTCOUNT, ARRAY_OF_INDICES,
ARRAY_OF_STATUSES, IERROR)
INTEGER INCOUNT, ARRAY_OF_REQUESTS(%*), OUTCOUNT, ARRAY_OF_INDICES(x),
ARRAY_OF_STATUSES (MPI_STATUS_SIZE,*), IERROR

MPI_WAITALL(COUNT, ARRAY_OF_REQUESTS, ARRAY_OF_STATUSES, IERROR)
INTEGER COUNT, ARRAY_OF_REQUESTS(*)
INTEGER ARRAY_OF_STATUSES (MPI_STATUS_SIZE,*), IERROR

MPI_WAITANY(COUNT, ARRAY_OF_REQUESTS, INDEX, STATUS, IERROR)
INTEGER COUNT, ARRAY_OF_REQUESTS(*), INDEX, STATUS(MPI_STATUS_SIZE),
IERROR

MPI_WAIT(REQUEST, STATUS, IERROR)
INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR

MPI_WAITSOME(INCOUNT, ARRAY_OF_REQUESTS, OUTCOUNT, ARRAY_OF_INDICES,
ARRAY_OF_STATUSES, IERROR)
INTEGER INCOUNT, ARRAY_OF_REQUESTS(*), OUTCOUNT, ARRAY_OF_INDICES(*),
ARRAY_OF_STATUSES (MPI_STATUS_SIZE,*), IERROR

A.3.2 Datatypes Fortran Bindings

MPI_GET_ADDRESS(LOCATION, ADDRESS, IERROR)
<type> LOCATION (*)
INTEGER IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) ADDRESS

MPI_GET_ELEMENTS(STATUS, DATATYPE, COUNT, IERROR)
INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR

CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI_IBSEND(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)
IN count number of elements in send buffer (non-negative inte-
ger)
IN datatype datatype of each send buffer element (handle)
IN dest rank of destination (integer)
IN tag message tag (integer)
IN comm communicator (handle)
ouT request communication request (handle)
int MPI_Ibsend(void* buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm, MPI_Request *request)

MPI_IBSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

MPI:

<type> BUF (%)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

:Request MPI::Comm::Ibsend(const void* buf, int count, const
MPI::Datatype& datatype, int dest, int tag) const

Start a buffered mode, nonblocking send.

MPI_ISSEND(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)
IN count number of elements in send buffer (non-negative inte-
ger)
IN datatype datatype of each send buffer element (handle)
IN dest rank of destination (integer)
IN tag message tag (integer)
IN comm communicator (handle)
ouT request communication request (handle)
int MPI_Issend(void* buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm, MPI_Request *request)

MPI_ISSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

MPI:

<type> BUF (%)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

:Request MPI::Comm::Issend(const void* buf, int count, const
MPI::Datatype& datatype, int dest, int tag) const

Start a synchronous mode, nonblocking send.
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MPI_IRSEND(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (non-negative inte-
ger)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

ouT request communication request (handle)

int MPI_Irsend(void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm, MPI_Request *request)

MPI_IRSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF (%)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI::Request MPI::Comm::Irsend(const void* buf, int count, const
MPI::Datatype& datatype, int dest, int tag) const

Start a ready mode nonblocking send.

MPI_IRECV (buf, count, datatype, source, tag, comm, request)

ouT buf initial address of receive buffer (choice)

IN count number of elements in receive buffer (non-negative in-
teger)

IN datatype datatype of each receive buffer element (handle)

IN source rank of source (integer)

IN tag message tag (integer)

IN comm communicator (handle)

ouT request communication request (handle)

int MPI_Irecv(void* buf, int count, MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Request *request)

MPI_IRECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)
<type> BUF (%)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR

MPI::Request MPI::Comm::Irecv(void* buf, int count, const
MPI::Datatype& datatype, int source, int tag) const

Start a nonblocking receive.
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<type> BUF (*)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE),
IERROR

MPI_RECV_INIT(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)
<type> BUF (*)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR

MPI_REQUEST_FREE(REQUEST, IERROR)
INTEGER REQUEST, IERROR

MPI_REQUEST_GET_STATUS( REQUEST, FLAG, STATUS, IERROR)
INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR
LOGICAL FLAG

MPI_RSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF (%)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

MPI_RSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF (%)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF(¥)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

MPI_SEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER REQUEST, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_SENDRECV_REPLACE(BUF, COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG,
COMM, STATUS, IERROR)
<type> BUF(¥)
INTEGER COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG, COMM,
STATUS (MPI_STATUS_SIZE), IERROR

MPI_SENDRECV (SENDBUF, SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVBUF,
RECVCOUNT, RECVTYPE, SOURCE, RECVTAG, COMM, STATUS, IERROR)
<type> SENDBUF (%), RECVBUF (*)
INTEGER SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVCOUNT, RECVTYPE,
SOURCE, RECVTAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

MPI_SSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF (%)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

MPI_SSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF (%)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_STARTALL(COUNT, ARRAY_OF_REQUESTS, IERROR)
INTEGER COUNT, ARRAY_OF_REQUESTS(*), IERROR
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A.3 Fortran Bindings

A.3.1 Point-to-Point Communication Fortran Bindings

MPI_BSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF (*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

MPI_BSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF (%)
INTEGER REQUEST, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_BUFFER_ATTACH(BUFFER, SIZE, IERROR)
<type> BUFFER (%)
INTEGER SIZE, IERROR

MPI_BUFFER_DETACH (BUFFER_ADDR, SIZE, IERROR)
<type> BUFFER_ADDR (*)
INTEGER SIZE, IERROR

MPI_CANCEL (REQUEST, IERROR)
INTEGER REQUEST, IERROR

MPI_GET_COUNT (STATUS, DATATYPE, COUNT, IERROR)
INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR

MPI_IBSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF (%)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_IPROBE(SOURCE, TAG, COMM, FLAG, STATUS, IERROR)
LOGICAL FLAG
INTEGER SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

MPI_IRECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)
<type> BUF (%)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR

MPI_IRSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF (%)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_ISEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF (%)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_ISSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF (%)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_PROBE(SOURCE, TAG, COMM, STATUS, IERROR)
INTEGER SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

MPI_RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS, IERROR)
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These calls allocate a communication request object and associate it with the request
handle (the argument request). The request can be used later to query the status of the
communication or wait for its completion.

A nonblocking send call indicates that the system may start copying data out of the
send buffer. The sender should not access any part of the send buffer after a nonblocking
send operation is called, until the send completes.

A nonblocking receive call indicates that the system may start writing data into the re-
ceive buffer. The receiver should not access any part of the receive buffer after a nonblocking
receive operation is called, until the receive completes.

Advice to users. 'To prevent problems with the argument copying and register opti-
mization done by Fortran compilers, please note the hints in subsections “Problems
Due to Data Copying and Sequence Association,” and “A Problem with Register
Optimization” in Section 16.2.2 on pages 463 and 466. (End of advice to users.)

3.7.3 Communication Completion

The functions MPI_WAIT and MPI_TEST are used to complete a nonblocking communica-
tion. The completion of a send operation indicates that the sender is now free to update the
locations in the send buffer (the send operation itself leaves the content of the send buffer
unchanged). It does not indicate that the message has been received, rather, it may have
been buffered by the communication subsystem. However, if a synchronous mode send was
used, the completion of the send operation indicates that a matching receive was initiated,
and that the message will eventually be received by this matching receive.

The completion of a receive operation indicates that the receive buffer contains the
received message, the receiver is now free to access it, and that the status object is set. It
does not indicate that the matching send operation has completed (but indicates, of course,
that the send was initiated).

We shall use the following terminology: A null handle is a handle with value
MPI_REQUEST_NULL. A persistent request and the handle to it are inactive if the request
is not associated with any ongoing communication (see Section 3.9). A handle is active
if it is neither null nor inactive. An empty status is a status which is set to return
tag = MPI_ANY_TAG, source = MPI_ANY_SOURCE, error = MPI_SUCCESS, and is also
internally configured so that calls to MPI_GET_COUNT and MPI_GET_ELEMENTS return
count = 0 and MPI_TEST_CANCELLED returns false. We set a status variable to empty
when the value returned by it is not significant. Status is set in this way so as to prevent
errors due to accesses of stale information.

The fields in a status object returned by a call to MPI_WAIT, MPI_TEST, or any
of the other derived functions (MPI_{TEST|WAIT }{ALL|SOME|ANY}), where the request
corresponds to a send call, are undefined, with two exceptions: The error status field will
contain valid information if the wait or test call returned with MPI_ERR_IN_STATUS; and
the returned status can be queried by the call MPI_TEST_CANCELLED.

Error codes belonging to the error class MPI_ERR_IN_STATUS should be returned only
by the MPI completion functions that take arrays of MPI_STATUS. For the functions
MPI_TEST, MPI_TESTANY, MPI_WAIT, and MPI_WAITANY, which return a single
MPI_STATUS value, the normal MPI error return process should be used (not the
MPI_ERROR field in the MPI_STATUS argument).
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MPI_WAIT (request, status)
INOUT  request
ouT status

request (handle)
status object (Status)

int MPI_Wait(MPI_Request *request, MPI_Status *status)

MPI_WAIT(REQUEST, STATUS, IERROR)
INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR

void MPI::Request::Wait(MPI::Status& status)
void MPI::Request::Wait()

A call to MPI_WAIT returns when the operation identified by request is complete. If
the communication object associated with this request was created by a nonblocking send
or receive call, then the object is deallocated by the call to MPI_WAIT and the request
handle is set to MPI_REQUEST_NULL. MPI_WAIT is a non-local operation.

The call returns, in status, information on the completed operation. The content of
the status object for a receive operation can be accessed as described in Section 3.2.5. The
status object for a send operation may be queried by a call to MPI_TEST_CANCELLED
(see Section 3.8).

One is allowed to call MPI_WAIT with a null or inactive request argument. In this case
the operation returns immediately with empty status.

Advice to users. Successful return of MPI_WAIT after a MPI_IBSEND implies that
the user send buffer can be reused i.e., data has been sent out or copied into
a buffer attached with MPI_BUFFER_ATTACH. Note that, at this point, we can no
longer cancel the send (see Section 3.8). If a matching receive is never posted, then the
buffer cannot be freed. This runs somewhat counter to the stated goal of MPI_CANCEL
(always being able to free program space that was committed to the communication
subsystem). (End of advice to users.)

Advice to implementors.  In a multi-threaded environment, a call to MPI_WAIT
should block only the calling thread, allowing the thread scheduler to schedule another
thread for execution. (End of advice to implementors.)

MPI_TEST (request, flag, status)
INOUT request
ouT flag
ouT status

communication request (handle)
true if operation completed (logical)

status object (Status)

int MPI_Test(MPI_Request *request, int *flag, MPI_Status *status)

MPI_TEST(REQUEST, FLAG, STATUS, IERROR)
LOGICAL FLAG
INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR
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A.2.13 Profiling Interface C Bindings

int

MPI_Pcontrol(const int level, ...)

A.2.14 Deprecated C Bindings

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

MPI_Address(void* location, MPI_Aint *address)

MPI_Attr_delete (MPI_Comm comm, int keyval)

MPI_Attr_get (MPI_Comm comm, int keyval, void *attribute_val, int *flag)
MPI_Attr_put(MPI_Comm comm, int keyval, void* attribute_val)

MPI_DUP_FN(MPI_Comm oldcomm, int keyval, void *extra_state,
void *attribute_val_in, void *attribute_val_out, int *flag)

MPI_Errhandler_create (MPI_Handler_function *function,
MPI_Errhandler *errhandler)

MPI_Errhandler_get(MPI_Comm comm, MPI_Errhandler *errhandler)
MPI_Errhandler_set(MPI_Comm comm, MPI_Errhandler errhandler)

MPI_Keyval_create (MPI_Copy_function *copy_fn, MPI_Delete_function
xdelete_fn, int *keyval, void* extra_state)

MPI_Keyval_free(int *keyval)

MPI_NULL_COPY_FN(MPI_Comm oldcomm, int keyval, void *extra_state,
void *attribute_val_in, void *attribute_val_out, int *flag)

MPI_NULL_DELETE_FN(MPI_Comm comm, int keyval, void *attribute_val,
void *extra_state)

MPI_Type_extent (MPI_Datatype datatype, MPI_Aint *extent)

MPI_Type_hindexed(int count, int *array_of_blocklengths,
MPI_Aint *array_of_displacements, MPI_Datatype oldtype,
MPI_Datatype *newtype)

MPI_Type_hvector(int count, int blocklength, MPI_Aint stride,
MPI_Datatype oldtype, MPI_Datatype *newtype)

MPI_Type_lb(MPI_Datatype datatype, MPI_Aint* displacement)

MPI_Type_struct(int count, int *array_of_blocklengths,
MPI_Aint *array_of_displacements,
MPI_Datatype *array_of_types, MPI_Datatype *newtype)

MPI_Type_ub(MPI_Datatype datatype, MPI_Aint* displacement)
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int MPI_File_write_shared(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

int MPI_Register_datarep(char *datarep,
MPI_Datarep_conversion_function *read_conversion_fn,
MPI_Datarep_conversion_function *write_conversion_fn,
MPI_Datarep_extent_function *dtype_file_extent_fn,
void *extra_state)

A.2.12 Language Bindings C Bindings

int MPI_Type_create_f90_complex(int p, int r, MPI_Datatype *newtype)
int MPI_Type_create_f90_integer(int r, MPI_Datatype *newtype)

int MPI_Type_create_f90_real(int p, int r, MPI_Datatype *newtype)
int MPI_Type_match_size(int typeclass, int size, MPI_Datatype *type)
MPI_Fint MPI_Comm_c2f (MPI_Comm comm)

MPI_Comm MPI_Comm_f2c(MPI_Fint comm)

MPI_Fint MPI_Errhandler_c2f (MPI_Errhandler errhandler)
MPI_Errhandler MPI_Errhandler_f2c(MPI_Fint errhandler)

MPI_Fint MPI_File_c2f (MPI_File file)

MPI_File MPI_File_f2c(MPI_Fint file)

MPI_Fint MPI_Group_c2f (MPI_Group group)

MPI_Group MPI_Group_f2c(MPI_Fint group)

MPI_Fint MPI_Info_c2f (MPI_Info info)

MPI_Info MPI_Info_f2c(MPI_Fint info)

MPI_Fint MPI_Op_c2f (MPI_Op op)

MPI_Op MPI_Op_f2c(MPI_Fint op)

MPI_Fint MPI_Request_c2f (MPI_Request request)

MPI_Request MPI_Request_f2c(MPI_Fint request)

int MPI_Status_c2f(MPI_Status *c_status, MPI_Fint *f_status)

int MPI_Status_f2c(MPI_Fint *f_status, MPI_Status *c_status)
MPI_Fint MPI_Type_c2f (MPI_Datatype datatype)

MPI_Datatype MPI_Type_f2c(MPI_Fint datatype)

MPI_Fint MPI_Win_c2f (MPI_Win win)

MPI_Win MPI_Win_f2c(MPI_Fint win)
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bool MPI::Request::Test(MPI::Status& status)
bool MPI::Request::Test()

A call to MPI_TEST returns flag = true if the operation identified by
request is complete. In such a case, the status object is set to contain information on the
completed operation; if the communication object was created by a nonblocking send or
receive, then it is deallocated and the request handle is set to MPI_REQUEST_NULL. The
call returns flag = false, otherwise. In this case, the value of the status object is undefined.
MPI_TEST is a local operation.

The return status object for a receive operation carries information that can be accessed
as described in Section 3.2.5. The status object for a send operation carries information
that can be accessed by a call to MPI_TEST_CANCELLED (see Section 3.8).

One is allowed to call MPI_TEST with a null or inactive request argument. In such a
case the operation returns with flag = true and empty status.

The functions MPI_WAIT and MPI_TEST can be used to complete both sends and

receives.

Advice to users. The use of the nonblocking MPI_TEST call allows the user to
schedule alternative activities within a single thread of execution. An event-driven
thread scheduler can be emulated with periodic calls to MPI_TEST. (End of advice to
users.)

Rationale. The function MPI_TEST returns with flag = true exactly in those situa-
tions where the function MPI_WAIT returns; both functions return in such case the
same value in status. Thus, a blocking Wait can be easily replaced by a nonblocking
Test. (End of rationale.)

Example 3.12 Simple usage of nonblocking operations and MPI_WAIT.

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN
CALL MPI_ISEND(a(1), 10, MPI_REAL, 1, tag, comm, request, ierr)
**x*x do some computation to mask latency ***x
CALL MPI_WAIT(request, status, ierr)

ELSE IF (rank.EQ.1) THEN
CALL MPI_IRECV(a(1), 15, MPI_REAL, O, tag, comm, request, ierr)
*x*x* do some computation to mask latency k¥
CALL MPI_WAIT(request, status, ierr)

END IF

A request object can be deallocated without waiting for the associated communication
to complete, by using the following operation.

MPI_REQUEST _FREE(request)

INOUT  request communication request (handle)

int MPI_Request_free (MPI_Request *request)
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MPI_REQUEST_FREE(REQUEST, IERROR)
INTEGER REQUEST, IERROR

void MPI::Request: :Free()

Mark the request object for deallocation and set request to MPI_REQUEST_NULL. An
ongoing communication that is associated with the request will be allowed to complete. The
request will be deallocated only after its completion.

Rationale. The MPI_REQUEST_FREE mechanism is provided for reasons of perfor-
mance and convenience on the sending side. (End of rationale.)

Advice to users. Once a request is freed by a call to MPI_REQUEST_FREE, it is
not possible to check for the successful completion of the associated communication
with calls to MPI_WAIT or MPI_TEST. Also, if an error occurs subsequently during
the communication, an error code cannot be returned to the user — such an error
must be treated as fatal. Questions arise as to how one knows when the operations
have completed when using MPI_REQUEST _FREE. Depending on the program logic,
there may be other ways in which the program knows that certain operations have
completed and this makes usage of MPI_REQUEST_FREE practical. For example, an
active send request could be freed when the logic of the program is such that the
receiver sends a reply to the message sent the arrival of the reply informs the
sender that the send has completed and the send buffer can be reused. An active
receive request should never be freed as the receiver will have no way to verify that
the receive has completed and the receive buffer can be reused. (End of advice to
users.)

Example 3.13 An example using MPI_REQUEST _FREE.

CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
IF (rank.EQ.0) THEN
DO i=1, n
CALL MPI_ISEND(outval, 1, MPI_REAL, 1, O, MPI_COMM_WORLD, req, ierr)
CALL MPI_REQUEST_FREE(req, ierr)
CALL MPI_IRECV(inval, 1, MPI_REAL, 1, O, MPI_COMM_WORLD, req, ierr)
CALL MPI_WAIT(req, status, ierr)
END DO
ELSE IF (rank.EQ.1) THEN
CALL MPI_IRECV(inval, 1, MPI_REAL, O, O, MPI_COMM_WORLD, req, ierr)
CALL MPI_WAIT(req, status, ierr)
DO I=1, n-1
CALL MPI_ISEND(outval, 1, MPI_REAL, O, O, MPI_COMM_WORLD, req, ierr)
CALL MPI_REQUEST_FREE(req, ierr)
CALL MPI_IRECV(inval, 1, MPI_REAL, O, O, MPI_COMM_WORLD, req, ierr)
CALL MPI_WAIT(req, status, ierr)
END DO
CALL MPI_ISEND(outval, 1, MPI_REAL, O, O, MPI_COMM_WORLD, req, ierr)
CALL MPI_WAIT(req, status, ierr)
END IF
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MPI_File_read(MPI_File fh, void *buf, int count, MPI_Datatype datatype,
MPI_Status *status)

MPI_File_read_ordered_begin(MPI_File fh, void *buf, int count,
MPI_Datatype datatype)

MPI_File_read_ordered_end (MPI_File fh, void *buf, MPI_Status *status)

MPI_File_read_ordered(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

MPI_File_read_shared(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

MPI_File_seek(MPI_File fh, MPI_Offset offset, int whence)
MPI_File_seek_shared(MPI_File fh, MPI_Offset offset, int whence)
MPI_File_set_atomicity(MPI_File fh, int flag)
MPI_File_set_info(MPI_File fh, MPI_Info info)
MPI_File_set_size(MPI_File fh, MPI_Offset size)

MPI_File_set_view(MPI_File fh, MPI_Offset disp, MPI_Datatype etype,
MPI_Datatype filetype, char *datarep, MPI_Info info)

MPI_File_sync(MPI_File fh)

MPI_File_write_all_begin(MPI_File fh, void *buf, int count,
MPI_Datatype datatype)

MPI_File_write_all_end(MPI_File fh, void *buf, MPI_Status *status)

MPI_File_write_all(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

MPI_File_write_at_all_begin(MPI_File fh, MPI_Offset offset, void *buf,
int count, MPI_Datatype datatype)

MPI_File_write_at_all_end(MPI_File fh, void *buf, MPI_Status *status)

MPI_File_write_at_all(MPI_File fh, MPI_Offset offset, void *buf,
int count, MPI_Datatype datatype, MPI_Status *status)

MPI_File_write_at(MPI_File fh, MPI_Offset offset, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

MPI_File_write(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

MPI_File_write_ordered_begin(MPI_File fh, void *buf, int count,
MPI_Datatype datatype)

MPI_File_write_ordered_end(MPI_File fh, void *buf, MPI_Status *status)

MPI_File_write_ordered(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)
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MPI_File_get_group(MPI_File fh, MPI_Group *group)
MPI_File_get_info(MPI_File fh, MPI_Info *info_used)
MPI_File_get_position(MPI_File fh, MPI_QOffset *offset)
MPI_File_get_position_shared(MPI_File fh, MPI_Offset *offset)
MPI_File_get_size(MPI_File fh, MPI_Offset *size)

MPI_File_get_type_extent(MPI_File fh, MPI_Datatype datatype,
MPI_Aint *extent)

MPI_File_get_view(MPI_File fh, MPI_Offset *disp, MPI_Datatype *etype,
MPI_Datatype *filetype, char *datarep)

MPI_File_iread_at(MPI_File fh, MPI_QOffset offset, void *buf, int count,
MPI_Datatype datatype, MPI_Request *request)

MPI_File_iread(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Request *request)

MPI_File_iread_shared(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Request *request)

MPI_File_iwrite_at(MPI_File fh, MPI_QOffset offset, void *buf,
int count, MPI_Datatype datatype, MPI_Request *request)

MPI_File_iwrite(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Request *request)

MPI_File_iwrite_shared(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Request *request)

MPI_File_open(MPI_Comm comm, char *filename, int amode, MPI_Info info,
MPI_File *fh)

MPI_File_preallocate(MPI_File fh, MPI_Offset size)

MPI_File_read_all_begin(MPI_File fh, void *buf, int count,
MPI_Datatype datatype)

MPI_File_read_all_end(MPI_File fh, void *buf, MPI_Status *status)

MPI_File_read_all(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

MPI_File_read_at_all_begin(MPI_File fh, MPI_Offset offset, void *buf,
int count, MPI_Datatype datatype)

MPI_File_read_at_all_end(MPI_File fh, void *buf, MPI_Status *status)

MPI_File_read_at_all(MPI_File fh, MPI_Offset offset, void *buf,
int count, MPI_Datatype datatype, MPI_Status *status)

MPI_File_read_at (MPI_File fh, MPI_Offset offset, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)
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3.7.4 Semantics of Nonblocking Communications

The semantics of nonblocking communication is defined by suitably extending the definitions
in Section 3.5.

Order Nonblocking communication operations are ordered according to the execution order
of the calls that initiate the communication. The non-overtaking requirement of Section 3.5
is extended to nonblocking communication, with this definition of order being used.

Example 3.14 Message ordering for nonblocking operations.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (RANK.EQ.O) THEN
CALL MPI_ISEND(a, 1, MPI_REAL, 1, O, comm, rl, ierr)
CALL MPI_ISEND(b, 1, MPI_REAL, 1, O, comm, r2, ierr)
ELSE IF (rank.EQ.1) THEN
CALL MPI_IRECV(a, 1, MPI_REAL, O, MPI_ANY_TAG, comm, ril, ierr)
CALL MPI_IRECV(b, 1, MPI_REAL, O, O, comm, r2, ierr)
END IF
CALL MPI_WAIT(r1, status, ierr)
CALL MPI_WAIT(r2, status, ierr)

The first send of process zero will match the first receive of process one, even if both messages
are sent before process one executes either receive.

Progress A call to MPI_WAIT that completes a receive will eventually terminate and return
if a matching send has been started, unless the send is satisfied by another receive. In
particular, if the matching send is nonblocking, then the receive should complete even if no
call is executed by the sender to complete the send. Similarly, a call to MPI_WAIT that
completes a send will eventually return if a matching receive has been started, unless the
receive is satisfied by another send, and even if no call is executed to complete the receive.

Example 3.15 An illustration of progress semantics.

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (RANK.EQ.O) THEN
CALL MPI_SSEND(a, 1, MPI_REAL, 1, O, comm, ierr)
CALL MPI_SEND(b, 1, MPI_REAL, 1, 1, comm, ierr)

ELSE IF (rank.EQ.1) THEN
CALL MPI_IRECV(a, 1, MPI_REAL, 0, O, comm, r, ierr)
CALL MPI_RECV(b, 1, MPI_REAL, O, 1, comm, status, ierr)
CALL MPI_WAIT(r, status, ierr)

END IF

This code should not deadlock in a correct MPI implementation. The first synchronous
send of process zero must complete after process one posts the matching (nonblocking)
receive even if process one has not yet reached the completing wait call. Thus, process zero
will continue and execute the second send, allowing process one to complete execution.
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If an MPI_TEST that completes a receive is repeatedly called with the same arguments,
and a matching send has been started, then the call will eventually return flag = true, unless
the send is satisfied by another receive. If an MPI_TEST that completes a send is repeatedly
called with the same arguments, and a matching receive has been started, then the call will
eventually return flag = true, unless the receive is satisfied by another send.

3.7.5 Multiple Completions

It is convenient to be able to wait for the completion of any, some, or all the operations
in a list, rather than having to wait for a specific message. A call to MPI_WAITANY or
MPI_TESTANY can be used to wait for the completion of one out of several operations. A
call to MPI_WAITALL or MPI_TESTALL can be used to wait for all pending operations in
a list. A call to MPI_WAITSOME or MPI_TESTSOME can be used to complete all enabled
operations in a list.

MPI_WAITANY (count, array_of_requests, index, status)

IN count list length (non-negative integer)
INOUT array_of _requests
ouT index

ouT status

array of requests (array of handles)
index of handle for operation that completed (integer)

status object (Status)

int MPI_Waitany(int count, MPI_Request *array_of_requests, int *index,
MPI_Status *status)

MPI_WAITANY(COUNT, ARRAY_OF_REQUESTS, INDEX, STATUS, IERROR)
INTEGER COUNT, ARRAY_OF_REQUESTS(*), INDEX, STATUS(MPI_STATUS_SIZE),
IERROR

static int MPI::Request::Waitany(int count,
MPI::Request array_of_requests[], MPI::Status& status)

static int MPI::Request::Waitany(int count,
MPI::Request array_of_requests[])

Blocks until one of the operations associated with the active requests in the array has
completed. If more then one operation is enabled and can terminate, one is arbitrarily
chosen. Returns in index the index of that request in the array and returns in status the
status of the completing communication. (The array is indexed from zero in C, and from
one in Fortran.) If the request was allocated by a nonblocking communication operation,
then it is deallocated and the request handle is set to MPI_REQUEST_NULL.

The array_of _requests list may contain null or inactive handles. If the list contains no
active handles (list has length zero or all entries are null or inactive), then the call returns
immediately with index = MPI_UNDEFINED, and a empty status.

The execution of MPI_WAITANY (count, array_of_requests, index, status) has the same
effect as the execution of MPI_WAIT (&array_of _requests]i], status), where i is the value
returned by index (unless the value of index is MPI_UNDEFINED). MPI_WAITANY with an
array containing one active entry is equivalent to MPI_WAIT.
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int MPI_Win_complete (MPI_Win win)

int MPI_Win_create(void *base, MPI_Aint size, int disp_unit, MPI_Info info,
MPI_Comm comm, MPI_Win *win)

int MPI_Win_fence(int assert, MPI_Win win)

int MPI_Win_free(MPI_Win *win)

int MPI_Win_get_group(MPI_Win win, MPI_Group *group)

int MPI_Win_lock(int lock_type, int rank, int assert, MPI_Win win)
int MPI_Win_post(MPI_Group group, int assert, MPI_Win win)

int MPI_Win_start(MPI_Group group, int assert, MPI_Win win)

int MPI_Win_test(MPI_Win win, int *flag)

int MPI_Win_unlock(int rank, MPI_Win win)

int MPI_Win_wait(MPI_Win win)

A.2.10 External Interfaces C Bindings
int MPI_Grequest_complete(MPI_Request request)

int MPI_Grequest_start(MPI_Grequest_query_function *query_fn,
MPI_Grequest_free_function *free_fn,
MPI_Grequest_cancel_function *cancel_fn, void *extra_state,
MPI_Request *request)

int MPI_Init_thread(int *argc, char *((xargv)[]), int required,
int *provided)

int MPI_Is_thread_main(int *flag)
int MPI_Query_thread(int *provided)
int MPI_Status_set_cancelled(MPI_Status *status, int flag)

int MPI_Status_set_elements(MPI_Status *status, MPI_Datatype datatype,
int count)

A.2.11 1/0 C Bindings

int MPI_File_close(MPI_File *fh)

int MPI_File_delete(char *filename, MPI_Info info)
int MPI_File_get_amode(MPI_File fh, int *amode)
int MPI_File_get_atomicity(MPI_File fh, int *flag)

int MPI_File_get_byte_offset(MPI_File fh, MPI_Offset offset,
MPI_Offset *disp)
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int MPI_Info_get_nthkey(MPI_Info info, int n, char *key)

int MPI_Info_get_valuelen(MPI_Info info, char *key, int *valuelen,
int *flag)

int MPI_Info_set(MPI_Info info, char xkey, char *value)

A.2.8 Process Creation and Management C Bindings
int MPI_Close_port(char *port_name)

int MPI_Comm_accept(char *port_name, MPI_Info info, int root,
MPI_Comm comm, MPI_Comm *newcomm)

int MPI_Comm_connect(char *port_name, MPI_Info info, int root,
MPI_Comm comm, MPI_Comm *newcomm)

int MPI_Comm_disconnect (MPI_Comm *comm)
int MPI_Comm_get_parent (MPI_Comm *parent)
int MPI_Comm_join(int fd, MPI_Comm *intercomm)

int MPI_Comm_spawn(char *command, char *argv[], int maxprocs, MPI_Info
info, int root, MPI_Comm comm, MPI_Comm *intercomm,
int array_of_errcodes[])

int MPI_Comm_spawn_multiple(int count, char *array_of_commands[],
char **array_of_argv[], int array_of_maxprocs[],
MPI_Info array_of_info[], int root, MPI_Comm comm,
MPI_Comm *intercomm, int array_of_errcodes[])

int MPI_Lookup_name(char *service_name, MPI_Info info, char *port_name)
int MPI_Open_port(MPI_Info info, char *port_name)
int MPI_Publish_name(char *service_name, MPI_Info info, char *port_name)

int MPI_Unpublish_name(char *service_name, MPI_Info info, char *port_name)

A.2.9 One-Sided Communications C Bindings

int MPI_Accumulate(void *origin_addr, int origin_count,
MPI_Datatype origin_datatype, int target_rank,
MPI_Aint target_disp, int target_count,
MPI_Datatype target_datatype, MPI_Op op, MPI_Win win)

int MPI_Get(void *origin_addr, int origin_count, MPI_Datatype
origin_datatype, int target_rank, MPI_Aint target_disp, int
target_count, MPI_Datatype target_datatype, MPI_Win win)

int MPI_Put(void *origin_addr, int origin_count, MPI_Datatype
origin_datatype, int target_rank, MPI_Aint target_disp, int
target_count, MPI_Datatype target_datatype, MPI_Win win)
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MPI_TESTANY (count, array_of _requests, index, flag, status)
IN count list length (non-negative integer)

INOUT  array_of _requests array of requests (array of handles)

ouT index index of operation that completed, or

MPI_UNDEFINED if none completed (integer)
ouT flag true if one of the operations is complete (logical)
ouT status status object (Status)

int MPI_Testany(int count, MPI_Request *array_of_requests, int *index,
int *flag, MPI_Status *status)

MPI_TESTANY (COUNT, ARRAY_OF_REQUESTS, INDEX, FLAG, STATUS, IERROR)
LOGICAL FLAG
INTEGER COUNT, ARRAY_OF_REQUESTS(*), INDEX, STATUS(MPI_STATUS_SIZE),
IERROR

static bool MPI::Request::Testany(int count,
MPI::Request array_of_requests[], int& index,
MPI::Status& status)

static bool MPI::Request::Testany(int count,
MPI::Request array_of_requests[], int& index)

Tests for completion of either one or none of the operations associated with active
handles. In the former case, it returns flag = true, returns in index the index of this request
in the array, and returns in status the status of that operation; if the request was allocated
by a nonblocking communication call then the request is deallocated and the handle is set
to MPI_REQUEST_NULL. (The array is indexed from zero in C, and from one in Fortran.)
In the latter case (no operation completed), it returns flag = false, returns a value of
MPI_UNDEFINED in index and status is undefined.

The array may contain null or inactive handles. If the array contains no active handles
then the call returns immediately with flag = true, index = MPI_UNDEFINED, and an empty
status.

If the array of requests contains active handles then the execution of
MPI_TESTANY (count, array_of_requests, index, status) has the same effect as the execution
of MPI_TEST( &array_of _requests[i], flag, status), for i=0, 1 ,..., count-1, in some arbitrary
order, until one call returns flag = true, or all fail. In the former case, index is set to the
last value of i, and in the latter case, it is set to MPI_UNDEFINED. MPI_TESTANY with an
array containing one active entry is equivalent to MPI_TEST.

Rationale.  The function MPI_TESTANY returns with flag = true exactly in those
situations where the function MPI_WAITANY returns; both functions return in that
case the same values in the remaining parameters. Thus, a blocking MPI_WAITANY
can be easily replaced by a nonblocking MPI_TESTANY. The same relation holds for
the other pairs of Wait and Test functions defined in this section. (End of rationale.)
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MPI_WAITALL( count, array_of _requests, array_of _statuses)

IN count lists length (non-negative integer)

INOUT  array_of _requests array of requests (array of handles)

ouT array_of _statuses array of status objects (array of Status)
int MPI_Waitall(int count, MPI_Request *array_of_requests,
MPI_Status *array_of_statuses)

MPI_WAITALL(COUNT, ARRAY_OF_REQUESTS, ARRAY_OF_STATUSES, IERROR)
INTEGER COUNT, ARRAY_OF_REQUESTS(*)
INTEGER ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR

static void MPI::Request::Waitall(int count,
MPI::Request array_of_requests[],
MPI::Status array_of_statuses[])

static void MPI::Request::Waitall(int count,
MPI::Request array_of_requests[])

Blocks until all communication operations associated with active handles in the list
complete, and return the status of all these operations (this includes the case where no
handle in the list is active). Both arrays have the same number of valid entries. The i-th
entry in array_of _statuses is set to the return status of the i-th operation. Requests that were
created by nonblocking communication operations are deallocated and the corresponding
handles in the array are set to MPI_REQUEST_NULL. The list may contain null or inactive
handles. The call sets to empty the status of each such entry.

The error-free execution of MPI_WAITALL(count, array_of _requests, array_of _statuses)
has the same effect as the execution of
MPI_WAIT (&array_of _request[i], &array_of_statuses|i]), for i=0 ,..., count-1, in some arbi-
trary order. MPI_WAITALL with an array of length one is equivalent to MPI_WAIT.

When one or more of the communications completed by a call to MPI_WAITALL fail,
it is desireable to return specific information on each communication. The function
MPI_WAITALL will return in such case the error code MPI_ERR_IN_STATUS and will set the
error field of each status to a specific error code. This code will be MPI_SUCCESS, if the
specific communication completed; it will be another specific error code, if it failed; or it can
be MPI_ERR_PENDING if it has neither failed nor completed. The function MPI_WAITALL
will return MPI_SUCCESS if no request had an error, or will return another error code if it
failed for other reasons (such as invalid arguments). In such cases, it will not update the
error fields of the statuses.

Rationale. This design streamlines error handling in the application. The application
code need only test the (single) function result to determine if an error has occurred. It
needs to check each individual status only when an error occurred. (End of rationale.)
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int MPI_Comm_get_errhandler (MPI_Comm comm, MPI_Errhandler *errhandler)
int MPI_Comm_set_errhandler (MPI_Comm comm, MPI_Errhandler errhandler)
int MPI_Errhandler_free(MPI_Errhandler *errhandler)

int MPI_Error_class(int errorcode, int *errorclass)

int MPI_Error_string(int errorcode, char *string, int *resultlen)

int MPI_File_call_errhandler(MPI_File fh, int errorcode)

int MPI_File_create_errhandler (MPI_File_errhandler_fn *function,
MPI_Errhandler *errhandler)

int MPI_File_get_errhandler (MPI_File file, MPI_Errhandler *errhandler)
int MPI_File_set_errhandler (MPI_File file, MPI_Errhandler errhandler)
int MPI_Finalized(int *flag)

int MPI_Finalize(void)

int MPI_Free_mem(void *base)

int MPI_Get_processor_name(char *name, int *resultlen)

int MPI_Get_version(int *version, int *subversion)

int MPI_Initialized(int *flag)

int MPI_Init(int *argc, char *x*argv)

int MPI_Win_call_errhandler (MPI_Win win, int errorcode)

int MPI_Win_create_errhandler (MPI_Win_errhandler_fn *function,
MPI_Errhandler *errhandler)

int MPI_Win_get_errhandler (MPI_Win win, MPI_Errhandler *errhandler)
int MPI_Win_set_errhandler(MPI_Win win, MPI_Errhandler errhandler)
double MPI_Wtick(void)

double MPI_Wtime(void)

A.2.7 The Info Object C Bindings

int MPI_Info_create(MPI_Info *info)

int MPI_Info_delete(MPI_Info info, char x*key)

int MPI_Info_dup(MPI_Info info, MPI_Info *newinfo)
int MPI_Info_free(MPI_Info *info)

int MPI_Info_get(MPI_Info info, char *key, int valuelen, char *value,
int *flag)

int MPI_Info_get_nkeys(MPI_Info info, int *nkeys)
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A.2.5 Process Topologies C Bindings
int MPI_Cart_coords(MPI_Comm comm, int rank, int maxdims, int *coords)

int MPI_Cart_create(MPI_Comm comm_old, int ndims, int *dims, int *periods,
int reorder, MPI_Comm *comm_cart)

int MPI_Cartdim_get(MPI_Comm comm, int *ndims)

int MPI_Cart_get(MPI_Comm comm, int maxdims, int *dims, int *periods,
int *coords)

int MPI_Cart_map(MPI_Comm comm, int ndims, int *dims, int *periods,
int *newrank)

int MPI_Cart_rank(MPI_Comm comm, int *coords, int *rank)

int MPI_Cart_shift(MPI_Comm comm, int direction, int disp,
int *rank_source, int *rank_dest)

int MPI_Cart_sub(MPI_Comm comm, int *remain_dims, MPI_Comm *newcomm)
int MPI_Dims_create(int nnodes, int ndims, int *dims)

int MPI_Graph_create (MPI_Comm comm_old, int nnodes, int *index, int *edges,
int reorder, MPI_Comm *comm_graph)

int MPI_Graphdims_get(MPI_Comm comm, int *nnodes, int *nedges)

int MPI_Graph_get(MPI_Comm comm, int maxindex, int maxedges, int *index,
int *edges)

int MPI_Graph_map(MPI_Comm comm, int nnodes, int *index, int *edges,
int *newrank)

int MPI_Graph_neighbors_count (MPI_Comm comm, int rank, int *nneighbors)

int MPI_Graph_neighbors(MPI_Comm comm, int rank, int maxneighbors,
int *neighbors)

int MPI_Topo_test(MPI_Comm comm, int *status)

A.2.6 MPI Environmenta Management C Bindings

int MPI_Abort(MPI_Comm comm, int errorcode)

int MPI_Add_error_class(int *errorclass)

int MPI_Add_error_code(int errorclass, int *errorcode)

int MPI_Add_error_string(int errorcode, char *string)

int MPI_Alloc_mem(MPI_Aint size, MPI_Info info, void *baseptr)
int MPI_Comm_call_errhandler (MPI_Comm comm, int errorcode)

int MPI_Comm_create_errhandler (MPI_Comm_errhandler_fn *function,
MPI_Errhandler *errhandler)
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MPI_TESTALL(count, array_of _requests, flag, array_of_statuses)
IN count lists length (non-negative integer)
INOUT  array_of _requests

ouT flag (logical)

array of requests (array of handles)

ouT array_of _statuses array of status objects (array of Status)
int MPI_Testall(int count, MPI_Request *array_of_requests, int *flag,
MPI_Status *array_of_statuses)

MPI_TESTALL(COUNT, ARRAY_OF_REQUESTS, FLAG, ARRAY_OF_STATUSES, IERROR)
LOGICAL FLAG
INTEGER COUNT, ARRAY_OF_REQUESTS(x),
ARRAY_OF_STATUSES (MPI_STATUS_SIZE,*), IERROR

static bool MPI::Request::Testall(int count,
MPI::Request array_of_requests[],
MPI::Status array_of_statuses[])

static bool MPI::Request::Testall(int count,
MPI::Request array_of_requests[])

Returns flag = true if all communications associated with active handles in the array
have completed (this includes the case where no handle in the list is active). In this case,
each status entry that corresponds to an active handle request is set to the status of the
corresponding communication; if the request was allocated by a nonblocking communication
call then it is deallocated, and the handle is set to MPI_REQUEST_NULL. Each status entry
that corresponds to a null or inactive handle is set to empty.

Otherwise, flag = false is returned, no request is modified and the values of the status
entries are undefined. This is a local operation.

Errors that occurred during the execution of MPI_TESTALL are handled as errors in
MPI_WAITALL.

MPI_WAITSOME(incount, array_of _requests, outcount, array_of_indices, array_of_statuses)

IN incount length of array_of_requests (non-negative integer)

INOUT  array_of _requests array of requests (array of handles)

ouT outcount number of completed requests (integer)

ouT array_of _indices array of indices of operations that completed (array of
integers)

ouT array_of _statuses array of status objects for operations that completed

(array of Status)

int MPI_Waitsome(int incount, MPI_Request *array_of_requests,
int *outcount, int *array_of_indices,
MPI_Status *array_of_statuses)
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MPI_WAITSOME(INCOUNT, ARRAY_OF_REQUESTS, OUTCOUNT, ARRAY_OF_INDICES,
ARRAY_OF_STATUSES, IERROR)
INTEGER INCOUNT, ARRAY_OF_REQUESTS(*), OUTCOUNT, ARRAY_OF_INDICES(*),
ARRAY_OF_STATUSES (MPI_STATUS_SIZE,*), IERROR

static int MPI::Request::Waitsome(int incount,
MPI::Request array_of_requests[], int array_of_indices([],
MPI::Status array_of_statuses[])

static int MPI::Request::Waitsome(int incount,
MPI::Request array_of_requests[], int array_of_indices[])

Waits until at least one of the operations associated with active handles in the list have
completed. Returns in outcount the number of requests from the list array_of _requests that
have completed. Returns in the first outcount locations of the array array_of _indices the
indices of these operations (index within the array array_of _requests; the array is indexed
from zero in C and from one in Fortran). Returns in the first outcount locations of the array
array_of _status the status for these completed operations. If a request that completed was
allocated by a nonblocking communication call, then it is deallocated, and the associated
handle is set to MPI_REQUEST_NULL.

If the list contains no active handles, then the call returns immediately with outcount
= MPI_UNDEFINED.

When one or more of the communications completed by MPI_WAITSOME fails, then
it is desirable to return specific information on each communication. The arguments
outcount, array_of _indices and array_of _statuses will be adjusted to indicate completion of
all communications that have succeeded or failed. The call will return the error code
MPI_ERR_IN_STATUS and the error field of each status returned will be set to indicate
success or to indicate the specific error that occurred. The call will return MPI_SUCCESS
if no request resulted in an error, and will return another error code if it failed for other
reasons (such as invalid arguments). In such cases, it will not update the error fields of the
statuses

MPI_TESTSOME(incount, array_of _requests, outcount, array_of_indices, array_of_statuses)

IN incount length of array_of__requests (non-negative integer)

INOUT  array_of__requests array of requests (array of handles)

ouT outcount number of completed requests (integer)

ouT array_of _indices array of indices of operations that completed (array of
integers)
ouT array_of _statuses array of status objects for operations that completed

(array of Status)

int MPI_Testsome(int incount, MPI_Request *array_of_requests,
int *outcount, int *array_of_indices,
MPI_Status *array_of_statuses)
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MPI_Intercomm_merge (MPI_Comm intercomm, int high,
MPI_Comm *newintracomm)

MPI_Type_create_keyval(MPI_Type_copy_attr_function *type_copy_attr_fn,
MPI_Type_delete_attr_function *type_delete_attr_fn,
int *type_keyval, void *extra_state)

MPI_Type_delete_attr(MPI_Datatype type, int type_keyval)

MPI_TYPE_DUP_FN(MPI_Datatype oldtype, int type_keyval,
void *extra_state, void *attribute_val_in,
void *attribute_val_out, int *flag)

MPI_Type_free_keyval(int *type_keyval)

MPI_Type_get_attr(MPI_Datatype type, int type_keyval, void
xattribute_val, int *flag)

MPI_Type_get_name(MPI_Datatype type, char *type_name, int *resultlen)

MPI_TYPE_NULL_COPY_FN(MPI_Datatype oldtype, int type_keyval,
void *extra_state, void *attribute_val_in,
void *attribute_val_out, int *flag)

MPI_TYPE_NULL_DELETE_FN(MPI_Datatype type, int type_keyval, void
*attribute_val, void *extra_state)

MPI_Type_set_attr(MPI_Datatype type, int type_keyval,
void *attribute_val)

MPI_Type_set_name(MPI_Datatype type, char *type_name)

MPI_Win_create_keyval (MPI_Win_copy_attr_function *win_copy_attr_fn,
MPI_Win_delete_attr_function *win_delete_attr_fn,
int *win_keyval, void *extra_state)

MPI_Win_delete_attr(MPI_Win win, int win_keyval)

MPI_WIN_DUP_FN(MPI_Win oldwin, int win_keyval, void *extra_state,
void *attribute_val_in, void *attribute_val_out, int *flag)

MPI_Win_free_keyval(int *win_keyval)

MPI_Win_get_attr(MPI_Win win, int win_keyval, void *attribute_val,
int *flag)

MPI_Win_get_name(MPI_Win win, char *win_name, int *resultlen)

MPI_WIN_NULL_COPY_FN(MPI_Win oldwin, int win_keyval, void *extra_state,
void *attribute_val_in, void *attribute_val_out, int *flag)

MPI_WIN_NULL_DELETE_FN(MPI_Win win, int win_keyval, void
*attribute_val, void *extra_state)

MPI_Win_set_attr(MPI_Win win, int win_keyval, void *attribute_val)

MPI_Win_set_name(MPI_Win win, char *win_name)
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MPI_COMM_NULL_COPY_FN(MPI_Comm oldcomm, int comm_keyval,
void *extra_state, void *attribute_val_in,
void *attribute_val_out, int *flag)

MPI_COMM_NULL_DELETE_FN(MPI_Comm comm, int comm_keyval, void
*attribute_val, void *extra_state)

MPI_Comm_rank (MPI_Comm comm, int *rank)

MPI_Comm_remote_group (MPI_Comm comm, MPI_Group *group)
MPI_Comm_remote_size(MPI_Comm comm, int *size)

MPI_Comm_set_attr (MPI_Comm comm, int comm_keyval, void *attribute_val)
MPI_Comm_set_name (MPI_Comm comm, char *comm_name)
MPI_Comm_size(MPI_Comm comm, int *size)

MPI_Comm_split(MPI_Comm comm, int color, int key, MPI_Comm *newcomm)
MPI_Comm_test_inter (MPI_Comm comm, int *flag)

MPI_Group_compare (MPI_Group groupl,MPI_Group group2, int *result)

MPI_Group_difference (MPI_Group groupl, MPI_Group group2,
MPI_Group *newgroup)

MPI_Group_excl(MPI_Group group, int n, int *ranks, MPI_Group *newgroup)
MPI_Group_free(MPI_Group *group)
MPI_Group_incl(MPI_Group group, int n, int *ranks, MPI_Group *newgroup)

MPI_Group_intersection(MPI_Group groupl, MPI_Group group2,
MPI_Group *newgroup)

MPI_Group_range_excl (MPI_Group group, int n, int ranges[][3],
MPI_Group *newgroup)

MPI_Group_range_incl(MPI_Group group, int n, int ranges[][3],
MPI_Group *newgroup)

MPI_Group_rank(MPI_Group group, int *rank)
MPI_Group_size(MPI_Group group, int *size)

MPI_Group_translate_ranks (MPI_Group groupl, int n, int *ranksi,
MPI_Group group2, int *ranks2)

MPI_Group_union(MPI_Group groupl, MPI_Group group2,
MPI_Group *newgroup)

MPI_Intercomm_create (MPI_Comm local_comm, int local_leader,
MPI_Comm peer_comm, int remote_leader, int tag,
MPI_Comm *newintercomm)
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MPI_TESTSOME (INCOUNT, ARRAY_OF_REQUESTS, OUTCOUNT, ARRAY_OF_INDICES,
ARRAY_OF_STATUSES, IERROR)
INTEGER INCOUNT, ARRAY_OF_REQUESTS(*), OUTCOUNT, ARRAY_OF_INDICES(x),
ARRAY_OF_STATUSES (MPI_STATUS_SIZE,*), IERROR

static int MPI::Request::Testsome(int incount,
MPI::Request array_of_requests[], int array_of_indices[],
MPI::Status array_of_statuses[])

static int MPI::Request::Testsome(int incount,
MPI::Request array_of_requests[], int array_of_indices[])

Behaves like MPI_WAITSOME, except that it returns immediately. If no operation has
completed it returns outcount = 0. If there is no active handle in the list it returns outcount
= MPI_UNDEFINED.

MPI_TESTSOME is a local operation, which returns immediately, whereas
MPI_WAITSOME will block until a communication completes, if it was passed a list that
contains at least one active handle. Both calls fulfill a fairness requirement: If a request for
a receive repeatedly appears in a list of requests passed to MPI_WAITSOME or
MPI_TESTSOME, and a matching send has been posted, then the receive will eventually
succeed, unless the send is satisfied by another receive; and similarly for send requests.

Errors that occur during the execution of MPI_TESTSOME are handled as for
MPI_WAITSOME.

Advice to users. The use of MPI_TESTSOME is likely to be more efficient than the use
of MPI_TESTANY. The former returns information on all completed communications,
with the latter, a new call is required for each communication that completes.

A server with multiple clients can use MPI_WAITSOME so as not to starve any client.
Clients send messages to the server with service requests. The server calls
MPI_WAITSOME with one receive request for each client, and then handles all receives
that completed. If a call to MPI_WAITANY is used instead, then one client could starve
while requests from another client always sneak in first. (End of advice to users.)

Advice to implementors. MPI_TESTSOME should complete as many pending com-
munications as possible. (End of advice to implementors.)

Example 3.16 Client-server code (starvation can occur).

CALL MPI_COMM_SIZE(comm, size, ierr)
CALL MPI_COMM_RANK(comm, rank, ierr)
IF(rank .GT. 0) THEN ! client code
DO WHILE(.TRUE.)
CALL MPI_ISEND(a, n, MPI_REAL, O, tag, comm, request, ierr)
CALL MPI_WAIT(request, status, ierr)
END DO
ELSE ! rank=0 -- server code
DO i=1, size-1
CALL MPI_IRECV(a(1,i), n, MPI_REAL, i tag,
comm, request_list(i), ierr)
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END DO

DO WHILE(.TRUE.)
CALL MPI_WAITANY(size-1, request_list, index, status, ierr)
CALL DO_SERVICE(a(1,index)) ! handle one message
CALL MPI_IRECV(a(l, index), n, MPI_REAL, index, tag,

comm, request_list(index), ierr)
END DO
END IF

Example 3.17 Same code, using MPI_WAITSOME.

CALL MPI_COMM_SIZE(comm, size, ierr)
CALL MPI_COMM_RANK(comm, rank, ierr)
IF(rank .GT. 0) THEN ! client code
DO WHILE(.TRUE.)
CALL MPI_ISEND(a, n, MPI_REAL, O, tag, comm, request, ierr)
CALL MPI_WAIT(request, status, ierr)
END DO
ELSE ! rank=0 -- server code
DO i=1, size-1
CALL MPI_IRECV(a(1,i), n, MPI_REAL, i, tag,
comm, request_list(i), ierr)
END DO
DO WHILE(.TRUE.)
CALL MPI_WAITSOME(size, request_list, numdone,
indices, statuses, ierr)
DO i=1, numdone
CALL DO_SERVICE(a(1, indices(i)))
CALL MPI_IRECV(a(1, indices(i)), n, MPI_REAL, 0, tag,
comm, request_list(indices(i)), ierr)
END DO
END DO
END IF

3.7.6  Non-destructive Test of status

This call is useful for accessing the information associated with a request, without freeing
the request (in case the user is expected to access it later). It allows one to layer libraries
more conveniently, since multiple layers of software may access the same completed request
and extract from it the status information.
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int MPI_Gather(void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype, int root,
MPI_Comm comm)

int MPI_Gatherv(void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int *recvcounts, int *displs,
MPI_Datatype recvtype, int root, MPI_Comm comm)

int MPI_Op_create(MPI_User_function *function, int commute, MPI_Op *op)
int MPI_op_free( MPI_Op *op)

int MPI_Reduce_scatter(void* sendbuf, void* recvbuf, int *recvcounts,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

int MPI_Reduce(void* sendbuf, void* recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)

int MPI_Scan(void* sendbuf, void* recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm )

int MPI_Scatter(void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype, int root,
MPI_Comm comm)

int MPI_Scatterv(void* sendbuf, int *sendcounts, int *displs,
MPI_Datatype sendtype, void* recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm)

A.2.4  Groups, Contexts, Communicators, and Caching C Bindings
int MPI_Comm_compare (MPI_Comm comml,MPI_Comm comm2, int *result)

int MPI_Comm_create_keyval (MPI_Comm_copy_attr_function *comm_copy_attr_fn,
MPI_Comm_delete_attr_function *comm_delete_attr_fn,
int *comm_keyval, void *extra_state)

int MPI_Comm_create(MPI_Comm comm, MPI_Group group, MPI_Comm *newcomm)
int MPI_Comm_delete_attr(MPI_Comm comm, int comm_keyval)

int MPI_COMM_DUP_FN(MPI_Comm oldcomm, int comm_keyval, void *extra_state,
void *attribute_val_in, void *attribute_val_out, int *flag)

int MPI_Comm_dup(MPI_Comm comm, MPI_Comm *newcomm)
int MPI_Comm_free_keyval(int *comm_keyval)
int MPI_Comm_free (MPI_Comm *comm)

int MPI_Comm_get_attr(MPI_Comm comm, int comm_keyval, void *attribute_val,
int *flag)

int MPI_Comm_get_name(MPI_Comm comm, char *comm_name, int *resultlen)

int MPI_Comm_group (MPI_Comm comm, MPI_Group *group)



A.2.

int

int

int

int

int

int

int

C BINDINGS

MPI_Type_get_extent (MPI_Datatype datatype, MPI_Aint *1lb,
MPI_Aint *extent)

MPI_Type_get_true_extent(MPI_Datatype datatype, MPI_Aint *true_lb,
MPI_Aint *true_extent)

MPI_Type_indexed(int count, int *array_of_blocklengths,
int *array_of_displacements, MPI_Datatype oldtype,
MPI_Datatype *newtype)

MPI_Type_size(MPI_Datatype datatype, int *size)

MPI_Type_vector(int count, int blocklength, int stride,
MPI_Datatype oldtype, MPI_Datatype *newtype)

MPI_Unpack_external (char *datarep, void *inbuf, MPI_Aint insize,
MPI_Aint *position, void *outbuf, int outcount,
MPI_Datatype datatype)

MPI_Unpack(void* inbuf, int insize, int *position, void *outbuf,
int outcount, MPI_Datatype datatype, MPI_Comm comm)

A.2.3  Collective Communication C Bindings
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int
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int

int
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MPI_Allgather(void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm)

MPI_Allgatherv(void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int *recvcounts, int *displs,
MPI_Datatype recvtype, MPI_Comm comm)

MPI_Allreduce(void* sendbuf, void* recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

MPI_Alltoall(void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm)

MPI_Alltoallv(void* sendbuf, int *sendcounts, int *sdispls,
MPI_Datatype sendtype, void* recvbuf, int *recvcounts,
int *rdispls, MPI_Datatype recvtype, MPI_Comm comm)

MPI_Alltoallw(void *sendbuf, int sendcounts[], int sdispls[],
MPI_Datatype sendtypes[], void *recvbuf, int recvcounts[],
int rdispls[], MPI_Datatype recvtypes[], MPI_Comm comm)

MPI_Barrier (MPI_Comm comm )

MPI_Bcast(void* buffer, int count, MPI_Datatype datatype, int root,
MPI_Comm comm )

MPI_Exscan(void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)
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MPI_REQUEST_GET_STATUS( request, flag, status )

IN request request (handle)
ouT flag boolean flag, same as from MPI_TEST (logical)
ouT status MPI_STATUS object if flag is true (Status)

int MPI_Request_get_status(MPI_Request request, int x*flag,
MPI_Status *status)

MPI_REQUEST_GET_STATUS( REQUEST, FLAG, STATUS, IERROR)
INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR
LOGICAL FLAG

bool MPI::Request::Get_status(MPI::Status& status) const
bool MPI::Request::Get_status() const

Sets flag=true if the operation is complete, and, if so, returns in status the request
status. However, unlike test or wait, it does not deallocate or inactivate the request; a
subsequent call to test, wait or free should be executed with that request. It sets flag=false
if the operation is not complete.

3.8 Probe and Cancel

The MPI_PROBE and MPI_IPROBE operations allow incoming messages to be checked for,
without actually receiving them. The user can then decide how to receive them, based on
the information returned by the probe (basically, the information returned by status). In
particular, the user may allocate memory for the receive buffer, according to the length of
the probed message.

The MPI_CANCEL operation allows pending communications to be canceled. This is
required for cleanup. Posting a send or a receive ties up user resources (send or receive
buffers), and a cancel may be needed to free these resources gracefully.

MPI_IPROBE(source, tag, comm, flag, status)

IN source source rank, or MPI_ANY_SOURCE (integer)
IN tag tag value or MPI_ANY_TAG (integer)

IN comm communicator (handle)

ouT flag (logical)

ouT status status object (Status)

int MPI_Iprobe(int source, int tag, MPI_Comm comm, int *flag,
MPI_Status *status)

MPI_IPROBE(SOURCE, TAG, COMM, FLAG, STATUS, IERROR)
LOGICAL FLAG
INTEGER SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR
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bool MPI::Comm::Iprobe(int source, int tag, MPI::Status& status) const
bool MPI::Comm::Iprobe(int source, int tag) const

MPI_IPROBE(source, tag, comm, flag, status) returns flag = true if there is a message
that can be received and that matches the pattern specified by the arguments source, tag,
and comm. The call matches the same message that would have been received by a call to
MPI_RECV(..., source, tag, comm, status) executed at the same point in the program, and
returns in status the same value that would have been returned by MPI_RECV(). Otherwise,
the call returns flag = false, and leaves status undefined.

If MPI_IPROBE returns flag = true, then the content of the status object can be sub-
sequently accessed as described in Section 3.2.5 to find the source, tag and length of the
probed message.

A subsequent receive executed with the same communicator, and the source and tag
returned in status by MPI_IPROBE will receive the message that was matched by the probe,
if no other intervening receive occurs after the probe, and the send is not successfully
cancelled before the receive.  If the receiving process is multi-threaded, it is the user’s
responsibility to ensure that the last condition holds.

The source argument of MPI_PROBE can be MPI_ANY_SOURCE, and the tag argument
can be MPI_ANY_TAG, so that one can probe for messages from an arbitrary source and/or
with an arbitrary tag. However, a specific communication context must be provided with
the comm argument.

It is not necessary to receive a message immediately after it has been probed for, and
the same message may be probed for several times before it is received.

MPI_PROBE(source, tag, comm, status)

IN source source rank, or MPI_ANY_SOURCE (integer)
IN tag tag value, or MPI_ANY_TAG (integer)

IN comm communicator (handle)

ouT status status object (Status)

int MPI_Probe(int source, int tag, MPI_Comm comm, MPI_Status *status)

MPI_PROBE(SOURCE, TAG, COMM, STATUS, IERROR)
INTEGER SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

void MPI::Comm::Probe(int source, int tag, MPI::Status& status) const
void MPI::Comm::Probe(int source, int tag) const

MPI_PROBE behaves like MPI_IPROBE except that it is a blocking call that returns
only after a matching message has been found.

The MPI implementation of MPI_PROBE and MPI_IPROBE needs to guarantee progress:

if a call to MPI_PROBE has been issued by a process, and a send that matches the probe
has been initiated by some process, then the call to MPI_PROBE will return, unless the
message is received by another concurrent receive operation (that is executed by another
thread at the probing process). Similarly, if a process busy waits with MPI_IPROBE and
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MPI_Datatype datatype, void *outbuf, MPI_Aint outsize,
MPI_Aint *position)

MPI_Pack_external_size(char *datarep, int incount,
MPI_Datatype datatype, MPI_Aint *size)

MPI_Pack_size(int incount, MPI_Datatype datatype, MPI_Comm comm,
int *size)

MPI_Pack(void* inbuf, int incount, MPI_Datatype datatype, void *outbuf,

int outsize, int *position, MPI_Comm comm)
MPI_Type_commit (MPI_Datatype *datatype)

MPI_Type_contiguous(int count, MPI_Datatype oldtype,
MPI_Datatype *newtype)

MPI_Type_create_darray(int size, int rank, int ndims,
int array_of_gsizes[], int array_of_distribs[], int
array_of_dargs[], int array_of_psizes[], int order,
MPI_Datatype oldtype, MPI_Datatype *newtype)

MPI_Type_create_hindexed(int count, int array_of_blocklengths[],
MPI_Aint array_of_displacements[], MPI_Datatype oldtype,
MPI_Datatype *newtype)

MPI_Type_create_hvector(int count, int blocklength, MPI_Aint stride,
MPI_Datatype oldtype, MPI_Datatype *newtype)

MPI_Type_create_indexed_block(int count, int blocklength,
int array_of_displacements[], MPI_Datatype oldtype,
MPI_Datatype *newtype)

MPI_Type_create_resized (MPI_Datatype oldtype, MPI_Aint 1b, MPI_Aint
extent, MPI_Datatype *newtype)

MPI_Type_create_struct(int count, int array_of_blocklengths[],
MPI_Aint array_of_displacements([],
MPI_Datatype array_of_types[], MPI_Datatype *newtype)

MPI_Type_create_subarray(int nd