MPI: A Message-Passing Interface Standard
Version 4.0

Message Passing Interface Forum

June 9, 2021

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

This document describes the Message-Passing Interface (MPI) standard, version 4.0.
The MPI standard includes point-to-point message-passing, collective communications, group
and communicator concepts, process topologies, environmental management, process cre-
ation and management, one-sided communications, extended collective operations, external
interfaces, 1/O, some miscellaneous topics, and multiple tool interfaces. Language bindings
for C and Fortran are defined.

Historically, the evolution of the standard is from MPI-1.0 (May 5, 1994) to MPI-1.1
(June 12, 1995) to MPI-1.2 (July 18, 1997), with several clarifications and additions and
published as part of the MPI-2 document, to MPI-2.0 (July 18, 1997), with new functional-
ity, to MPI-1.3 (May 30, 2008), combining for historical reasons the documents 1.1 and 1.2
and some errata documents to one combined document, and to MPI-2.1 (June 23, 2008),
combining the previous documents. Version MPI-2.2 (September 4, 2009) added additional
clarifications and seven new routines. Version MPI-3.0 (September 21, 2012) was an exten-
sion of MPI-2.2. Version MPI-3.1 (June 4, 2015) added clarifications and minor extensions
to MPI-3.0. Version MPI-4.0 (June 9, 2021) adds significant new features to MPI-3.1.

Comments. Please send comments on MPI to the MPI Forum as follows:
1. Subscribe to https://lists.mpi-forum.org/mailman/listinfo/mpi-comments

2. Send your comment to: mpi-comments@lists.mpi-forum.org, together with the version
of the MPI standard and the page and line numbers on which you are commenting.
Only use the official versions.

Your comment will be forwarded to MP| Forum committee members for consideration.
Messages sent from an unsubscribed e-mail address will not be considered.

(©1993, 1994, 1995, 1996, 1997, 2008, 2009, 2012, 2015, 2021 University of Tennessee,
Knoxville, Tennessee. Permission to copy without fee all or part of this material is granted,
provided the University of Tennessee copyright notice and the title of this document appear,
and notice is given that copying is by permission of the University of Tennessee.

ii

https://lists.mpi-forum.org/mailman/listinfo/mpi-comments
mailto:mpi-comments@lists.mpi-forum.org

Version 4.0: June 9, 2021. This version of the MPI-4 Standard is a major update and
includes significant new functionality. The largest changes are the addition of large-count
versions of many routines to address the limitations of using an int or INTEGER for the
count parameter, persistent collectives, partitioned communications, an alternative way
to initialize MPI, application info assertions, and improvements to the definitions of error
handling. In addition, there are a number of smaller improvements and corrections.

Version 3.1: June 4, 2015. This document contains mostly corrections and clarifications to
the MPI-3.0 document. The largest change is a correction to the Fortran bindings introduced
in MPI-3.0. Additionally, new functions added include routines to manipulate MPI_Aint
values in a portable manner, nonblocking collective I/O routines, and routines to get the
index value by name for MPI_T performance and control variables.

Version 3.0: September 21, 2012. Coincident with the development of MPI-2.2, the MPI
Forum began discussions of a major extension to MPI. This document contains the MPI-
3 Standard. This version of the MPI-3 standard contains significant extensions to MPI
functionality, including nonblocking collectives, new one-sided communication operations,
and Fortran 2008 bindings. Unlike MPI-2.2, this standard is considered a major update to
the MPI standard. As with previous versions, new features have been adopted only when
there were compelling needs for the users. Some features, however, may have more than a
minor impact on existing MPI implementations.

Version 2.2: September 4, 2009. This document contains mostly corrections and clarifi-
cations to the MPI-2.1 document. A few extensions have been added; however all correct
MPI-2.1 programs are correct MPI-2.2 programs. New features were adopted only when
there were compelling needs for users, open source implementations, and minor impact on
existing MPI implementations.

Version 2.1: June 23, 2008. This document combines the previous documents MPI-1.3 (May
30, 2008) and MPI-2.0 (July 18, 1997). Certain parts of MPI-2.0, such as some sections of
Chapter 4, Miscellany, and Chapter 7, Extended Collective Operations, have been merged
into the chapters of MPI-1.3. Additional errata and clarifications collected by the MPI
Forum are also included in this document.

Version 1.3: May 30, 2008. This document combines the previous documents MPI-1.1 (June
12, 1995) and the MPI-1.2 chapter in MPI-2 (July 18, 1997). Additional errata collected by
the MPI Forum referring to MPI-1.1 and MPI-1.2 are also included in this document.

Version 2.0: July 18, 1997. Beginning after the release of MPI-1.1, the MP| Forum began
meeting to consider corrections and extensions. MPI-2 has been focused on process creation
and management, one-sided communications, extended collective communications, external
interfaces and parallel I/O. A miscellany chapter discusses items that do not fit elsewhere,
in particular language interoperability.

Version 1.2: July 18, 1997. The MPI-2 Forum introduced MPI-1.2 as Chapter 3 in the
standard “MPI-2: Extensions to the Message-Passing Interface”, July 18, 1997. This section

contains clarifications and minor corrections to Version 1.1 of the MPI Standard. The only

iii

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

new function in MPI-1.2 is one for identifying to which version of the MPI Standard the
implementation conforms. There are small differences between MPI-1 and MPI-1.1. There
are very few differences between MPI-1.1 and MPI-1.2, but large differences between MPI-1.2
and MPI-2.

Version 1.1: June, 1995. Beginning in March, 1995, the Message-Passing Interface Forum
reconvened to correct errors and make clarifications in the MPI document of May 5, 1994,
referred to below as Version 1.0. These discussions resulted in Version 1.1. The changes
from Version 1.0 are minor. A version of this document with all changes marked is available.

Version 1.0: May, 1994. The Message-Passing Interface Forum, with participation from
over 40 organizations, has been meeting since January 1993 to discuss and define a set of
library interface standards for message passing. The Message-Passing Interface Forum is
not sanctioned or supported by any official standards organization.

The goal of the Message-Passing Interface, simply stated, is to develop a widely used
standard for writing message-passing programs. As such the interface should establish a
practical, portable, efficient, and flexible standard for message-passing.

This is the final report, Version 1.0, of the Message-Passing Interface Forum. This
document contains all the technical features proposed for the interface. This copy of the
draft was processed by IKTEX on May 5, 1994.

v

Contents

List of Figures

List of Tables

Acknowledgments

1 Introduction to MPI

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13

Overview and Goals Lo
Background of MPI-1.0 oL
Background of MPI-1.1, MPI-1.2, and MPI-2.0
Background of MPI-1.3 and MPI-2.1 oo
Background of MPI-2.2
Background of MPI-3.0o
Background of MPI-3.1o o
Background of MPI-4.0
Who Should Use This Standard?
What Platforms Are Targets for Implementation?
What Is Included in the Standard?

2 MPI Terms and Conventions

2.1
2.2
2.3
2.4

2.5

2.6

Document Notation
Naming Conventions v
Procedure Specification L
Semantic Terms
2.4.1 MPI Operations i
2.4.2 MPI Procedures
2.4.3 MPI Datatypes
Datatypes
2.5.1 Opaque Objects
2.5.2 Array Arguments.
2.5.3 State
2.5.4 Named Constants,
2.5.5 Choice. e
2.5.6 Absolute Addresses and Relative Address Displacements
2.5.7 File Offsets
2.5.8 Counts
Language Binding

xviii

XX

xxii

OO UL U U R W NN

2.6.1 Deprecated and Removed Interfaces

2.6.2 Fortran Binding Issues oL
2.6.3 CBinding Issues o
2.6.4 Functions and Macros
2.7 Processes e e
2.8 Error Handling
2.9 Implementation Issues L
2.9.1 Independence of Basic Runtime Routines
2.9.2 Interaction with Signals
2.10 Examples L
Point-to-Point Communication
3.1 Introduction e
3.2 Blocking Send and Receive Operations
3.2.1 Blocking Send
3.22 Message Data. L o
3.2.3 Message Envelope Lo
3.24 Blocking Receive o
3.2.5 Return Status
3.2.6 Passing MPI_STATUS_IGNORE for Status
3.2.7 Blocking Send-Receive
3.3 Datatype Matching and Data Conversion
3.3.1 Type Matching Rules
Type MPI_CHARACTER o o
3.3.2 Data Conversion
3.4 Communication Modes
3.5 Semantics of Point-to-Point Communication
3.6 Buffer Allocation and Usage
3.6.1 Model Implementation of Buffered Mode
3.7 Nonblocking Communication
3.7.1 Communication Request Objects
3.7.2 Communication Initiation
3.7.3 Communication Completion.
3.7.4 Semantics of Nonblocking Communications
3.7.5 Multiple Completions,
3.7.6 Non-Destructive Test of status
3.8 Probeand Cancel
3.8.1 Probe
3.8.2 Matching Probe oo
3.8.3 Matched Receives
3.84 Cancel. e
3.9 Persistent Communication Requests
3.10 Null Processes e
Partitioned Point-to-Point Communication
4.1 Imtroduction e
4.2 Semantics of Partitioned Point-to-Point Communication

4.2.1 Communication Initialization and Starting with Partitioning

vi

31
31
32
32
33
35
36
38
41
42
45
45
47
48
49
54
o7
60
60
62
62
70
74
75
83
84
84
87
90
92
94
101

103
103
104
106

4.2.2 Communication Completion under Partitioning 110

4.2.3 Semantics of Communications in Partitioned Mode 111
4.3 Partitioned Communication Examples 112
4.3.1 Partition Communication with Threads/Tasks Using OpenMP 4.0
orlatero L 112
4.3.2 Send-only Partitioning Example with Tasks and OpenMP version
4.0o0rlater oL Lo 113
4.3.3 Send and Receive Partitioning Example with OpenMP version 4.0
orlatero L 115
5 Datatypes 119
5.1 Derived Datatypes. e 119
5.1.1 Type Constructors with Explicit Addresses 121
5.1.2 Datatype Constructors 121
5.1.3 Subarray Datatype Constructor 133
5.1.4 Distributed Array Datatype Constructor 135
5.1.5 Address and Size Functions 141
5.1.6 Lower-Bound and Upper-Bound Markers 144
5.1.7 Extent and Bounds of Datatypes 147
5.1.8 True Extent of Datatypes 149
5.1.9 Commit and Free 150
5.1.10 Duplicating a Datatype 152
5.1.11 Use of General Datatypes in Communication 153
5.1.12 Correct Use of Addresses 156
5.1.13 Decoding a Datatype 157
5.1.14 Examples 165
5.2 Packand Unpack 174
5.3 Canonical MPI_PACK and MPI_UNPACK 182
6 Collective Communication 187
6.1 Introduction and Overviewo 187
6.2 Communicator Argument L L 190
6.2.1 Specifics for Intra-Communicator Collective Operations 190
6.2.2 Applying Collective Operations to Inter-Communicators 191
6.2.3 Specifics for Inter-Communicator Collective Operations 192
6.3 Barrier Synchronization L L o L 194
6.4 Broadcast e 194
6.4.1 Example using MPI_BCAST 195
6.5 Gather e 196
6.5.1 Examples using MPI_GATHER, MPI_GATHERV 200
6.6 Scatter 206
6.6.1 Examples using MPI_SCATTER, MPI_SCATTERV 210
6.7 Gather-to-all 213
6.7.1 Example using MPI_ALLGATHER 216
6.8 All-to-All Scatter/Gather o 217
6.9 Global Reduction Operations. 223
6.9.1 Reduce 224
6.9.2 Predefined Reduction Operations 226

vii

6.9.3 Signed Characters and Reductions 229

6.9.4 MINLOC and MAXLOC 229

6.9.5 User-Defined Reduction Operations 233
Example of User-Defined Reduce 237

6.9.6 All-Reduce 238

6.9.7 Process-Local Reduction 240

6.10 Reduce-Scatter. 242
6.10.1 MPI_REDUCE_SCATTER_BLOCK 242
6.10.2 MPI_REDUCE_SCATTER 244

6.11 Scan e 245
6.11.1 Inclusive Scan 246
6.11.2 Exclusive Scan 247
6.11.3 Example using MPI_SCAN 248

6.12 Nonblocking Collective Operations 250
6.12.1 Nonblocking Barrier Synchronization. 252
6.12.2 Nonblocking Broadcast 253
Example using MPI_IBCAST 253

6.12.3 Nonblocking Gather 254
6.12.4 Nomblocking Scatter 257
6.12.5 Nonblocking Gather-to-all 260
6.12.6 Nonblocking All-to-All Scatter/Gather 263
6.12.7 Nonblocking Reduce oL 269
6.12.8 Nonblocking All-Reduce 270
6.12.9 Nonblocking Reduce-Scatter with Equal Blocks 271
6.12.10 Nonblocking Reduce-Scatter 273
6.12.11 Nomblocking Inclusive Scan 274
6.12.12 Nonblocking Exclusive Scan 275

6.13 Persistent Collective Operations 276
6.13.1 Persistent Barrier Synchronization 277
6.13.2 Persistent Broadcast Lo L. 278
6.13.3 Persistent Gather Lo 279
6.13.4 Persistent Scatter 283
6.13.5 Persistent Gather-to-all 286
6.13.6 Persistent All-to-All Scatter/Gather 289
6.13.7 Persistent Reduce L oL 294
6.13.8 Persistent All-Reduce 295
6.13.9 Persistent Reduce-Scatter with Equal Blocks 296
6.13.10 Persistent Reduce-Scatter Lo 298
6.13.11 Persistent Inclusive Scan, 299
6.13.12 Persistent Exclusive Scan o000 300

6.14 Correctness. o v i e e 301
7 Groups, Contexts, Communicators, and Caching 311
7.1 Introduction e 311
7.1.1 Features Needed to Support Libraries 311

7.1.2 MPI's Support for Libraries 312

7.2 Basic Concepts e 314
721 Groups v v v i e 314

7.2.2 Contexts e 314

7.2.3 Intra-Communicators 315

7.2.4 Predefined Intra-Communicators 315

7.3 Group Management L. 316
7.3.1 Group AcCCESSOTS o vt 316

7.3.2 Group Constructors 318

7.3.3 Group Destructors 324

7.4 Communicator Management 325
7.4.1 Communicator Accessors 325

7.4.2 Communicator Constructors 327

7.4.3 Communicator Destructors 345

7.4.4 Communicator Info 345

7.5 Motivating Examples o 348
7.5.1 Current Practice #1 Lo 348

7.5.2 Current Practice #2 oo 349

7.5.3 (Approximate) Current Practice #3 349

7.5.4 Communication Safety Example 350

7.5.5 Library Example #1o oo 351

7.5.6 Library Example #2o o 353

7.6 Inter-Communication oL 355
7.6.1 Inter-Communicator Accessors 357

7.6.2 Inter-Communicator Operations 358

7.6.3 Inter-Communication Examples 362
Example 1: Three-Group “Pipeline” 362

Example 2: Three-Group “Ring” 363

7.7 Caching e 365
7.7.1 Functionality 365

7.7.2 Communicators. i e 366

773 Windows L 372

7.7.4 Datatypes 376

7.7.5 Error Class for Invalid Keyval 379

7.7.6 Attributes Example 0oL 379

7.8 Naming Objects« o 381
7.9 Formalizing the Loosely Synchronous Model 386
7.9.1 Basic Statements 386

7.9.2 Models of Execution 386
Static Communicator Allocation 387

Dynamic Communicator Allocation 387

The General Case 387

Process Topologies 389
8.1 Imtroduction 389
8.2 Virtual Topologies L 390
8.3 Embedding in MPl Lo 390
8.4 Overview of the Functions 391
8.5 Topology Constructors 392
8.5.1 Cartesian Constructor 392

8.5.2 Cartesian Convenience Function: MPI_DIMS_CREATE 393

X

8.5.3 Graph Constructor L
8.5.4 Distributed Graph Constructor
8.5.5 Topology Inquiry Functions
8.5.6 Cartesian Shift Coordinates
8.5.7 Partitioning of Cartesian Structures
8.5.8 Low-Level Topology Functions
8.6 Neighborhood Collective Communication
8.6.1 Neighborhood Gather
8.6.2 Neighbor Alltoall
8.7 Nonblocking Neighborhood Communication
8.7.1 Nomblocking Neighborhood Gather
8.7.2 Nonblocking Neighborhood Alltoall
8.8 Persistent Neighborhood Communication
8.8.1 Persistent Neighborhood Gather
8.8.2 Persistent Neighborhood Alltoall
8.9 An Application Example oL

MPI Environmental Management
9.1 Implementation Information,
9.1.1 Version Inquiries Lo L
9.1.2 Environmental Inquiries Lo oL
Tag Values
Host Rank
IORank
Clock Synchronization
Inquire Processor Name
9.2 Memory Allocation
9.3 Error Handling
9.3.1 Error Handlers for Communicators
9.3.2 Error Handlers for Windows
9.3.3 Error Handlers for Files
9.3.4 Error Handlers for Sessions
9.3.5 Freeing Errorhandlers and Retrieving Error Strings
9.4 Error Codes and Classes i
9.5 Error Classes, Error Codes, and Error Handlers
9.6 Timers and Synchronization

10 The Info Object

11 Process Initialization, Creation, and Management

11.1 Imtroduction
11.2 The World Model
11.2.1 Starting MPI Processes L.
11.2.2 Finalizing MPl
11.2.3 Determining Whether MPI Has Been Initialized When Using the
World Model

11.2.4 Allowing User Functions at MPI Finalization

11.3 The Sessions Model

451
451
451
453
453
453
454
454
454
455
458
461
463
465
466
468
469
473
477

479

11.3.1 Session Creation and Destruction Methods
11.3.2 Processes Sets

11.3.3 Runtime Query Functions
11.3.4 Sessions Model Examples
11.4 Common Elements of Both Process Models
11.4.1 MPI Functionality that is Always Available
11.4.2 Aborting MPI Processes
11.5 Portable MPIl Process Startup
11.6 MPl and Threads
11.6.1 General L
11.6.2 Clarifications
11.7 The Dynamic Process Model
11.7.1 Starting Processes o
11.7.2 The Runtime Environment
11.8 Process Manager Interface oo
11.8.1 Processesin MPl o
11.8.2 Starting Processes and Establishing Communication
11.8.3 Starting Multiple Executables and Establishing Communication .
11.84 Reserved Keys o o
11.8.5 Spawn Example
11.9 Establishing Communication
11.9.1 Names, Addresses, Ports, and All That
11.9.2 Server Routines
11.9.3 Client Routines
11.9.4 Name Publishing 0oL
11.9.5 Reserved Key Values.,
11.9.6 Client/Server Examples
11.10 Other Functionality o
11.10.1 Universe Size« o oo
11.10.2 Singleton MPI Initialization
11.10.3 MPI_APPNUM o o
11.10.4 Releasing Connections
11.10.5 Another Way to Establish MPlI Communication
12 One-Sided Communications
12.1 Introduction
12.2 Initialization
12.2.1 Window Creation
12.2.2 Window That Allocates Memory
12.2.3 Window That Allocates Shared Memory
12.2.4 Window of Dynamically Attached Memory
12.2.5 Window Destruction oo oo
12.2.6 Window Attributes oo
12.2.7 Window Info
12.3 Communication Calls L o
12.3.1 Put
12.3.2 Get . . . L
12.3.3 Examples for Communication Calls

x1

12.3.4 Accumulate Functions 576

Accumulate Function L 577

Get Accumulate Function 579

Fetch and Op Function 582

Compare and Swap Function 583

12.3.5 Request-based RMA Communication Operations 584

12.4 Memory Model L 591
12.5 Synchronization Calls o 593
12.5.1 Fence L 596
12.5.2 General Active Target Synchronization 598
1253 Lock oo 602
12.5.4 Flushand Sync. 605
12.5.5 Assertions. e 607
12.5.6 Miscellaneous Clarifications 609

12.6 Error Handling 609
12.6.1 Error Handlers 609
12.6.2 Error Classes e 609

12.7 Semantics and Correctness L L 610
12.7.1 Atomicity 618
12.7.2 Ordering 618
12.7.3 Progress. 619
12.7.4 Registers and Compiler Optimizations 621

12.8 Examples oL 622
13 External Interfaces 633
13.1 Introduction 633
13.2 Generalized Requests o L 633
13.2.1 Exampleso 638

13.3 Associating Information with Status 640
141/0 643
14.1 Introduction e 643
14.1.1 Definitions Lo 643

14.2 File Manipulation Lo 645
14.2.1 Openinga File oL 645
14.2.2 Closinga File. o 648
14.2.3 Deletinga File oo oo 648
14.2.4 Resizinga File o o o 649
14.2.5 Preallocating Space fora File 650
14.2.6 Querying the Sizeof a File 651
14.2.7 Querying File Parameters 651
14.2.8 FileInfo. o 653
Reserved File Hints 654

14.3 File Views o 656
14.4 Data Access 659
14.4.1 Data Access Routines, 659
Positioning Lo 660

Synchronism Lo 660

xii

Coordination e 661

Data Access Conventions 661

14.4.2 Data Access with Explicit Offsets 662
14.4.3 Data Access with Individual File Pointers 669
14.4.4 Data Access with Shared File Pointers 680
Noncollective Operations 681

Collective Operations 684

Seek . . .o 687

14.4.5 Split Collective Data Access Routines 688

14.5 File Interoperability L oo 697
14.5.1 Datatypes for File Interoperability 699
14.5.2 External Data Representation: "external32" 701
14.5.3 User-Defined Data Representations 704
Extent Callback L 705

Datarep Conversion Functions 706

14.5.4 Matching Data Representations. 708

14.6 Consistency and Semantics L L Lo 709
14.6.1 File Consistency oo 709
14.6.2 Random Access vs. Sequential Files 712
14.6.3 Progress. 713
14.6.4 Collective File Operations 713
14.6.5 Nonblocking Collective File Operations 713
14.6.6 Type Matching L 714
14.6.7 Miscellaneous Clarifications 714
14.6.8 MPI_Offset Type o . o . 714
14.6.9 Logical vs. Physical File Layout 714
14.6.10 File Size oL 715
14.6.11 Examples 715
Asynchronous I/O o L oo 718

14.7 TI/O Error Handling 719
14.8 I/O Error Classes i 720
149 Exampleso 720
14.9.1 Double Buffering with Split Collective I/O 720
14.9.2 Subarray Filetype Constructor 723

15 Tool Support 725
15.1 Introduction 725
15.2 Profiling Interface oo 725
15.2.1 Requirementso 725
15.2.2 Discussion e 726
15.2.3 Logic of the Design L. 726
15.2.4 Miscellaneous Control of Profiling 727
15.2.5 MPI Library Implementation 728
15.2.6 Complications e 729
Multiple Counting Lo 729

Linker Oddities 730

Fortran Support Methods 730

15.2.7 Multiple Levels of Interception 730

xiii

15.3 The MPI Tool Information Interface

15.3.1
15.3.2
15.3.3
15.3.4
15.3.5
15.3.6

15.3.7

15.3.8

15.3.9

15.3.10
15.3.11

Verbosity Levels

Binding MPI Tool Information Interface Variables to MPI Objects

Convention for Returning Strings . . .
Initialization and Finalization
Datatype System
Control Variables.
Control Variable Query Functions . .
Handle Allocation and Deallocation .
Control Variable Access Functions . .
Performance Variables
Performance Variable Classes
Performance Variable Query Functions
Performance Experiment Sessions . .
Handle Allocation and Deallocation .

Starting and Stopping of Performance Variables

Performance Variable Access Functions
Events.
Event Sources
Callback Safety Requirements
Event Type Query Functions
Handle Allocation and Deallocation .
Handling Dropped Events
Reading Event Data
Reading Event Meta Data
Variable Categorization
Category Query Functions
Category Member Query Functions .

Return Codes for the MPI Tool Information Interface

Profiling Interface

16 Deprecated Interfaces
16.1 Deprecated since MPI-2.0
16.2 Deprecated since MP1-2.2
16.3 Deprecated since MPI-4.0

17 Removed Interfaces
17.1 Removed MPI-1 Bindings

17.1.1
17.1.2
17.1.3
17.1.4
17.1.5

Overview
Removed MPI-1 Functions
Removed MPI-1 Datatypes
Removed MPI-1 Constants
Removed MPI-1 Callback Prototypes .

172 C+4 Bindings

18 Semantic Changes and Warnings
18.1 Semantic Changes

18.1.1

Semantic Changes Starting in MPI-4.0

Xiv

781
781
784
784

787
787
787
787
787
787
788
788

18.2 Additional Warnings 789
18.2.1 Warnings Starting in MPI-4.0 789
19 Language Bindings 791
19.1 Support for Fortran L oo 791
19.1.1 Overview e 791
19.1.2 Fortran Support Through the mpi_f08 Module 792
19.1.3 Fortran Support Through the mpi Module. 795
19.1.4 Fortran Support Through the mpif.h Include File 797
19.1.5 Interface Specifications, Procedure Names, and the Profiling Interface798
19.1.6 MPI for Different Fortran Standard Versions 803
19.1.7 Requirements on Fortran Compilers 807
19.1.8 Additional Support for Fortran Register-Memory-Synchronization 808
19.1.9 Additional Support for Fortran Numeric Intrinsic Types 809
Parameterized Datatypes with Specified Precision and Exponent
Range L 810
Support for Size-specific MPI Datatypes 814
Communication With Size-specific Types 816
19.1.10 Problems With Fortran Bindings for MPI 817
19.1.11 Problems Due to Strong Typing 819
19.1.12 Problems Due to Data Copying and Sequence Association with Sub-
script Triplets 819
19.1.13 Problems Due to Data Copying and Sequence Association with Vec-
tor Subscripts 822
19.1.14 Special Constants 823
19.1.15 Fortran Derived Types. 823
19.1.16 Optimization Problems, an Overview 825
19.1.17 Problems with Code Movement and Register Optimization 826
Nonblocking Operations 826
Persistent Operations 827
One-sided Communication 827
MPI_BOTTOM and Combining Independent Variables in Datatypes 827
Solutions 827
The Fortran ASYNCHRONQUS Attribute 829
Calling MPI_F_SYNC_REG 830
A User Defined Routine Instead of MPI_F_SYNC_REG 831
Module Variables and COMMON Blocks 832
The (Poorly Performing) Fortran VOLATILE Attribute 832
The Fortran TARGET Attribute 832
19.1.18 Temporary Data Movement and Temporary Memory Modification 832
19.1.19 Permanent Data Movement 834
19.1.20 Comparison with C 834
19.2 Support for Large Count and Large Byte Displacement 839
19.3 Language Interoperability o oL 840
19.3.1 Introduction 840
19.3.2 Assumptions 840
19.3.3 Imitialization 841
19.3.4 Transfer of Handles 841

XV

19.3.5 Status 843
19.3.6 MPI Opaque Objects 846
Datatypes 846

Callback Functions 848

Error Handlers L o 848

Reduce Operations 848

19.3.7 Attributes 849
19.3.8 Extra-State 853
19.3.9 Constants L L 853
19.3.10 Interlanguage Communication 854

A Language Bindings Summary 857
A.1 Defined Values and Handles 857
A.1.1 Defined Constants 857

A12 Types . . o oo e 871

A.1.3 Prototype Definitions L. 872
CBindings 872

Fortran 2008 Bindings with the mpi_£08 Module 873

Fortran Bindings with mpif.h or the mpi Module 876

A.1.4 Deprecated Prototype Definitions 878

A15 String Values 879
Default Communicator Names 879

Reserved Data Representations 879

Process Set Names 879

InfoKeys o o 879

Info Values 880

A.2 Summary of the Semantics of all Op.-Related Routines 881
A3 CBindings e 882
A.3.1 Point-to-Point Communication C Bindings 882

A.3.2 Partitioned Communication C Bindings 885

A.3.3 Datatypes C Bindings oL 886

A.3.4 Collective Communication C Bindings 889

A.3.5 Groups, Contexts, Communicators, and Caching C Bindings . . . 897

A.3.6 Process Topologies C Bindings 900

A.3.7 MPI Environmental Management C Bindings 904

A.3.8 The Info Object C Bindings 906

A.3.9 Process Creation and Management C Bindings 906
A.3.10 One-Sided Communications C Bindings 907
A.3.11 External Interfaces C Bindings 910
A3.12 T/OCBIndings. o 911
A.3.13 Language Bindings C Bindings 915
A.3.14 Tools / Profiling Interface C Bindings 916
A.3.15 Tools / MPI Tool Information Interface C Bindings 916
A.3.16 Deprecated C Bindings 919

A.4 Fortran 2008 Bindings with the mpi_f08 Module. 920
A.4.1 Point-to-Point Communication Fortran 2008 Bindings 920

A.4.2 Partitioned Communication Fortran 2008 Bindings 930

A.4.3 Datatypes Fortran 2008 Bindings 931

Xvi

A.4.4 Collective Communication Fortran 2008 Bindings. 939

A.45 Groups, Contexts, Communicators, and Caching Fortran 2008 Bind-
INgS e 961
A.4.6 Process Topologies Fortran 2008 Bindings 969
A.4.7 MPI Environmental Management Fortran 2008 Bindings 978
A.4.8 The Info Object Fortran 2008 Bindings 981
A.4.9 Process Creation and Management Fortran 2008 Bindings 982
A.4.10 One-Sided Communications Fortran 2008 Bindings 984
A.4.11 External Interfaces Fortran 2008 Bindings 992
A.4.12 I/O Fortran 2008 Bindings 993
A.4.13 Language Bindings Fortran 2008 Bindings 1006
A.4.14 Tools / Profiling Interface Fortran 2008 Bindings 1007
A.4.15 Deprecated Fortran 2008 Bindings 1007
A.5 Fortran Bindings with mpif.h or the mpi Module 1008
A.5.1 Point-to-Point Communication Fortran Bindings 1008
A.5.2 Partitioned Communication Fortran Bindings 1011
A.5.3 Datatypes Fortran Bindings 1011
A5.4 Collective Communication Fortran Bindings. 1014
A.5.5 Groups, Contexts, Communicators, and Caching Fortran Bindings 1020
A.5.6 Process Topologies Fortran Bindings 1024
A.5.7 MPI Environmental Management Fortran Bindings 1028
A.5.8 The Info Object Fortran Bindings 1030
A.5.9 Process Creation and Management Fortran Bindings 1030
A.5.10 One-Sided Communications Fortran Bindings 1032
A.5.11 External Interfaces Fortran Bindings 1036
A.5.12 I/O Fortran Bindings 1037
A.5.13 Language Bindings Fortran Bindings 1041
A.5.14 Tools / Profiling Interface Fortran Bindings 1042
A.5.15 Deprecated Fortran Bindings 1042
B Change-Log 1045
B.1 Changes from Version 3.1 to Version 4.0 1045
B.1.1 Fixes to Errata in Previous Versions of MPI.. 1045
B.1.2 Changesin MPI-4.0 1046
B.2 Changes from Version 3.0 to Version 3.1 1049
B.2.1 Fixes to Errata in Previous Versions of MPI 1049
B.2.2 Changesin MPI-3.1 1051
B.3 Changes from Version 2.2 to Version 3.0 1051
B.3.1 Fixes to Errata in Previous Versions of MPI 1051
B.3.2 Changesin MPI-3.0 1052
B.4 Changes from Version 2.1 to Version 2.2 1057
B.5 Changes from Version 2.0 to Version 2.1 1060
Bibliography 1065
General Index 1071
Examples Index 1079

xXvii

MPI Constant and Predefined Handle Index 1082
MPI Declarations Index 1088
MPI Callback Function Prototype Index 1089

MPI Function Index 1091

xviil

List of Figures

2.1
2.2
2.3

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

7.1
7.2
7.3
7.4
7.5

8.1
8.2
8.3
8.4
8.5

8.6

8.7

11.1
11.2

12.1

State transition diagram for blocking operations 14
State transition diagram for nonblocking operations 14
State transition diagram for persistent operations L. 14
Collective communications, an overview 189
Inter-communicator allgather o000 193
Inter-communicator reduce-scatter L oL 193
Gather example 200
Gatherv example with strides 202
Gatherv example, 2-dimensional oo 202
Gatherv example, 2-dimensional, subarrays with different sizes 203
Gatherv example, 2-dimensional, subarrays with different sizes and strides . 205
Scatter example L 211
Scatterv example with strides o oo 211
Scatterv example with different strides and counts 212
Race conditions with point-to-point and collective communications 304
Overlapping Communicators Example 308
Inter-communicator creation using MPI_COMM_CREATE 333
Inter-communicator construction with MPI_COMM_SPLIT 337
Recursive communicator creation with MPI_COMM_SPLIT_TYPE 342
Three-group pipeline 362
Three-group ring Lo 363
Neighborhood gather communication example 419

Cartesian neighborhood allgather example for 3 and 1 processes in a dimension420
Cartesian neighborhood alltoall example for 3 and 1 processes in a dimension 424

Set-up of process structure for two-dimensional parallel Poisson solver . . . 447
Communication routine with local data copying and sparse neighborhood
all-to-all e 448
Communication routine with sparse neighborhood all-to-all-w and without
local data copying L 449
Two-dimensional parallel Poisson solver with persistent sparse neighborhood
all-to-all-w and without local data copying 450
Session handle to communicator 500
Process set examples o 504

Schematic description of the public/private window operations in the
MPI_WIN_SEPARATE memory model for two overlapping windows 592

Xix

12.2
12.3
12.4
12.5
12.6
12.7
12.8

14.1
14.2
14.3
14.4
14.5

19.1

Active target communication L. 595

Active target communication, with weak synchronization. 596
Passive target communicationo 597
Active target communication with several processes. 601
Symmetric communicationo 620
Deadlock situation 620
Nodeadlock o o 620
Etypes and filetypeso 644
Partitioning a file among parallel processes 644
Displacements 657
Example array file layout oo 723
Example local array filetype for process 1 724
Status conversion routineso 845

List of Tables

2.1

3.1
3.2
3.3
3.4

5.1

7.1

9.1
9.2

11.1

12.1

12.2

14.1
14.2
14.3
14.4
14.5

15.1
15.2
15.3
15.4
15.5
15.6

15.7

17.1
17.2

17.3
17.4

Deprecated and removed constructs

Predefined MPI datatypes corresponding to Fortran datatypes
Predefined MPI datatypes corresponding to C datatypes
Predefined MPI datatypes corresponding to both C and Fortran datatypes .
Predefined MPI datatypes corresponding to C++ datatypes

combiner values returned from MPI_TYPE_GET_ENVELOPE
MPI_COMM_* Function Behavior (in Inter-Communication Mode)

Error classes (Part 1)
Error classes (Part 2)

List of MPI Functions that can be called at any time within an MPI program,
including prior to MPI initialization and following MPI finalization

C types of attribute value argument to MPI_WIN_GET_ATTR and
MPI_WIN_SET_ATTR s s st s s s s,
Error classes in one-sided communication routines

Data access routines Lo Lo
"external32" sizes of predefined datatypes
"external32" sizes of optional datatypes Lo oL
"external32" sizes of C++ datatypes oL
I/O Error Classes i

MPI tool information interface verbosity levels.
Constants to identify associations of variables
MPI datatypes that can be used by the MPI tool information interface . . .
Scopes for control variables L
Hierarchy of safety requirement levels for event callback routines
List of MPI functions that when called from within a callback function may
not return MPI_T_ERR_NOT_ACCESSIBLE
Return codes used in functions of the MPI tool information interface

Removed MPI-1 functions and their replacements
Removed MPI-1 datatypes. The indicated routine may be used for changing
the lower and upper bound respectively.
Removed MPI-1 constants oL
Removed MPI-1 callback prototypes and their replacements

xx1

159

357

471
472

513

566
610

659
702
703
703
721

732
733
736
740
760

761
779

787

788

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

19.1 Specific Fortran procedure names and related calling conventions
19.2 Occurrence of Fortran optimization problems

xxii

799
825

Acknowledgments

This document is the product of a number of distinct efforts in four distinct phases:
one for each of MPI-1, MPI-2, MPI-3, and MPI-4. This section describes these in historical
order, starting with MPI-1. Some efforts, particularly parts of MPI-2, had distinct groups
of individuals associated with them, and these efforts are detailed separately.

This document represents the work of many people who have served on the MPI Forum.
The meetings have been attended by dozens of people from many parts of the world. It is
the hard and dedicated work of this group that has led to the MPI standard.

The technical development was carried out by subgroups, whose work was reviewed
by the full committee. During the period of development of the Message-Passing Interface
(MPI), many people helped with this effort.

Those who served as primary coordinators in MPI-1.0 and MPI-1.1 are:

e Jack Dongarra, David Walker, Conveners and Meeting Chairs

o Ewing Lusk, Bob Knighten, Minutes

e Marc Snir, William Gropp, Ewing Lusk, Point-to-Point Communication
e Al Geist, Marc Snir, Steve Otto, Collective Communication

e Steve Otto, Editor

e Rolf Hempel, Process Topologies

e Ewing Lusk, Language Binding

e William Gropp, Environmental Management

e James Cownie, Profiling

e Tony Skjellum, Lyndon Clarke, Marc Snir, Richard Littlefield, Mark Sears, Groups,
Contexts, and Communicators

e Steven Huss-Lederman, Initial Implementation Subset

The following list includes some of the active participants in the MPI-1.0 and MPI-1.1
process not mentioned above.

xxiil

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Ed Anderson
Scott Berryman
Jim Feeney
Daniel Frye
Leslie Hart
Alex Ho

James Kohl
Peter Madams
Charles Mosher
Paul Pierce
Erich Schikuta
Robert G. Voigt

Robert Babb
Rob Bjornson
Vince Fernando
Tan Glendinning
Tom Haupt

C.T. Howard Ho
Susan Krauss
Alan Mainwaring
Dan Nessett
Sanjay Ranka
Ambuj Singh
Dennis Weeks

Esprit project P6643 (PPPE).

MPI-1.2 and MPI-2.0:

Joe Baron
Nathan Doss
Sam Fineberg
Adam Greenberg
Don Heller
Gary Howell
Bob Leary
Oliver McBryan
Peter Pacheco
Peter Rigsbee
Alan Sussman
Stephen Wheat

Eric Barszcz
Anne Elster

Jon Flower
Robert Harrison
Tom Henderson
John Kapenga
Arthur Maccabe
Phil McKinley
Howard Palmer
Arch Robison
Robert Tomlinson
Steve Zenith

The University of Tennessee and Oak Ridge National Laboratory made the draft avail-
able by anonymous FTP mail servers and were instrumental in distributing the document.
The work on the MPI-1 standard was supported in part by ARPA and NSF under grant
ASC-9310330, the National Science Foundation Science and Technology Center Cooperative
Agreement No. CCR-8809615, and by the Commission of the European Community through

Those who served as primary coordinators in MPI-1.2 and MPI-2.0 are:

Ewing Lusk, Convener and Meeting Chair

Steve Huss-Lederman, Editor

Ewing Lusk, Miscellany

Bill Saphir, Process Creation and Management

Marc Snir, One-Sided Communications

William Gropp and Anthony Skjellum, Extended Collective Operations

Steve Huss-Lederman, External Interfaces

Bill Nitzberg, 1/O

Andrew Lumsdaine, Bill Saphir, and Jeffrey M. Squyres, Language Bindings

Anthony Skjellum and Arkady Kanevsky, Real-Time

meetings and are not mentioned above.

Xxiv

The following list includes some of the active participants who attended MPI-2 Forum

Greg Astfalk
Pete Bradley
Eric Brunner
Ying Chen
Lyndon Clarke
Zhengian Cui
Judith Devaney
Terry Dontje
Karl Feind

Tan Foster
Robert George
Leslie Hart
Alex Ho

Karl Kesselman
Steve Landherr
Lloyd Lewins
John May
Thom McMahon
Ron Oldfield
Yoonho Park
Paul Pierce
James Pruyve
Tom Robey
Eric Salo

Fred Shirley
David Taylor
Marydell Tholburn
David Walker
Dave Wright

The MPI Forum also acknowledges and appreciates the valuable input from people via

e-mail and in person.

The following institutions supported the MPI-2 effort through time and travel support

Robert Babb
Peter Brennan
Greg Burns
Albert Cheng
Laurie Costello

Ed Benson
Ron Brightwell
Margaret Cahir
Yong Cho
Dennis Cottel

Suresh Damodaran-Kamal

David DiNucci
Nathan Doss
Sam Fineberg
Hubertus Franke
David Greenberg
Shane Hebert
Hans-Christian Hoppe
Koichi Konishi
Mario Lauria
Ziyang Lu

Oliver McBryan
Harish Nag

Peter Ossadnik
Perry Partow
Heidi Poxon

Rolf Rabenseifner
Anna Rounbehler
Darren Sanders
Lance Shuler
Stephen Taylor
Dick Treumann
Jerrell Watts

for the people listed above.

Argonne National Laboratory
Bolt, Beranek, and Newman
California Institute of Technology
Center for Computing Sciences
Convex Computer Corporation

Cray Research

Digital Equipment Corporation
Dolphin Interconnect Solutions, Inc.
Edinburgh Parallel Computing Centre
General Electric Company

German National Research Center for Information Technology
Hewlett-Packard

Hitachi

Hughes Aircraft Company

XXV

Doug Doefler
Anne Elster
Craig Fischberg
Richard Frost
John Hagedorn
Rolf Hempel
Joefon Jann
Susan Kraus
Mark Law

Bob Madahar
Brian McCandless
Nick Nevin

Steve Otto
Pratap Pattnaik
Jean-Pierre Prost
Joe Rieken
Nobutoshi Sagawa
Eric Sharakan

A. Gordon Smith
Greg Tensa
Simon Tsang
Klaus Wolf

Rajesh Bordawekar
Maciej Brodowicz
Pang Chen

Joel Clark

Jim Cownie

Raja Daoud

Jack Dongarra
Mark Fallon
Stephen Fleischman
Al Geist

Kei Harada

Tom Henderson
Terry Jones
Steve Kubica
Juan Leon

Peter Madams
Tyce McLarty
Jarek Nieplocha
Peter Pacheco
Elsie Pierce

Boris Protopopov
Peter Rigsbee
Arindam Saha
Andrew Sherman
Tan Stockdale
Rajeev Thakur
Manuel Ujaldon
Parkson Wong

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Intel Corporation

International Business Machines

Khoral Research

Lawrence Livermore National Laboratory

Los Alamos National Laboratory

MPI Software Techology, Inc.

Mississippi State University

NEC Corporation

National Aeronautics and Space Administration
National Energy Research Scientific Computing Center
National Institute of Standards and Technology
National Oceanic and Atmospheric Adminstration
Oak Ridge National Laboratory

The Ohio State University

PALLAS GmbH

Pacific Northwest National Laboratory

Pratt & Whitney

San Diego Supercomputer Center

Sanders, A Lockheed-Martin Company

Sandia National Laboratories

Schlumberger

Scientific Computing Associates, Inc.

Silicon Graphics Incorporated

Sky Computers

Sun Microsystems Computer Corporation
Syracuse University

The MITRE Corporation

Thinking Machines Corporation

United States Navy

University of Colorado

University of Denver

University of Houston

University of Illinois

University of Maryland

University of Notre Dame

University of San Fransisco

University of Stuttgart Computing Center
University of Wisconsin

MPI-2 operated on a very tight budget (in reality, it had no budget when the first
meeting was announced). Many institutions helped the MPI-2 effort by supporting the
efforts and travel of the members of the MP| Forum. Direct support was given by NSF and
DARPA under NSF contract CDA-9115428 for travel by U.S. academic participants and
Esprit under project HPC Standards (21111) for European participants.

XXV1

MPI-1.3 and MPI-2.1:

The
[}

editors and organizers of the combined documents have been:
Richard Graham, Convener and Meeting Chair

Jack Dongarra, Steering Committee

Al Geist, Steering Committee

William Gropp, Steering Committee

Rainer Keller, Merge of MPI-1.3

Andrew Lumsdaine, Steering Committee

Ewing Lusk, Steering Committee, MPI-1.1-Errata (Oct. 12, 1998) MPI-2.1-Errata
Ballots 1, 2 (May 15, 2002)

Rolf Rabenseifner, Steering Committee, Merge of MPI-2.1 and MPI-2.1-Errata Ballots
3, 4 (2008)

All chapters have been revisited to achieve a consistent MPI-2.1 text. Those who served

as authors for the necessary modifications are:

William Gropp, Front Matter, Introduction, and Bibliography
Richard Graham, Point-to-Point Communication

Adam Moody, Collective Communication

Richard Treumann, Groups, Contexts, and Communicators

Jesper Larsson Traff, Process Topologies, Info-Object, and One-Sided Communica-
tions

George Bosilca, Environmental Management

David Solt, Process Creation and Management

Bronis R. de Supinski, External Interfaces, and Profiling

Rajeev Thakur, I/O

Jeffrey M. Squyres, Language Bindings and MPI-2.1 Secretary
Rolf Rabenseifner, Deprecated Functions and Annex Change-Log
Alexander Supalov and Denis Nagorny, Annex Language Bindings

The following list includes some of the active participants who attended MPI-2 Forum

meetings and in the e-mail discussions of the errata items and are not mentioned above.

xxvii

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1 Pavan Balaji Purushotham V. Bangalore Brian Barrett

2 Richard Barrett Christian Bell Robert Blackmore

3 Gil Bloch Ron Brightwell Jeffrey Brown

4 Darius Buntinas Jonathan Carter Nathan DeBardeleben

5 Terry Dontje Gabor Dozsa Edric Ellis

6 Karl Feind Edgar Gabriel Patrick Geoffray

7 David Gingold Dave Goodell Erez Haba

8 Robert Harrison Thomas Herault Steve Hodson

9 Torsten Hoefler Joshua Hursey Yann Kalemkarian

10 Matthew Koop Quincey Koziol Sameer Kumar

1 Miron Livny Kannan Narasimhan Mark Pagel

12 Avneesh Pant Steve Poole Howard Pritchard

13 Craig Rasmussen Hubert Ritzdorf Rob Ross

14 Tony Skjellum Brian Smith Vinod Tipparaju

15 Jesper Larsson Traff Keith Underwood

16

17 The MPI Forum also acknowledges and appreciates the valuable input from people via
18 e-mail and in person.

19 The following institutions supported the MPI-2 effort through time and travel support

20 for the people listed above.

2 Argonne National Laboratory

22 Bull

23 Cisco Systems, Inc.

24 Cray Inc.

% The HDF Group

26 Hewlett-Packard

2 IBM T.J. Watson Research

28 Indiana University

2 Institut National de Recherche en Informatique et Automatique (Inria)
30 Intel Corporation

31 Lawrence Berkeley National Laboratory
32 Lawrence Livermore National Laboratory
33 Los Alamos National Laboratory

34 Mathworks

35 Mellanox Technologies

36 Microsoft

37 Myricom

38 NEC Laboratories Europe, NEC Europe Ltd.
39 Oak Ridge National Laboratory

40 The Ohio State University

41 Pacific Northwest National Laboratory

42 QLogic Corporation

43 Sandia National Laboratories

4 SiCortex

45 Silicon Graphics Incorporated

46 Sun Microsystems, Inc.

a7 University of Alabama at Birmingham

18 University of Houston

xxviil

University of Illinois at Urbana-Champaign

University of Stuttgart, High Performance Computing Center Stuttgart (HLRS)
University of Tennessee, Knoxville

University of Wisconsin

Funding for the MPI Forum meetings was partially supported by award #CCF-0816909

from the National Science Foundation. In addition, the HDF Group provided travel support
for one U.S. academic.

MPI-2.2:

All chapters have been revisited to achieve a consistent MPI-2.2 text. Those who served as
authors for the necessary modifications are:

William Gropp, Front Matter, Introduction, and Bibliography; MPI-2.2 Chair.
Richard Graham, Point-to-Point Communication and Datatypes

Adam Moody, Collective Communication

Torsten Hoefler, Collective Communication and Process Topologies

Richard Treumann, Groups, Contexts, and Communicators

Jesper Larsson Traff, Process Topologies, Info-Object and One-Sided Communications
George Bosilca, Datatypes and Environmental Management

David Solt, Process Creation and Management

Bronis R. de Supinski, External Interfaces, and Profiling

Rajeev Thakur, I/O

Jeffrey M. Squyres, Language Bindings and MPI-2.2 Secretary

Rolf Rabenseifner, Deprecated Functions, Annex Change-Log, and Annex Language
Bindings

Alexander Supalov, Annex Language Bindings

The following list includes some of the active participants who attended MPI-2 Forum

meetings and in the e-mail discussions of the errata items and are not mentioned above.

XXX

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Pavan Balaji
Richard Barrett
Gil Bloch

Jeff Brown

Nathan DeBardeleben

Edric Ellis

Patrick Geoffray
David Goodell
Thomas Herault
Joshua Hursey
Hideyuki Jitsumoto
Ranier Keller

Manojkumar Krishnan

Andrew Lumsdaine
Timothy I. Mattox
Avneesh Pant
Craig Rasmussen
Martin Schulz
Christian Siebert
Naoki Sueyasu
Rolf Vandevaart

The MPI Forum also acknowledges and appreciates the valuable input from people via

e-mail and in person.

The following institutions supported the MPI-2.2 effort through time and travel support

for the people listed above.

Purushotham V. Bangalore
Christian Bell

Ron Brightwell
Darius Buntinas
Terry Dontje

Karl Feind

Johann George

Erez Haba
Marc-André Hermanns
Yutaka Ishikawa
Terry Jones
Matthew Koop
Sameer Kumar
Miao Luo

Kannan Narasimhan
Steve Poole

Hubert Ritzdorf
Pavel Shamis
Anthony Skjellum
Vinod Tipparaju
Abhinav Vishnu

Argonne National Laboratory

Auburn University
Bull

Cisco Systems, Inc.
Cray Inc.

Forschungszentrum Jiilich

Fujitsu
The HDF Group
Hewlett-Packard

International Business Machines

Indiana University

Brian Barrett
Robert Blackmore
Greg Bronevetsky
Jonathan Carter
Gabor Dozsa
Edgar Gabriel
David Gingold
Robert Harrison
Steve Hodson

Bin Jia

Yann Kalemkarian
Quincey Koziol
Miron Livny
Ewing Lusk

Mark Pagel
Howard Pritchard
Rob Ross

Galen Shipman
Brian Smith
Keith Underwood
Weikuan Yu

Institut National de Recherche en Informatique et Automatique (Inria)

Institute for Advanced Science & Engineering Corporation

Intel Corporation

Lawrence Berkeley National Laboratory
Lawrence Livermore National Laboratory
Los Alamos National Laboratory

Mathworks

Mellanox Technologies
Microsoft

Myricom

NEC Corporation

and

Oak Ridge National Laboratory

The Ohio State University

Pacific Northwest National Laboratory
QLogic Corporation

RunTime Computing Solutions, LLC
Sandia National Laboratories

SiCortex, Inc.

Silicon Graphics Inc.

Sun Microsystems, Inc.

Tokyo Institute of Technology

University of Alabama at Birmingham
University of Houston

University of Illinois at Urbana-Champaign
University of Stuttgart, High Performance Computing Center Stuttgart (HLRS)
University of Tennessee, Knoxville
University of Tokyo

University of Wisconsin

Funding for the MPI Forum meetings was partially supported by awards #CCF-0816909
#CCF-1144042 from the National Science Foundation. In addition, the HDF Group

provided travel support for one U.S. academic.

MPI-3.0:
MPI-3.0 is a significant effort to extend and modernize the MPI Standard.

The

editors and organizers of the MPI-3.0 have been:

William Gropp, Steering Committee, Front Matter, Introduction, Groups, Contexts,
and Communicators, One-Sided Communications, and Bibliography

Richard Graham, Steering Committee, Point-to-Point Communication, Meeting Con-
vener, and MPI-3.0 Chair

Torsten Hoefler, Collective Communication, One-Sided Communications, and Process
Topologies

George Bosilca, Datatypes and Environmental Management
David Solt, Process Creation and Management

Bronis R. de Supinski, External Interfaces and Tool Support
Rajeev Thakur, I/O and One-Sided Communications

Darius Buntinas, Info Object

Jeffrey M. Squyres, Language Bindings and MPI-3.0 Secretary

Rolf Rabenseifner, Steering Committee, Terms and Definitions, and Fortran Bindings,
Deprecated Functions, Annex Change-Log, and Annex Language Bindings

Craig Rasmussen, Fortran Bindings

XXX1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

The following list includes some of the active participants who attended MPI-3 Forum

Tatsuya Abe

Reinhold Bader

Brian Barrett
Aurelien Bouteiller
Jed Brown

Arno Candel
Raghunath Raja Chandrasekar
Edgar Gabriel

David Goodell

Jeff Hammond
Jennifer Herrett-Skjellum
Joshua Hursey

Nysal Jan

Yann Kalemkarian
Chulho Kim

Alice Koniges
Manojkumar Krishnan
Jay Lofstead

Miao Luo

Nick M. Maclaren
Scott McMillan

Tim Murray

Steve Oyanagi
Sreeram Potluri
Hubert Ritzdorf
Martin Schulz
Anthony Skjellum
Raffaele Giuseppe Solca
Sayantan Sur

Vinod Tipparaju
Keith Underwood
Abhinav Vishnu

Tomoya Adachi
Pavan Balaji
Richard Barrett
Ron Brightwell
Darius Buntinas
George Carr
James Dinan
Balazs Gerofi
Manjunath Gorentla
Thomas Herault
Nathan Hjelm
Marty Itzkowitz
Bin Jia

Krishna Kandalla
Dries Kimpe
Quincey Koziol
Sameer Kumar
Bill Long

Ewing Lusk
Amith Mamidala
Douglas Miller
Tomotake Nakamura
Mark Pagel
Howard Pritchard
Kuninobu Sasaki
Gilad Shainer
Brian Smith
Shinji Sumimoto
Masamichi Takagi
Jesper Larsson Traff
Rolf Vandevaart
Min Xie

meetings or participated in the e-mail discussions and who are not mentioned above.

Sadaf Alam
Purushotham V. Bangalore
Robert Blackmore
Greg Bronevetsky
Devendar Bureddy
Mohamad Chaarawi
Terry Dontje

Brice Goglin

Erez Haba
Marc-André Hermanns
Atsushi Hori

Yutaka Ishikawa
Hideyuki Jitsumoto
Takahiro Kawashima
Christof Klausecker
Dieter Kranzlmueller
Eric Lantz

Andrew Lumsdaine
Adam Moody
Guillaume Mercier
Kathryn Mohror
Takeshi Nanri
Swann Perarnau
Rolf Riesen

Timo Schneider
Christian Siebert
Marc Snir
Alexander Supalov
Fabian Tillier
Richard Treumann
Anh Vo

Engiang Zhou

The MPI Forum also acknowledges and appreciates the valuable input from people via

e-mail and in person.

The MPI Forum also thanks those that provided feedback during the public comment

period. In particular, the Forum would like to thank Jeremiah Wilcock for providing detailed
comments on the entire draft standard.

The following institutions supported the MPI-3 effort through time and travel support

for the people listed above.

Argonne National Laboratory

Bull
Cisco Systems, Inc.

Cray Inc.
CSCS

xxxii

ETH Zurich

Fujitsu Ltd.

German Research School for Simulation Sciences

The HDF Group

Hewlett-Packard

International Business Machines

IBM India Private Ltd

Indiana University

Institut National de Recherche en Informatique et Automatique (Inria)
Institute for Advanced Science & Engineering Corporation
Intel Corporation

Lawrence Berkeley National Laboratory

Lawrence Livermore National Laboratory

Los Alamos National Laboratory

Mellanox Technologies, Inc.

Microsoft Corporation

NEC Corporation

National Oceanic and Atmospheric Administration, Global Systems Division
NVIDIA Corporation

Oak Ridge National Laboratory

The Ohio State University

Oracle America

Platform Computing

RIKEN AICS

RunTime Computing Solutions, LLC

Sandia National Laboratories

Technical University of Chemnitz

Tokyo Institute of Technology

University of Alabama at Birmingham

University of Chicago

University of Houston

University of Illinois at Urbana-Champaign

University of Stuttgart, High Performance Computing Center Stuttgart (HLRS)
University of Tennessee, Knoxville

University of Tokyo

Funding for the MPI Forum meetings was partially supported by awards #CCF-0816909

and #CCF-1144042 from the National Science Foundation. In addition, the HDF Group
and Sandia National Laboratories provided travel support for one U.S. academic each.
MPI-3.1:

MPI-3.1 is a minor update to the MPI Standard.
The editors and organizers of the MPI-3.1 have been:

e Martin Schulz, MPI-3.1 Chair

e William Gropp, Steering Committee, Front Matter, Introduction, One-Sided Commu-
nications, and Bibliography; Overall Editor

xxxiil

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Rolf Rabenseifner, Steering Committee, Terms and Definitions, and Fortran Bindings,

Deprecated Functions, Annex Change-Log, and Annex Language Bindings

Richard L. Graham, Steering Committee, Meeting Convener

Jeffrey M. Squyres, Language Bindings and MPI-3.1 Secretary

Daniel Holmes, Point-to-Point Communication

George Bosilca, Datatypes and Environmental Management

Torsten Hoefler, Collective Communication and Process Topologies

Pavan Balaji, Groups, Contexts, and Communicators, and External Interfaces

Jeff Hammond, The Info Object

David Solt, Process Creation and Management

Quincey Koziol, I/O

Kathryn Mohror, Tool Support

Rajeev Thakur, One-Sided Communications

meetings or participated in the e-mail discussions.

Charles Archer
Brian Barrett
George Bosilca
Yohann Burette
James Dinan
Edgar Gabriel
Paddy Gillies
Richard L. Graham
Khaled Hamidouche
Marc-André Hermanns
Daniel Holmes
Hideyuki Jitsumoto
Christos Kavouklis
Michael Knobloch
Sameer Kumar
Huiwei Lu

Adam Moody
Steve Oyanagi
Howard Pritchard
Ken Raffenetti
Davide Rossetti
Sangmin Seo

Brian Smith

Pavan Balaji
Wesley Bland
Aurelien Bouteiller
Mohamad Chaarawi
Dmitry Durnov
Todd Gamblin
David Goodell
Ryan E. Grant

Jeff Hammond
Nathan Hjelm
Atsushi Hori

Jithin Jose
Takahiro Kawashima
Alice Koniges
Joshua Ladd
Guillaume Mercier
Tomotake Nakamura
Antonio J. Péna
Rolf Rabenseifner
Raghunath Raja
Kento Sato
Christian Siebert
David Solt

XXXIV

The following list includes some of the active participants who attended MPI Forum

Purushotham V. Bangalore
Michael Blocksome
Devendar Bureddy
Alexey Cheptsov
Thomas Francois
Balazs Gerofi
Manjunath Gorentla Venkata
William Gropp
Amin Hassani
Torsten Hoefler
Yutaka Ishikawa
Krishna Kandalla
Chulho Kim
Quincey Koziol
Ignacio Laguna
Kathryn Mohror
Takeshi Nanri
Sreeram Potluri
Nicholas Radcliffe
Craig Rasmussen
Martin Schulz
Anthony Skjellum
Jeffrey M. Squyres

Hari Subramoni Shinji Sumimoto Alexander Supalov

Bronis R. de Supinski Sayantan Sur Masamichi Takagi
Keita Teranishi Rajeev Thakur Fabian Tillier
Yuichi Tsujita Geoffroy Vallée Rolf vandeVaart
Akshay Venkatesh Jerome Vienne Venkat Vishwanath
Anh Vo Huseyin S. Yildiz Junchao Zhang
Xin Zhao

The MPI Forum also acknowledges and appreciates the valuable input from people via
e-mail and in person.
The following institutions supported the MPI-3.1 effort through time and travel support
for the people listed above.

Argonne National Laboratory

Auburn University

Cisco Systems, Inc.

Cray

EPCC, The University of Edinburgh

ETH Zurich

Forschungszentrum Jiilich

Fujitsu

German Research School for Simulation Sciences
The HDF Group

International Business Machines

Institut National de Recherche en Informatique et Automatique (Inria)
Intel Corporation

Kyushu University

Lawrence Berkeley National Laboratory
Lawrence Livermore National Laboratory
Lenovo

Los Alamos National Laboratory

Mellanox Technologies, Inc.

Microsoft Corporation

NEC Corporation

NVIDIA Corporation

Oak Ridge National Laboratory

The Ohio State University

RIKEN AICS

Sandia National Laboratories

Texas Advanced Computing Center

Tokyo Institute of Technology

University of Alabama at Birmingham
University of Houston

University of Illinois at Urbana-Champaign
University of Oregon

University of Stuttgart, High Performance Computing Center Stuttgart (HLRS)
University of Tennessee, Knoxville
University of Tokyo

XXXV

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

MPI-4.0:

MPI-4.0 is a major update to the MPI Standard.
The editors and organizers of the MPI-4.0 have been:

e Martin Schulz, MPI-4.0 Chair, Info Object, External Interfaces
e Richard Graham, MPI-4.0 Treasurer
o Wesley Bland, MPI-4.0 Secretary, Backward Incompatibilities

e William Gropp, MPI-4.0 Editor, Steering Committee, Front Matter, Introduction,
One-Sided Communications, and Bibliography

e Rolf Rabenseifner, Steering Committee, Process Topologies, Deprecated Functions,
Removed Interfaces, Annex Language Bindings Summary, and Annex Change-Log.

e Purushotham V. Bangalore, Language Bindings

e Claudia Blaas-Schenner, Terms and Conventions

e George Bosilca, Datatypes and Environmental Management

e Ryan E. Grant, Partitioned Communication

e Marc-André Hermanns, Tool Support

e Daniel Holmes, Point-to-Point Communication, Sessions

e Guillaume Mercier, Groups, Contexts, Communicators, Caching
e Howard Pritchard, Process Creation and Management

e Anthony Skjellum, Collective Communication, I/O

As part of the development of MPI-4.0, a number of working groups were established. In
some cases, the work for these groups overlapped with multiple chapters. The following
describes the major working groups and the leaders of those groups:

Collective Communication, Topology, Communicators Torsten Hoefler, Andrew
Lumsdaine, and Anthony Skjellum

Fault Tolerance Wesley Bland, Aurélien Bouteiller, and Richard Graham
Hardware-Topologies Guillaume Mercier

Hybrid & Accelerator Pavan Balaji and James Dinan

Large Counts Jeff Hammond

Persistence Anthony Skjellum

Point to Point Communication Daniel Holmes and Richard Graham
Remote Memory Access William Gropp and Rajeev Thakur

Semantic Terms Purushotham V. Bangalore and Rolf Rabenseifner

XXXV

Sessions Daniel Holmes and Howard Pritchard

Tools Kathryn Mohror and Marc-André Hermanns

The following list includes some of the active participants who attended MPIl Forum
meetings or participated in the e-mail discussions.

Julien Adam
Charles Archer
Pavan Balaji
Mohammadreza Bayatpour
Claudia Blaas-Schenner
Gil Bloch

Aurelien Bouteiller
Alexander Calvert
Sourav Chakraborty
Ching-Hsiang Chu
James Clark

Isaias Alberto Compres Urena
Brandon Cook
Anna Daly

James Dinan
Murali Emani

Noah Evans

Esthela Gallardo
Balazs Gerofi

Brice Goglin
Richard Graham
Stanley Graves
Siegmar Gross
Yanfei Guo

Jeff Hammond
Nathan Hjelm
Daniel Holmes

Josh Hursey

Julien Jaeger
Sylvain Jeaugey
Krishna Kandalla
Chulho Kim

Alice Koniges

Kim Kyunghun
Stefan Lankes

Xioyi Lu

Alexey Malhanov
William Marts

Ali Mohammed

Abdelhalim Amer
Ammar Ahmad Awan
Purushotham V. Bangalore
Jean-Baptiste Besnard
Wesley Bland

George Bosilca

Ben Bratu

Nicholas Chaimov
Steffen Christgau
Mikhail Chuvelev
Carsten Clauss
Giuseppe Congiu
James Custer
Hoang-Vu Dang
Matthew Dosanjh
Christian Engelmann
Ana Gainaru

Marc Gamell Balmana
Salvatore Di Girolamo
Manjunath Gorentla Venkata
Ryan E. Grant
William Gropp

Taylor Groves

Khaled Hamidouche
Marc-André Hermanns
Torsten Hoefler
Atsushi Hori

Ilya Ivanov

Emmanuel Jeannot
Jithin Jose

Takahiro Kawashima
Michael Knobloch
Sameer Kumar
Ignacio Laguna Peralta
Tonglin Li

Kavitha Madhu

Ryan Marshall
Guillaume Mercier
Kathryn Mohror

XXXVil

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

The MPI Forum also acknowledges and appreciates the valuable input from people via

Takeshi Nanri
Takafumi Nose
Guillaume Papauré
Simon Pickartz
Howard Pritchard
Rolf Rabenseifner
Craig Rasmussen
Sergio Rivas-Gomez
Amit Ruhela
Martin Schulz
Sameer Shende
Brian Smith
Srinivas Sridharan
Shinji Sumimoto
Keita Teranishi
Geoffroy Vallee
Anh Vo

Dong Zhong

e-mail and in person.

The following institutions supported the MPI-4.0 effort through time and travel support

for the people listed above.

ATOS

Argonne National Laboratory

Arm

Auburn University
Barcelona Supercomputing Center

CEA

Cisco Systems Inc.
Cray Inc.

EPCC, The University of Edinburgh
ETH Zirich

Fujitsu

Thomas Naughton
Lena Oden

Ivy Peng

Artem Polyakov
Martina Prugger
Nicholas Radcliffe
Soren Rasmussen
Davide Rossetti
Whit Schonbein
Sangmin Seo

Min Si

David Solt

Hari Subramoni
Sayantan Sur
Rajeev Thakur
Akshay Venkatesh
Justin Wozniak
Hui Zhou

Fulda University of Applied Sciences

German Research School for Simulation Sciences
Hewlett Packard Enterprise

International Business Machines
Institut National de Recherche en Informatique et Automatique (Inria)
Intel Corporation
Jiilich Supercomputing Center, Forschungszentrum Jiilich
KTH Royal Institute of Technology
Kyushu University
Lawrence Berkeley National Laboratory

Lawrence Livermore National Laboratory

Lenovo

Los Alamos National Laboratory

xxxVviil

Christoph Niethammer
Steve Oyanagi
Antonio Pena
Sreeram Potluri
Marc Pérache

Ken Raffenetti
Hubert Ritzdorf
Martin Ruefenacht
Joseph Schuchart
Sameh Sharkawi
Anthony Skjellum
Jeffrey M. Squyres
Nawrin Sultana
Hugo Taboada
Keith Underwood
Jerome Vienne
Junchao Zhang

Mellanox Technologies, Inc.
Microsoft Corporation

NEC Corporation

NVIDIA Corporation

Oak Ridge National Laboratory
PAR-TEC

Paratools, Inc.

RIKEN AICS (R-CCS as of 2017)
RWTH Aachen University
Rutgers University

Sandia National Laboratories
Silicon Graphics, Inc.

Technical University of Munich
The HDF Group

The Ohio State University

Texas Advanced Computing Center
Tokyo Institute of Technology

University of Alabama at Birmingham

University of Basel, Switzerland
University of Houston

University of Illinois at Urbana-Champaign and the National Center for Supercomput-

ing Applications
University of Innsbruck
University of Oregon
University of Potsdam

University of Stuttgart, High Performance Computing Center Stuttgart (HLRS)

University of Tennessee, Chattanooga
University of Tennessee, Knoxville
University of Texas at El Paso
University of Tokyo

VSC Research Center, TU Wien

XXXIX

10

11

12

13

14

15

16

17

18

19

20

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 1

Introduction to MPI

1.1 Overview and Goals

MPI (Message-Passing Interface) is a message-passing library interface specification. All
parts of this definition are significant. MPI addresses primarily the message-passing parallel
programming model, in which data is moved from the address space of one process to
that of another process through cooperative operations on each process. Extensions to the
“classical” message-passing model are provided in collective operations, remote-memory
access operations, dynamic process creation, and parallel I/O. MPI is a specification, not
an implementation; there are multiple implementations of MPI. This specification is for a
library interface; MPI is not a language, and all MPI operations are expressed as functions,
subroutines, or methods, according to the appropriate language bindings which, for C and
Fortran, are part of the MPI standard. The standard has been defined through an open
process by a community of parallel computing vendors, computer scientists, and application
developers. The next few sections provide an overview of the history of MPI’s development.

The main advantages of establishing a message-passing standard are portability and
ease of use. In a distributed memory communication environment in which the higher level
routines and/or abstractions are built upon lower level message-passing routines, the bene-
fits of standardization are particularly apparent. Furthermore, the definition of a message-
passing standard, such as that proposed here, provides vendors with a clearly defined base
set of routines that they can implement efficiently, or in some cases for which they can
provide hardware support, thereby enhancing scalability.

The goal of the Message-Passing Interface, simply stated, is to develop a widely used
standard for writing message-passing programs. As such the interface should establish a
practical, portable, efficient, and flexible standard for message passing.

A complete list of goals follows.

e Design an application programming interface (not necessarily for compilers or a system
implementation library).

e Allow efficient communication: Avoid memory-to-memory copying, allow overlap of
computation and communication, and offload to communication co-processors, where
available.

e Allow for implementations that can be used in a heterogeneous environment.

e Allow convenient C and Fortran bindings for the interface.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2 CHAPTER 1. INTRODUCTION TO MPI

e Assume a reliable communication interface: the user need not cope with communica-
tion failures. Such failures are dealt with by the underlying communication subsystem.

Define an interface that can be implemented on many vendor’s platforms, with no
significant changes in the underlying communication and system software.

Semantics of the interface should be language independent.

The interface should be designed to allow for thread safety.

1.2 Background of MPI-1.0

MPI sought to make use of the most attractive features of a number of existing message-
passing systems, rather than selecting one of them and adopting it as the standard. Thus,
MPI was strongly influenced by work at the IBM T. J. Watson Research Center [2, 3], Intel’s
NX/2 [57], Express [14], nCUBE’s Vertex [53], p4 [9, 10], and PARMACS [6, 11]. Other
important contributions have come from Zipcode [60, 61], Chimp [20, 21], PVM [5, 18],
Chameleon [31], and PICL [26].

The MPI standardization effort involved about 60 people from 40 organizations mainly
from the United States and Europe. Most of the major vendors of concurrent computers
were involved in MPI, along with researchers from universities, government laboratories, and
industry. The standardization process began with the Workshop on Standards for Message-
Passing in a Distributed Memory Environment, sponsored by the Center for Research on
Parallel Computing, held April 29-30, 1992, in Williamsburg, Virginia [69]. At this work-
shop the basic features essential to a standard message-passing interface were discussed,
and a working group established to continue the standardization process.

A preliminary draft proposal, known as MPI-1, was put forward by Dongarra, Hempel,
Hey, and Walker in November 1992, and a revised version was completed in February
1993 [19]. MPI-1 embodied the main features that were identified at the Williamsburg
workshop as being necessary in a message passing standard. Since MPI-1 was primarily
intended to promote discussion and “get the ball rolling,” it focused mainly on point-to-point
communications. MPI-1 brought to the forefront a number of important standardization
issues, but did not include any collective communication routines and was not thread-safe.

In November 1992, a meeting of the MPI| working group was held in Minneapolis, at
which it was decided to place the standardization process on a more formal footing, and to
generally adopt the procedures and organization of the High Performance Fortran Forum.
Subcommittees were formed for the major component areas of the standard, and an email
discussion service established for each. In addition, the goal of producing a draft MPI
standard by the Fall of 1993 was set. To achieve this goal the MPI working group met every
6 weeks for two days throughout the first 9 months of 1993, and presented the draft MPI
standard at the Supercomputing 93 conference in November 1993. These meetings and the
email discussion together constituted the MPI Forum, membership of which has been open
to all members of the high performance computing community.

1.3 Background of MPI-1.1, MPI-1.2, and MPI-2.0

Beginning in March 1995, the MPIl Forum began meeting to consider corrections and exten-
sions to the original MPI Standard document [23]. The first product of these deliberations

1.4. BACKGROUND OF MPI-1.3 AND MPI-2.1 3

was Version 1.1 of the MPI specification, released in June of 1995 [24] (see
http://www.mpi-forum.org for official MPI document releases). At that time, effort fo-
cused in five areas.

1. Further corrections and clarifications for the MPI-1.1 document.

2. Additions to MPI-1.1 that do not significantly change its types of functionality (new
datatype constructors, language interoperability, etc.).

3. Completely new types of functionality (dynamic processes, one-sided communication,
parallel I/O, etc.) that are what everyone thinks of as “MPI-2 functionality.”

4. Bindings for Fortran 90 and C+4. MPI-2 specifies C++ bindings for both MPI-1 and
MPI-2 functions, and extensions to the Fortran 77 binding of MPI-1 and MPI-2 to
handle Fortran 90 issues.

5. Discussions of areas in which the MPI process and framework seem likely to be useful,
but where more discussion and experience are needed before standardization (e.g.,
zero-copy semantics on shared-memory machines, real-time specifications).

Corrections and clarifications (items of type 1 in the above list) were collected in Chap-
ter 3 of the MPI-2 document: “Version 1.2 of MPI.” That chapter also contains the function
for identifying the version number. Additions to MPI-1.1 (items of types 2, 3, and 4 in the
above list) are in the remaining chapters of the MPI-2 document, and constitute the specifi-
cation for MPI-2. Items of type 5 in the above list have been moved to a separate document,
the “MPI Journal of Development” (JOD), and are not part of the MPI-2 Standard.

This structure makes it easy for users and implementors to understand what level of
MPI compliance a given implementation has:

e MPI-1 compliance will mean compliance with MPI-1.3. This is a useful level of com-
pliance. It means that the implementation conforms to the clarifications of MPI-1.1
function behavior given in Chapter 3 of the MPI-2 document. Some implementations
may require changes to be MPI-1 compliant.

e MPI-2 compliance will mean compliance with all of MPI-2.1.
e The MPI Journal of Development is not part of the MPI Standard.

It is to be emphasized that forward compatibility is preserved. That is, a valid MPI-1.1
program is both a valid MPI-1.3 program and a valid MPI-2.1 program, and a valid MPI-1.3
program is a valid MPI-2.1 program.

1.4 Background of MPI-1.3 and MPI-2.1

After the release of MPI-2.0, the MPI Forum kept working on errata and clarifications for
both standard documents (MPI-1.1 and MPI-2.0). The short document “Errata for MPI-1.1"
was released October 12, 1998. On July 5, 2001, a first ballot of errata and clarifications for
MPI-2.0 was released, and a second ballot was voted on May 22, 2002. Both votes were done
electronically. Both ballots were combined into one document: “Errata for MPI-2,” May
15, 2002. This errata process was then interrupted, but the Forum and its e-mail reflectors
kept working on new requests for clarification.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

http://www.mpi-forum.org

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4 CHAPTER 1. INTRODUCTION TO MPI

Restarting regular work of the MPI Forum was initiated in three meetings, at Fu-
roPVM/MPT’06 in Bonn, at EuroPVM/MPT’07 in Paris, and at SC’07 in Reno. In De-
cember 2007, a steering committee started the organization of new MPI| Forum meetings at
regular 8-weeks intervals. At the January 14-16, 2008 meeting in Chicago, the MPI Forum
decided to combine the existing and future MP| documents to one document for each ver-
sion of the MPI standard. For technical and historical reasons, this series was started with
MPI-1.3. Additional Ballots 3 and 4 solved old questions from the errata list started in 1995
up to new questions from the last years. After all documents (MPI-1.1, MPI-2, Errata for
MPI-1.1 (Oct. 12, 1998), and MPI-2.1 Ballots 1-4) were combined into one draft document,
for each chapter, a chapter author and review team were defined. They cleaned up the
document to achieve a consistent MPI-2.1 document. The final MPI-2.1 standard document
was finished in June 2008, and finally released with a second vote in September 2008 in the
meeting at Dublin, just before EuroPVM/MPT'08.

1.5 Background of MPI-2.2

MPI-2.2 is a minor update to the MPI-2.1 standard. This version addresses additional errors
and ambiguities that were not corrected in the MPI-2.1 standard as well as a small number
of extensions to MPI-2.1 that met the following criteria:

e Any correct MPI-2.1 program is a correct MPI-2.2 program.
e Any extension must have significant benefit for users.

e Any extension must not require significant implementation effort. To that end, all
such changes are accompanied by an open source implementation.

The discussions of MPI-2.2 proceeded concurrently with the MPI-3 discussions; in some
cases, extensions were proposed for MPI-2.2 but were later moved to MPI-3.

1.6 Background of MPI-3.0

MPI-3.0 is a major update to the MPI standard. The updates include the extension of
collective operations to include nonblocking versions, extensions to the one-sided operations,
and a new Fortran 2008 binding. In addition, the deprecated C++ bindings have been
removed, as well as many of the deprecated routines and MPI objects (such as the MPI_UB
datatype).

1.7 Background of MPI-3.1

MPI-3.1 is a minor update to the MPI standard. Most of the updates are corrections
and clarifications to the standard, especially for the Fortran bindings. New functions added
include routines to manipulate MPI_Aint values in a portable manner, nonblocking collective
I/O routines, and routines to get the index value by name for MPI_T performance and
control variables. A general index was also added.

1.8. BACKGROUND OF MPI-4.0 5

1.8 Background of MPI-4.0

MPI-4.0 is a major update to the MPI standard. The largest changes are the addition of
large-count versions of many routines to address the limitations of using an int or INTEGER
for the count parameter, persistent collectives, partitioned communications, an alternative
way to initialize MPI, application info assertions, and improvements to the definitions of
error handling. In addition, there are a number of smaller improvements and corrections.

1.9 Who Should Use This Standard?

This standard is intended for use by all those who want to write portable message-passing
programs in Fortran and C (and access the C bindings from C++). This includes individual
application programmers, developers of software designed to run on parallel machines, and
creators of environments and tools. In order to be attractive to this wide audience, the
standard must provide a simple, easy-to-use interface for the basic user while not seman-
tically precluding the high-performance message-passing operations available on advanced
machines.

1.10 What Platforms Are Targets for Implementation?

The attractiveness of the message-passing paradigm at least partially stems from its wide
portability. Programs expressed this way may run on distributed-memory multiprocessors,
networks of workstations, and combinations of all of these. In addition, shared-memory
implementations, including those for multi-core processors and hybrid architectures, are
possible. The paradigm will not be made obsolete by architectures combining the shared-
and distributed-memory views, or by increases in network speeds. It thus should be both
possible and useful to implement this standard on a great variety of machines, including
those “machines” consisting of collections of other machines, parallel or not, connected by
a communication network.

The interface is suitable for use by fully general MIMD programs, as well as those writ-
ten in the more restricted style of SPMD. MPI provides many features intended to improve
performance on scalable parallel computers with specialized interprocessor communication
hardware. Thus, we expect that native, high-performance implementations of MPI will be
provided on such machines. At the same time, implementations of MPI on top of stan-
dard Unix interprocessor communication protocols will provide portability to workstation
clusters and heterogenous networks of workstations.

1.11 What Is Included in the Standard?

The standard includes:

e Point-to-point communication,
e Partitioned communication,
e Datatypes,

e Collective operations,

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

23

24

25

26

27

28

29

31

32

33

34

35

36

37

38

39

40

41

42

43

45

46

47

48

6 CHAPTER 1. INTRODUCTION TO MPI

e Process groups,

e Communication contexts,

e Process topologies,

e Environmental management and inquiry,

e The Info object,

e Process initialization, creation, and management,
e One-sided communication,

e External interfaces,

e Parallel file I/0,

e Tool support,

e Language bindings for Fortran and C.

1.12 What Is Not Included in the Standard?
The standard does not specify:

e Operations that require more operating system support than is currently standard;
for example, interrupt-driven receives, remote execution, or active messages,

e Program construction tools,

e Debugging facilities.

There are many features that have been considered and not included in this standard.
This happened for a number of reasons, one of which is the time constraint that was self-
imposed in finishing the standard. Features that are not included can always be offered as
extensions by specific implementations. Perhaps future versions of MPI| will address some
of these issues.

1.13 Organization of This Document

The following is a list of the remaining chapters in this document, along with a brief
description of each.

e Chapter 2, MPI| Terms and Conventions, explains notational terms and conventions
used throughout the MPI document.

e Chapter 3, Point-to-Point Communication, defines the basic, pairwise communication
subset of MPI. Send and receive are found here, along with many associated functions
designed to make basic communication powerful and efficient.

1.13.

ORGANIZATION OF THIS DOCUMENT 7

Chapter 4, Partitioned Point-to-Point Communication, defines a method of perform-
ing partitioned communication in MPI. Partitioned communication allows multiple
contributions of data to be made, potentially, from multiple actors (e.g., threads or
tasks) in an MPI process to a single message.

Chapter 5, Datatypes, defines a method to describe any data layout, e.g., an array of
structures in the memory, which can be used as message send or receive buffer.

Chapter 6, Collective Communication, defines process-group collective communica-
tion operations. Well known examples of this are barrier and broadcast over a group
of processes (not necessarily all the processes). With MPI-2, the semantics of collec-
tive communication was extended to include inter-communicators. It also adds two
new collective operations. MPI-3 adds nonblocking collective operations. MPI-4 adds
persistent nonblocking collective operations.

Chapter 7, Groups, Contexts, Communicators, and Caching, shows how groups of pro-
cesses are formed and manipulated, how unique communication contexts are obtained,
and how the two are bound together into a communicator.

Chapter 8, Process Topologies, explains a set of utility functions meant to assist in
the mapping of process groups (a linearly ordered set) to richer topological structures
such as multi-dimensional grids.

Chapter 9, MPI| Environmental Management, explains how the programmer can man-
age and make inquiries of the current MPI environment. These functions are needed
for the writing of correct, robust programs, and are especially important for the con-
struction of highly-portable message-passing programs.

Chapter 10, The Info Object, defines an opaque object, that is used as input in several
MPI routines.

Chapter 11, Process Initialization, Creation, and Management, defines several ap-
proaches to MPI initialization, process creation, and process management while plac-
ing minimal restrictions on the execution environment. MPI-4 adds a new Sessions
Model.

Chapter 12, One-Sided Communications, defines communication routines that can be
completed by a single process. These include shared-memory operations (put/get)
and remote accumulate operations.

Chapter 13, External Interfaces, defines routines designed to allow developers to layer
on top of MPI. This includes generalized requests, routines that decode MPI opaque
objects, and threads.

Chapter 14, 1/0, defines MPI support for parallel I/O.

Chapter 15, Tool Support, covers interfaces that allow debuggers, performance ana-
lyzers, and other tools to obtain data about the operation of MPI processes. This
chapter includes Section 15.2 (Profiling Interface), which was a chapter in previous
versions of MPI.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

15

16

17

18

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

CHAPTER 1. INTRODUCTION TO MPI

Chapter 16, Deprecated Interfaces, describes routines that are kept for reference.
However usage of these functions is discouraged, as they may be deleted in future
versions of the standard.

Chapter 17, Removed Interfaces, describes routines and constructs that have been
removed from MPI. These were deprecated in MPI-2, and the MPI| Forum decided to
remove these from the MPI-3 standard.

Chapter 18, Semantic Changes and Warnings, describes semantic changes from pre-
vious versions of MPI.

Chapter 19, Language Bindings, discusses Fortran issues, and describes language in-
teroperability aspects between C and Fortran.

The Appendices are:

Annex A, Language Bindings Summary, gives specific syntax in C and Fortran, for
all MPI functions, constants, and types.

Annex B, Change-Log, summarizes some changes since the previous version of the
standard.

Several Index pages show the locations of general terms and definitions, examples, con-
stants and predefined handles, declarations of C and Fortran types, callback routine
prototypes, and all MPI functions.

MPI provides various interfaces to facilitate interoperability of distinct MPI imple-

mentations. Among these are the canonical data representation for MPI I/O and for
MPI_PACK_EXTERNAL and MPI_UNPACK_EXTERNAL. The definition of an actual bind-
ing of these interfaces that will enable interoperability is outside the scope of this document.

A separate document consists of ideas that were discussed in the MPI Forum during the

MPI-2 development and deemed to have value, but are not included in the MPI Standard.
They are part of the “Journal of Development” (JOD), lest good ideas be lost and in order
to provide a starting point for further work. The chapters in the JOD are

Chapter 2, Spawning Independent Processes, includes some elements of dynamic pro-
cess management, in particular management of processes with which the spawning
processes do not intend to communicate, that the Forum discussed at length but
ultimately decided not to include in the MPI Standard.

Chapter 3, Threads and MPI, describes some of the expected interaction between an
MPI implementation and a thread library in a multithreaded environment.

Chapter 4, Communicator ID, describes an approach to providing identifiers for com-
municators.

Chapter 5, Miscellany, discusses Miscellaneous topics in the MPIl JOD, in particu-
lar single-copy routines for use in shared-memory environments and new datatype
constructors.

Chapter 6, Toward a Full Fortran 90 Interface, describes an approach to providing a
more elaborate Fortran 90 interface.

1.13. ORGANIZATION OF THIS DOCUMENT 9

e Chapter 7, Split Collective Communication, describes a specification for certain non-
blocking collective operations.

e Chapter 8, Real-Time MPI, discusses MPI support for real time processing.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

CHAPTER 1.

INTRODUCTION TO MPI

Chapter 2

MPIl Terms and Conventions

This chapter explains notational terms and conventions used throughout the MPI document,
some of the choices that have been made, and the rationale behind those choices.

2.1 Document Notation

Rationale. Throughout this document, the rationale for the design choices made in
the interface specification is set off in this format. Some readers may wish to skip
these sections, while readers interested in interface design may want to read them
carefully. (End of rationale.)

Advice to users. Throughout this document, material aimed at users and that
illustrates usage is set off in this format. Some readers may wish to skip these sections,
while readers interested in programming in MPI may want to read them carefully. (End
of advice to users.)

Advice to implementors. Throughout this document, material that is primarily
commentary to implementors is set off in this format. Some readers may wish to skip
these sections, while readers interested in MPI implementations may want to read
them carefully. (End of advice to implementors.)

2.2 Naming Conventions

In many cases MPI names for C functions are of the form MPI_Class_action_subset. This
convention originated with MPI-1. Since MPI-2 an attempt has been made to standardize
the names of MPI functions according to the following rules.

1. In C and the Fortran mpi_f08 module, all routines associated with a particular type
of MPI object should be of the form MPI_Class_action_subset or, if no subset exists,
of the form MPI_Class_action. In the Fortran mpi module and mpif .h file, all routines
associated with a particular type of MPI object should be of the form
MPI_CLASS_ACTION_SUBSET or, if no subset exists, of the form
MPI_CLASS_ACTION.

2. If the routine is not associated with a class, the name should be of the form
MPI_Action_subset or MPI_ACTION_SUBSET in C and Fortran.

11

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

12 CHAPTER 2. MPI TERMS AND CONVENTIONS

3. The names of certain actions have been standardized. In particular, Create creates
a new object, Get retrieves information about an object, Set sets this information,
Delete deletes information, Is asks whether or not an object has a certain property.

C and Fortran names for some MPI functions (that were defined during the MPI-1
process) violate these rules in several cases. The most common exceptions are the omission
of the Class name from the routine and the omission of the Action where one can be
inferred.

2.3 Procedure Specification

MPI procedures are specified using a language-independent notation. The arguments of
procedure calls are marked as IN, OUT, or INOUT. The meanings of these are:

e IN: the call may use the input value but does not update the argument from the
perspective of the caller at any time during the call’s execution,

e OUT: the call may update the argument but does not use its input value,
e INOUT: the call may both use and update the argument.

There is one special case—if an argument is a handle to an opaque object (these terms
are defined in Section 2.5.1), and the object is updated by the procedure call, then the
argument is marked INOUT or OUT. It is marked this way even though the handle itself is
not modified—we use the INOUT or OUT attribute to denote that what the handle references
is updated.

Rationale. The definition of MPI tries to avoid, to the largest possible extent, the use
of INOUT arguments, because such use is error-prone, especially for scalar arguments.
(End of rationale.)

MPI’s use of IN, OUT, and INOUT is intended to indicate to the user how an argument
is to be used, but does not provide a rigorous classification that can be translated directly
into all language bindings (e.g., INTENT in Fortran 90 bindings or const in C bindings).
For instance, the “constant” MPI_BOTTOM can usually be passed to OUT buffer arguments.
Similarly, MPI_STATUS_IGNORE can be passed as the OUT status argument.

A common occurrence for MPI functions is an argument that is used as IN by some pro-
cesses and OUT by other processes. Such an argument is, syntactically, an INOUT argument
and is marked as such, although, semantically, it is not used in one call both for input and
for output on a single process.

Another frequent situation arises when an argument value is needed only by a subset
of the processes. When an argument is not significant at a process then an arbitrary value
can be passed as an argument.

Unless specified otherwise, an argument of type OUT or type INOUT cannot be aliased
with any other argument passed to an MPI procedure. An example of argument aliasing in
C appears below. If we define a C procedure like this,

void copyIntBuffer(int *pin, int *pout, int len)
{ int i;
for (i=0; i<len; ++i) *pout++ = *pin++;

2.4. SEMANTIC TERMS 13

then a call to it in the following code fragment has aliased arguments.

int a[10];
copyIntBuffer(a, a+3, 7);

Although the C language allows this, such usage of MPI procedures is forbidden unless
otherwise specified. Note that Fortran prohibits aliasing of arguments.

All MPI functions are first specified in the language-independent notation. Immediately
below this, language dependent bindings follow:

e The ISO C version(s) of the function.
e The Fortran version(s) used with USE mpi_£08.
e The Fortran version of the same function used with USE mpi or INCLUDE ’mpif.h’.

Some MPI procedures have two interfaces for a given language support; see Sections 2.5.6
and 2.5.8.

An exception is Section 15.3 “The MPI Tool Information Interface”, which only provides
ISO C interfaces.

“Fortran” in this document refers to Fortran 90 and higher; see Section 2.6.

The words function, routine, procedure, procedure call, and call are often used as
synonyms within this standard.

2.4 Semantic Terms

When discussing MPI procedures the following semantic terms are used. The term message
data buffer refers to the send/receive buffer used in a communication procedure. The term
file data buffer refers to the data buffers used by MPI I/O procedures. In this section
we use the term data buffer and depending on the MPI procedure it will refer to message
data buffer or file data buffer.

2.4.1 MPI Operations

MPI operation An MPI operation is a sequence of steps performed by the MPI library to
establish and enable data transfer and/or synchronization. It consists of four stages:
initialization, starting, completion, and freeing, and it is implemented as a set of one
or more MPI procedures, see Section 2.4.2.

Initialization hands over the argument list to the operation but not the content of
the data buffers, if any. The specification of an operation may state that array
arguments must not be changed until the operation is freed.

Starting hands over the control of the data buffers, if any, to the associated opera-
tion.
Note that initiation refers to the combination of the initialization and starting
stages.

Completion returns control of the content of the data buffers and indicates that
output buffers and arguments, if any, have been updated.

Note that an MPI operation is complete when the MPI procedure implementing
the completion stage returns.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14 CHAPTER 2. MPI TERMS AND CONVENTIONS

Freeing returns control of the rest of the argument list (e.g., the data buffer address
and array arguments).

MPI operations are available in one or more of these forms: blocking, nonblocking, and
persistent.

Blocking operation For a blocking operation, all four stages are combined in a single
procedure call (as shown in Figure 2.1 and defined in Section 2.4.2).

O Initialization & Starting
&
@ ¢ Completion & Freeing

Figure 2.1: State transition diagram for blocking operations

Nonblocking operation For a nonblocking operation, the initialization and starting
stages are combined into a single nonblocking procedure call and the completion and
freeing stages are combined into a separate, single procedure call, which can be block-
ing or nonblocking (as shown in Figure 2.2 and defined in Section 2.4.2).

CInitialization & Starting

@4

Completion & Freeing

Active

Figure 2.2: State transition diagram for nonblocking operations

Persistent operation For a persistent operation, there is a separate procedure for each
of the four stages (as shown in Figure 2.3 and defined in Section 2.4.2). Each of these
procedures may be blocking or nonblocking.

For a partitioned send operation, an additional call to activate each partition of the
send buffer (see Section 4.2.1) is required to finish the starting stage. For a partitioned
receive operation, before the operation is complete the user is allowed to access a
partition of the output buffer after verifying that it has arrived (see Section 4.2.2).

Y
olnitialization | l Starting
C Freeing Seroe]- Completion

oy

Figure 2.3: State transition diagram for persistent operations

Additionally, an MPI operation can be collective or noncollective.

2.4. SEMANTIC TERMS 15

Collective operation Collective operations are defined as operations that involve a group
or groups of MPI processes. For collective operations the completion stage may or
may not finish before all processes in the group have started the operation.

Collective MPI operations are also available as blocking, nonblocking, or persistent
operations.

Noncollective operation Noncollective operations are defined as operations that are not
collective.

2.4.2 MPI Procedures

All MPI procedures can either be local or non-local—defined as follows:

Non-local procedure An MPI procedure is non-local if returning may require, during its
execution, some specific semantically-related MPI procedure to be called on another
MPI process.

Local procedure An MPI procedure is local if it is not non-local.

An MPI operation is implemented as a set of one or more MPI procedures. An MPI
operation-related procedure implements at least a part of a stage of an MPI operation
as described in Section 2.4.1. An MPI operation-related procedure may also implement
one or more stages of one or several MP| operations. In certain cases, more than one MPI
operation-related procedure may be needed to implement a single stage.

There are also other MPI procedures that do not implement any stage of any MPI
operation.

The semantics of MPI operation-related procedures are described using two orthogonal
(independent) concepts: completeness (depends on which stages are included) and locality.
Such procedures can be either incomplete, or completing, or freeing, or completing and
freeing based on the status of the associated operation at the time the procedure returns.
Also, all such procedures can be described as either blocking or nonblocking, but these latter
two terms refer to combinations of the completeness and locality concepts. Additionally,
all MPI operation-related procedures can be collective or noncollective.

The following are properties of MPI operation-related procedures:

Initialization procedure An MPI procedure is an initialization procedure if return
from the procedure indicates that the associated operation has completed its initial-
ization stage, which implies that the user has handed over control of the argument list
(but not contents of the data buffers) to MPI. The user is still allowed to read or mod-
ify the contents of the data buffers. If an initializing procedure is not also the freeing
procedure of the associated operation (see below) then the user is not permitted to
deallocate the data buffers or to modify the array arguments.

Starting procedure An MPI procedure is a starting procedure if return from the pro-
cedure indicates that the associated operation has completed its starting stage, which
implies that the user has handed over control of the data buffers to MPI. If a starting
procedure is not also a completing procedure of the associated operation (see below)
then the user is not permitted to modify input data buffers or to read output data
buffers.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

16 CHAPTER 2. MPI TERMS AND CONVENTIONS

Initiation procedure An MPI procedure is an initiation procedure if return from the
procedure indicates that both the initialization and the starting stage have completed,
which implies control of the entire argument list is handed over to MPI.

Completing procedure An MPI procedure is called completing if return from the pro-
cedure indicates that at least one associated operation has finished its completion
stage, which implies that the user can rely on the content of the output data buffers
and modify the content of input and output data buffers of such operation(s). If a
completing procedure is not also a freeing procedure (see below) then the user is not
permitted to deallocate the data buffers or to modify the array arguments.

Incomplete procedure An MPI procedure is called incomplete if it is not a completing
procedure.

Freeing procedure An MPI procedure is freeing if return from the procedure indicates
that at least one associated operation has finished its freeing stage, which implies
that the user can reuse all parameters specified when initializing such associated op-
eration(s).

Nonblocking procedure An MPI procedure is nonblocking if it is incomplete and local.

Blocking procedure An MPI procedure is blocking if it is not nonblocking.

Advice to users. Note that for operation-related MPI procedures, in most cases
incomplete procedures are local and completing procedures are non-local. Exceptions
are noted where such procedures are defined. In many cases an additional prefix letter
| as an abbreviation of the words incomplete and immediate marks nonblocking
procedures in the procedure name.

Some categorization examples are listed below.
Nonblocking procedures:

e incomplete and local: MPI_ISEND, MPI_IRECV, MPI_IBCAST, MPI_IMPROBE,
MPI_SEND_INIT, MPI_RECV_INIT, ...

Blocking procedures:

e completing and non-local: MPI_SEND, MPI_RECV, MPI_BCAST, ...

e incomplete and non-local: MPI_MPROBE, MPI_BCAST_INIT, ...,
MPI_FILE_{READ|WRITE}_{AT_ALL|ALL|ORDERED}_BEGIN.

e completing and local: MPI_BSEND, MPI_RSEND, MPI_MRECV.
MPI procedures that are not MPI operation-related:
e MPI_COMM_RANK, MPI_WTIME, MPI_PROBE, MPI_IPROBE, ...

(End of advice to users.)

Collective procedure An MPI procedure is collective if all processes in a group or groups
of MPI processes need to invoke the procedure.

Initialization procedures of collective operations over the same process group must be
executed in the same order by all members of the process group.

2.4. SEMANTIC TERMS 17

An MPI collective procedure is synchronizing if it will only return once all pro-
cesses in the associated group or groups of MPI processes have called the appropriate
matching MPI procedure.

The initiation procedures for nonblocking collective operations and the starting pro-
cedures for persistent collective operations are local and shall not be synchronizing.

All other procedures for collective operations, such as for blocking collective operations
and the initialization procedures for persistent collective operations, may or may not
be synchronizing.

Advice to users. Calling any synchronizing function is erroneous when there is no
possibility of corresponding calls at all other processes in the associated process group.

Waiting for completion of any collective operation is erroneous when there is no pos-
sibility that all other processes in the associated group will be able to start the corre-
sponding operation. (End of advice to users.)

2.4.3 MPI Datatypes

For datatypes, the following terms are defined:

predefined A predefined datatype is a datatype with a predefined (constant) name (such
as MPI_INT, MPI_FLOAT_INT, or MPI_PACKED) or a datatype constructed with
MPI_TYPE_CREATE_F90_INTEGER, MPI_TYPE_CREATE_F90_REAL, or
MPI_TYPE_CREATE_F90_COMPLEX. The former are named whereas the latter are
unnamed.

derived A derived datatype is any datatype that is not predefined.

portable A datatype is portable if it is a predefined datatype, or it is derived from
a portable datatype using only the type constructors MPI_TYPE_CONTIGUOUS,
MPI_TYPE_VECTOR, MPI_TYPE_INDEXED,
MPI_TYPE_CREATE_INDEXED_BLOCK, MPI_TYPE_CREATE_SUBARRAY,
MPI_TYPE_DUP, and MPI_TYPE_CREATE_DARRAY. Such a datatype is portable
because all displacements in the datatype are in terms of extents of one predefined
datatype. Therefore, if such a datatype fits a data layout in one memory, it will
fit the corresponding data layout in another memory, if the same declarations were
used, even if the two systems have different architectures. On the other hand, if a
datatype was constructed using MPI_TYPE_CREATE_HINDEXED,
MPI_TYPE_CREATE_HINDEXED_BLOCK, MPI_TYPE_CREATE_HVECTOR or
MPI_TYPE_CREATE_STRUCT, then the datatype contains explicit byte displace-
ments (e.g., providing padding to meet alignment restrictions). These displacements
are unlikely to be chosen correctly if they fit data layout on one memory, but are
used for data layouts on another process, running on a processor with a different
architecture.

equivalent Two datatypes are equivalent if they appear to have been created with the same
sequence of calls (and arguments) and thus have the same typemap. Two equivalent
datatypes do not necessarily have the same cached attributes or the same names.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

18 CHAPTER 2. MPI TERMS AND CONVENTIONS

2.5 Datatypes

2.5.1 Opaque Objects

MPI manages system memory that is used for buffering messages and for storing internal
representations of various MPI objects such as groups, communicators, datatypes, etc. This
memory is not directly accessible to the user, and objects stored there are opaque: their
size and shape is not visible to the user. Opaque objects are accessed via handles, which
exist in user space. MPI procedures that operate on opaque objects are passed handle
arguments to access these objects. In addition to their use by MPI calls for object access,
handles can participate in assignments and comparisons.

In Fortran with USE mpi or INCLUDE ’mpif.h’, all handles have type INTEGER. In
Fortran with USE mpi_£08, and in C, a different handle type is defined for each category of
objects. With Fortran USE mpi_£08, the handles are defined as Fortran BIND(C) derived
types that consist of only one element INTEGER :: MPI_VAL. The internal handle value is
identical to the Fortran INTEGER value used in the mpi module and mpif.h. The operators
.EQ., .NE., == and /= are overloaded to allow the comparison of these handles. The type
names are identical to the names in C, except that they are not case sensitive. For example:

TYPE, BIND(C) :: MPI_Comm
INTEGER :: MPI_VAL
END TYPE MPI_Comm

The C types must support the use of the assignment and equality operators.

Advice to implementors. In Fortran, the handle can be an index into a table of
opaque objects in a system table; in C it can be such an index or a pointer to the
object. (End of advice to implementors.)

Rationale. Since the Fortran integer values are equivalent, applications can easily
convert MPI handles between all three supported Fortran methods. For example, an
integer communicator handle COMM can be converted directly into an exactly equivalent
mpi_f08 communicator handle named comm_£08 by comm_£f08%MPI_VAL=COMM, and
vice versa. The use of the INTEGER defined handles and the BIND(C) derived type
handles is different: Fortran 2003 (and later) define that BIND(C) derived types can
be used within user defined common blocks, but it is up to the rules of the companion
C compiler how many numerical storage units are used for these BIND(C) derived type
handles. Most compilers use one unit for both, the INTEGER handles and the handles
defined as BIND(C) derived types. (End of rationale.)

Advice to users. If a user wants to substitute mpif.h or the mpi module by the
mpi_£f08 module and the application program stores a handle in a Fortran common
block then it is necessary to change the Fortran support method in all application
routines that use this common block, because the number of numerical storage units
of such a handle can be different in the two modules. (End of advice to users.)

Opaque objects are allocated and deallocated by calls that are specific to each object
type. These are listed in the sections where the objects are described. The calls accept a
handle argument of matching type. In an allocate call this is an OUT argument that returns
a valid reference to the object. In a call to deallocate this is an INOUT argument which

2.5. DATATYPES 19

returns with an “invalid handle” value. MPI provides an “invalid handle” constant for each
object type. Comparisons to this constant are used to test for validity of the handle.

A call to a deallocate routine invalidates the handle and marks the object for deal-
location. The object is not accessible to the user after the call. However, MPI need not
deallocate the object immediately. Any operation pending (at the time of the deallocate)
that involves this object will complete normally; the object will be deallocated afterwards.

An opaque object and its handle are significant only at the process where the object
was created and cannot be transferred to another process.

MPI provides certain predefined opaque objects and predefined, static handles to these
objects. The user must not free such objects.

Rationale. This design hides the internal representation used for MPI data structures,
thus allowing similar calls in C and Fortran. It also avoids conflicts with the typing
rules in these languages, and easily allows future extensions of functionality. The
mechanism for opaque objects used here loosely follows the POSIX Fortran binding
standard.

The explicit separation of handles in user space and objects in system space allows
space-reclaiming and deallocation calls to be made at appropriate points in the user
program. If the opaque objects were in user space, one would have to be very careful
not to go out of scope before any pending operation requiring that object completed.
The specified design allows an object to be marked for deallocation, the user program
can then go out of scope, and the object itself still persists until any pending operations
are complete.

The requirement that handles support assignment/comparison is made since such op-
erations are common. This restricts the domain of possible implementations. The
alternative in C would have been to allow handles to have been an arbitrary, opaque
type. This would force the introduction of routines to do assignment and compar-
ison, adding complexity, and was therefore ruled out. In Fortran, the handles are
defined such that assignment and comparison are available through the operators of
the language or overloaded versions of these operators. (End of rationale.)

Advice to users. A user may accidentally create a dangling reference by assigning to a
handle the value of another handle, and then deallocating the object associated with
these handles. Conversely, if a handle variable is deallocated before the associated
object is freed, then the object becomes inaccessible (this may occur, for example, if
the handle is a local variable within a subroutine, and the subroutine is exited before
the associated object is deallocated). It is the user’s responsibility to avoid adding or
deleting references to opaque objects, except as a result of MPI calls that allocate or
deallocate such objects. (End of advice to users.)

Advice to implementors. The intended semantics of opaque objects is that opaque
objects are separate from one another; each call to allocate such an object copies
all the information required for the object. Implementations may avoid excessive
copying by substituting referencing for copying. For example, a derived datatype
may contain references to its components, rather than copies of its components; a
call to MPI_COMM_GROUP may return a reference to the group associated with the
communicator, rather than a copy of this group. In such cases, the implementation
must maintain reference counts, and allocate and deallocate objects in such a way that
the visible effect is as if the objects were copied. (End of advice to implementors.)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

20 CHAPTER 2. MPI TERMS AND CONVENTIONS

2.5.2 Array Arguments

An MPI call may need an argument that is an array of opaque objects, or an array of
handles. The array-of-handles is a regular array with entries that are handles to objects
of the same type in consecutive locations in the array. Whenever such an array is used,
an additional len argument is required to indicate the number of valid entries (unless this
number can be derived otherwise). The valid entries are at the beginning of the array;
len indicates how many of them there are, and need not be the size of the entire array.
The same approach is followed for other array arguments. In some cases NULL handles are
considered valid entries. When a NULL argument is desired for an array of statuses, one
uses MPI_STATUSES_IGNORE.

2.5.3 State

MPI procedures use at various places arguments with state types. The values of such a
datatype are all identified by names, and no operation is defined on them. For example,
the MPI_TYPE_CREATE_SUBARRAY routine has a state argument order with values
MPI_ORDER_C and MPI_ORDER_FORTRAN.

2.5.4 Named Constants

MPI procedures sometimes assign a special meaning to a special value of a basic type argu-
ment; e.g., tag is an integer-valued argument of point-to-point communication operations,
with a special wild-card value, MPI_ANY_TAG. Such arguments will have a range of regular
values, which is a proper subrange of the range of values of the corresponding basic type;
special values (such as MPI_ANY_TAG) will be outside the regular range. The range of regu-
lar values, such as tag, can be queried using environmental inquiry functions, see Chapter 9.
The range of other values, such as source, depends on values given by other MPI routines
(in the case of source it is the communicator size).

MPI also provides predefined named constant handles, such as MPI_COMM_WORLD.

All named constants, with the exceptions noted below for Fortran, can be used in
initialization expressions or assignments, but not necessarily in array declarations or as
labels in C switch or Fortran select/case statements. This implies named constants
to be link-time but not necessarily compile-time constants. The named constants listed
below are required to be compile-time constants in both C and Fortran. These constants
do not change values during execution. Opaque objects accessed by constant handles are
defined and do not change value between MPI initialization (MPI_INIT) and MPI completion
(MPI_FINALIZE). The handles themselves are constants and can be also used in initialization
expressions or assignments.

The constants that are required to be compile-time constants (and can thus be used
for array length declarations and labels in C switch and Fortran case/select statements)
are:

MPI_MAX_PROCESSOR_NAME

MPI_MAX_LIBRARY _VERSION_STRING

MPI_MAX_ERROR_STRING

MPI_MAX_DATAREP_STRING

MPI_MAX_INFO_KEY

MPI_MAX_INFO_VAL

MPI_MAX_OBJECT_NAME

2.5. DATATYPES 21

MPI_MAX_PORT_NAME

MPI_VERSION

MPI_SUBVERSION

MPI_F_STATUS_SIZE (C only)

MPI_STATUS_SIZE (Fortran only)

MPI_ADDRESS_KIND (Fortran only)

MPI_COUNT_KIND (Fortran only)

MPI_INTEGER_KIND (Fortran only)

MPI_OFFSET_KIND (Fortran only)

MPI_SUBARRAYS_SUPPORTED (Fortran only)

MPI_ASYNC_PROTECTS_NONBLOCKING (Fortran only)
The constants that cannot be used in initialization expressions or assignments in Fortran
are as follows:

MPI_BOTTOM

MPI_STATUS_IGNORE

MPI_STATUSES_IGNORE

MPI_ERRCODES_IGNORE

MPI_IN_PLACE

MPI_ARGV_NULL

MPI_ARGVS_NULL

MPI_UNWEIGHTED

MPI_WEIGHTS_EMPTY

Advice to implementors. In Fortran the implementation of these special constants
may require the use of language constructs that are outside the Fortran standard.
Using special values for the constants (e.g., by defining them through PARAMETER
statements) is not possible because an implementation cannot distinguish these val-
ues from valid data. Typically, these constants are implemented as predefined static
variables (e.g., a variable in an MPI-declared COMMON block), relying on the fact that
the target compiler passes data by address. Inside the subroutine, this address can
be extracted by some mechanism outside the Fortran standard (e.g., by Fortran ex-
tensions or by implementing the function in C). (End of advice to implementors.)

2.5.5 Choice

MPI functions sometimes use arguments with a choice (or union) data type. Distinct calls to
the same routine may pass by reference actual arguments of different types. The mechanism
for providing such arguments will differ from language to language. For Fortran with the
include file mpif.h or the mpi module, the document uses <type> to represent a choice
variable; with the Fortran mpi_£08 module, such arguments are declared with the Fortran
2008 + TS 29113 syntax TYPE(*), DIMENSION(..); for C, we use voidx.

Advice to implementors. Implementors can freely choose how to implement choice
arguments in the mpi module, e.g., with a nonstandard compiler-dependent method
that has the quality of the call mechanism in the implicit Fortran interfaces, or with
the method defined for the mpi_£08 module. See details in Section 19.1.1. (End of
advice to implementors.)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

22 CHAPTER 2. MPI TERMS AND CONVENTIONS

2.5.6 Absolute Addresses and Relative Address Displacements

Some MPI procedures use address arguments that represent an absolute address in the call-
ing program, or relative displacement arguments that represent differences of two absolute
addresses. The datatype of such arguments is MPI_Aint in C and INTEGER (KIND=
MPI_ADDRESS_KIND) in Fortran. These types must have the same width and encode address
values in the same manner such that address values in one language may be passed directly
to another language without conversion. There is the MPI constant MPI_BOTTOM to in-
dicate the start of the address range. For retrieving absolute addresses or any calculation
with absolute addresses, one should use the routines and functions provided in Section 5.1.5.
Section 5.1.12 provides additional rules for the correct use of absolute addresses. For ex-
pressions with relative displacements or other usage without absolute addresses, intrinsic
operators (e.g., +, -, *¥) can be used.

Rationale. Byte displacement values need to be large enough to encode any value
used for expressing absolute or relative memory addresses. Prior to MPI-4.0, some
MPI routines used int in C and INTEGER in Fortran as the type for byte displacement
arguments. To avoid breaking backward compatibility, this version of the standard
continues to support int in C as well as INTEGER in Fortran in such routines. In
addition, this version of the standard supports using MPI_Aint in C (via separate
“_c”suffixed procedures) as well as INTEGER(KIND=MPI_ADDRESS_KIND) in Fortran
(via polymorphic interfaces in newer MPI Fortran bindings (USE mpi_£f08)) in such
routines. See Section 19.2 for a full explanation. (End of rationale.)

2.5.7 File Offsets

For I/0O there is a need to give the size, displacement, and offset into a file. These quantities
can easily be larger than 32 bits which can be the default size of a Fortran integer. To
overcome this, these quantities are declared to be INTEGER(KIND=MPI_OFFSET_KIND) in
Fortran. In C one uses MPI_Offset. These types must have the same width and encode
address values in the same manner such that offset values in one language may be passed
directly to another language without conversion.

2.5.8 Counts

As described above, MPI defines types (e.g., MPI_Aint) to address locations within mem-
ory and other types (e.g., MPI_Offset) to address locations within files. In addition, some
MPI procedures use count arguments that represent a number of MPI datatypes on which
to operate. Furthermore, timestamps in the context of the MPI Tool Information In-
terface are a count of clock ticks elapsed since some time in the past. At times, one
needs a single type that can be used to address locations within either memory or files
as well as express count values, and that type is MPI_Count in C and

INTEGER (KIND=MPI_COUNT_KIND) in Fortran. These types must have the same width and
encode values in the same manner such that count values in one language may be passed di-
rectly to another language without conversion. The size of the MPI_Count type is determined
by the MPI implementation with the restriction that it must be minimally capable of encod-
ing any value that may be stored in a variable of type int, MPI_Aint, or MPI_Offset in C and of
type INTEGER, INTEGER (KIND=MPI_ADDRESS_KIND), or INTEGER(KIND=MPI_OFFSET_KIND)

2.6. LANGUAGE BINDING 23

in Fortran. Even though the MPI_Count type is large enough to encode address locations,
the MPI_Count type shall not be used to represent an absolute address.

Rationale. Count values need to be large enough to encode any value used for
expressing element counts, strides, offsets, indexes, displacements, typemaps in mem-
ory, typemaps in file views, etc. Prior to MPI-4.0, many MPI routines used int in C
and INTEGER in Fortran as the type for count arguments. To avoid breaking back-
ward compatibility, this version of the standard continues to support int in C as
well as INTEGER in Fortran in such routines. In addition, this version of the stan-
dard supports using MPI_Count in C (via separate “_c”suffixed procedures) as well
as INTEGER (KIND=MPI_COUNT_KIND) in Fortran (via polymorphic interfaces in newer
MPI Fortran bindings (USE mpi_£08)) in such routines. See Section 19.2 for a full
explanation. (End of rationale.)

The phrase large count refers to the use of MPI_Count and
INTEGER (KIND=MPI_COUNT_KIND) parameter types.

There are cases where MPI_UNDEFINED can be returned in a large count OUT pa-
rameter. Per Table A.1.1 (page 859), the MPI_UNDEFINED constant is defined to be a C
int (or unnamed enum) and a Fortran INTEGER. Implementations shall therefore choose the
underlying types for MPI_Count and INTEGER(KIND=MPI_COUNT_KIND) such that they can
be compared to MPI_UNDEFINED.

Advice to implementors. The comparison of MPI_UNDEFINED to an MPI_Count or
INTEGER (KIND=MPI_COUNT_KIND) may need to be via a casting operation. (End of
advice to implementors.)

2.6 Language Binding

This section defines the rules for MPI language binding in general and for Fortran, and ISO
C, in particular. (Note that ANSI C has been replaced by ISO C.) Defined here are various
object representations, as well as the naming conventions used for expressing this standard.
The actual calling sequences are defined elsewhere.

MPI bindings are for Fortran 90 or later, though they were originally designed to be
usable in Fortran 77 environments. With the mpi_f08 module, two new Fortran features,
assumed type (i.e., TYPE(*)) and assumed rank (i.e., DIMENSION(..)), are also required,
see Section 2.5.5.

Since the word PARAMETER is a keyword in the Fortran language, we use the word
“argument” to denote the arguments to a subroutine. These are normally referred to
as parameters in C, however, we expect that C programmers will understand the word
“argument” (which has no specific meaning in C), thus allowing us to avoid unnecessary
confusion for Fortran programmers.

Since Fortran is case insensitive, linkers may use either lower case or upper case when
resolving Fortran names. Users of case sensitive languages should avoid any prefix of the
form “MPI_” and “PMPI_", where any of the letters are either upper or lower case.

2.6.1 Deprecated and Removed Interfaces

A number of chapters refer to deprecated or replaced MPI constructs. These are constructs
that continue to be part of the MPI standard, as documented in Chapter 16, but that users

10

11

12

13

14

15

16

17

18

19

20

21

22

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

24 CHAPTER 2. MPI TERMS AND CONVENTIONS

are recommended not to continue using, since better solutions were provided with newer
versions of MPI. For example, the Fortran binding for MPI-1 functions that have address
arguments uses INTEGER. This is not consistent with the C binding, and causes problems on
machines with 32 bit INTEGERs and 64 bit addresses. In MPI-2, these functions were given
new names with new bindings for the address arguments. The use of the old functions was
declared as deprecated. For consistency, here and in a few other cases, new C functions are
also provided, even though the new functions are equivalent to the old functions. The old
names are deprecated.

Some of the previously deprecated constructs are now removed, as documented in
Chapter 17. They may still be provided by an implementation for backwards compatibility,
but are not required.

Table 2.1 shows a list of all of the deprecated and removed constructs. Note that some
C typedefs and Fortran subroutine names are included in this list; they are the types of
callback functions.

2.6.2 Fortran Binding Issues

Originally, MPI-1.1 provided bindings for Fortran 77. These bindings are retained, but they
are now interpreted in the context of the Fortran 90 standard. MPI can still be used with
most Fortran 77 compilers, as noted below. When the term “Fortran” is used it means
Fortran 90 or later; it means Fortran 2008 4+ T'S 29113 and later if the mpi_£08 module is
used.

All MPI names have an MPI_ prefix, and all characters are capitals. Programs must
not declare names, e.g., for variables, subroutines, functions, parameters, derived types,
abstract interfaces, or modules, beginning with the prefix MPI_. To avoid conflicting with
the profiling interface, programs must also avoid subroutines and functions with the prefix
PMPI_. This is mandated to avoid possible name collisions.

All MPI Fortran subroutines have a return code in the last argument. With USE
mpi_£08, this last argument is declared as OPTIONAL, except for user-defined callback
functions (e.g., COMM_COPY_ATTR_FUNCTION) and their predefined callbacks (e.g.,
MPI_COMM_NULL_COPY_FN). A few MPI operations which are functions do not have the
return code argument. The return code value for successful completion is MPI_SUCCESS.
Other error codes are implementation dependent; see the error codes in Chapter 9 and
Annex A.

Constants representing the maximum length of a string are one smaller in Fortran than
in C as discussed in Section 19.3.9.

Handles are represented in Fortran as INTEGERs, or as a BIND(C) derived type with the
mpi_£08 module; see Section 2.5.1. Binary-valued variables are of type LOGICAL.

Array arguments are indexed from one.

The older MPI Fortran bindings (mpif.h and use mpi) are inconsistent with the For-
tran standard in several respects. These inconsistencies, such as register optimization prob-
lems, have implications for user codes that are discussed in detail in Section 19.1.16.

The support for large count and displacement in Fortran is only available when using
newer MP| Fortran bindings (USE mpi_£08). For better readability, all Fortran large count
procedure declarations are marked with a comment “!(_c)”.

2.6. LANGUAGE BINDING 25

Deprecated or removed deprecated removed Replacement

construct since since

MPI_ADDRESS MPI-2.0 MPI-3.0 MPI_GET_ADDRESS
MPI_TYPE_HINDEXED MPI-2.0 MPI-3.0 MPI_TYPE_CREATE_HINDEXED
MPI_TYPE_HVECTOR MPI-2.0 MPI-3.0 MPI_TYPE_CREATE_HVECTOR
MPI_TYPE_STRUCT MPI-2.0 MPI-3.0 MPI_TYPE_CREATE_STRUCT
MPI_TYPE_EXTENT MPI-2.0 MPI-3.0 MPI_TYPE_GET_EXTENT
MPI_TYPE_UB MPI-2.0 MPI-3.0 MPI_TYPE_GET_EXTENT
MPI_TYPE_LB MPI-2.0 MPI-3.0 MPI_TYPE_GET_EXTENT
MPI_LB! MPI-2.0 MPI-3.0 MPI_TYPE_CREATE_RESIZED
MPI_UB! MPI-2.0 MPI-3.0 MPI_TYPE_CREATE_RESIZED
MPI_ERRHANDLER_CREATE MPI-2.0 MPI-3.0 MPI_COMM_CREATE_ERRHANDLER
MPI_ERRHANDLER_GET MPI-2.0 MPI-3.0 MPI_COMM_GET_ERRHANDLER
MPI_ERRHANDLER_SET MPI-2.0 MPI-3.0 MPI_COMM_SET_ERRHANDLER
MPI_Handler_function® MPI-2.0 MPI-3.0 MPI_Comm_errhandler_function?
MPI_KEYVAL_CREATE MPI-2.0 MPI_COMM_CREATE_KEYVAL
MPI_KEYVAL_FREE MPI-2.0 MPI_COMM_FREE_KEYVAL
MPI_DUP_FN? MPI-2.0 MPI_COMM_DUP_FN?
MPI_NULL_COPY_FN? MPI-2.0 MPI_COMM_NULL_COPY_FN?
MPI_NULL_DELETE_FN? MPI-2.0 MPI_COMM_NULL_DELETE_FN?
MPI_Copy_function? MPI-2.0 MPI_Comm_copy_attr_function?
COPY_FUNCTION? MPI-2.0 COMM_COPY_ATTR_FUNCTION?
MPI_Delete_function? MPI-2.0 MPI_Comm_delete_attr_function®
DELETE_FUNCTION? MPI-2.0 COMM_DELETE_ATTR_FUNCTION?
MPI_ATTR_DELETE MPI-2.0 MPI_COMM_DELETE_ATTR
MPI_ATTR_GET MPI-2.0 MPI_COMM_GET_ATTR
MPI_ATTR_PUT MPI-2.0 MPI_COMM_SET_ATTR
MPI_COMBINER_HVECTOR_INTEGER® - MPI-3.0 MPI_COMBINER_HVECTOR?
MPI_COMBINER_HINDEXED_INTEGER? - MPI-3.0 MPI_COMBINER_HINDEXED*
MPI_COMBINER_STRUCT _INTEGER* - MPI-3.0 MPI_COMBINER_STRUCT*

MPI::. .. MPI1-2.2 MPI-3.0 C language binding

MPI_CANCEL for send requests MPI-4.0 no direct replacement
MPI_INFO_GET MPI-4.0 MPI_INFO_GET_STRING
MPI_INFO_GET_VALUELEN MPI-4.0 MPI_INFO_GET_STRING
MPI_T_ERR_INVALID_ITEM MPI-4.0 MPI_T_ERR_INVALID_INDEX
MPI_SIZEOF MPI-4.0 storage_size()® or c_sizeof()

T Predefined datatype.

2 Callback prototype definition.

3 Predefined callback routine.

4 Constant.

® Fortran intrinsic. storage_size() returns the size in bits instead of bytes; see Section 16.3.
Other entries are regular MPI routines.

Table 2.1: Deprecated and removed constructs

2.6.3 C Binding Issues

We use the ISO C declaration format. All MPl names have an MPI_ prefix, defined constants
are in all capital letters, and defined types and functions have one capital letter after
the prefix. Programs must not declare names (identifiers), e.g., for variables, functions,
constants, types, or macros, beginning with any prefix of the form MPI_, where any of the
letters are either upper or lower case. To support the profiling interface, programs must
not declare functions with names beginning with any prefix of the form PMPI_, where any
of the letters are either upper or lower case.

The definition of named constants, function prototypes, and type definitions must be

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

26 CHAPTER 2. MPI TERMS AND CONVENTIONS

supplied in an include file mpi.h.

Almost all C functions return an error code. The successful return code will be
MPI_SUCCESS, but failure return codes are implementation dependent.

Type declarations are provided for handles to each category of opaque objects.

Array arguments are indexed from zero.

Logical flags are integers with value 0 meaning “false” and a non-zero value meaning
“true.”

Choice arguments are pointers of type voidx.

2.6.4 Functions and Macros

An implementation is allowed to implement MPI_WTIME, PMPI_WTIME, MPI_WTICK,
PMPI_WTICK, MPI_AINT_ADD, PMPI_AINT_ADD, MPI_AINT_DIFF, PMPI_AINT_DIFF,
and the handle-conversion functions (MPI_Group_f2c, etc.) in Section 19.3.4, and no others,
as macros in C.

Advice to implementors. Implementors should document which routines are imple-
mented as macros. (End of advice to implementors.)

Advice to users. If these routines are implemented as macros, they will not work
with the MPI profiling interface. (End of advice to users.)

2.7 Processes

An MPI program consists of autonomous processes, executing their own code, in an MIMD
style. The codes executed by each process need not be identical. The processes communicate
via calls to MPIl communication primitives. Typically, each process executes in its own
address space, although shared-memory implementations of MPI are possible.

This document specifies the behavior of a parallel program assuming that only MPI
calls are used. The interaction of an MPI program with other possible means of commu-
nication, I/O, and process management is not specified. Unless otherwise stated in the
specification of the standard, MPI places no requirements on the result of its interaction
with external mechanisms that provide similar or equivalent functionality. This includes,
but is not limited to, interactions with external mechanisms for process control, shared and
remote memory access, file system access and control, interprocess communication, process
signaling, and terminal I/O. High quality implementations should strive to make the results
of such interactions intuitive to users, and attempt to document restrictions where deemed
necessary.

Advice to implementors. Implementations that support such additional mechanisms
for functionality supported within MPI are expected to document how these interact
with MPI. (End of advice to implementors.)

The interaction of MPI and threads is defined in Section 11.6.

2.8 Error Handling

MPI provides the user with reliable message transmission. A message sent is always re-
ceived correctly, and the user does not need to check for transmission errors, time-outs,

2.8. ERROR HANDLING 27

or other error conditions. In other words, MPI does not provide mechanisms for dealing
with transmission failures in the communication system. If the MPI implementation is
built on an unreliable underlying mechanism, then it is the job of the implementor of the
MPI subsystem to insulate the user from this unreliability, and to reflect only unrecoverable
transmission failures. Whenever possible, such failures will be reflected as errors in the
relevant communication call.

Similarly, MPI itself provides no mechanisms for handling MPI process failures, that
is, when an MPI process unexpectedly and permanently stops communicating (e.g., a soft-
ware or hardware crash results in an MPI process terminating unexpectedly).

Of course, MPI programs may still be erroneous. A program error can occur when
an MPI call is made with an incorrect argument (non-existing destination in a send oper-
ation, buffer too small in a receive operation, etc.). This type of error would occur in any
implementation. In addition, a resource error may occur when a program exceeds the
amount of available system resources (number of pending messages, system buffers, etc.).
The occurrence of this type of error depends on the amount of available resources in the
system and the resource allocation mechanism used; this may differ from system to system.
A high-quality implementation will provide generous limits on the important resources so
as to alleviate the portability problem this represents.

In C and Fortran, almost all MPI calls return a code that indicates successful completion
of the operation. Whenever possible, MPI calls return an error code if an error occurred
during the call. By default, an error detected during the execution of the MPI library
causes the parallel computation to abort, except for file operations. However, MPI provides
mechanisms for users to change this default and to handle recoverable errors. The user may
specify that no error is fatal, and handle error codes returned by MPI calls by themselves.
Also, the user may provide user-defined error-handling routines, which will be invoked
whenever an MPI call returns abnormally. The MPI error handling facilities are described
in Section 9.3.

Several factors limit the ability of MPI calls to return with meaningful error codes
when an error occurs. MPI may not be able to detect some errors; other errors may be too
expensive to detect in normal execution mode; some faults (e.g., memory faults) may corrupt
the state of the MPI library and its outputs; finally some errors may be “catastrophic”
and may prevent MPI from returning control to the caller. On the other hand, some
errors may be detected after the associated operation has completed; some errors may not
have a communicator, window, or file on which an error may be raised. In such cases,
these errors will be raised on the communicator MPI_COMM_SELF when using the World
Model (see Section 11.2). When MPI_COMM_SELF is not initialized (i.e., before MPI_INIT
/ MPI_INIT_THREAD, after MPI_FINALIZE, or when using the Sessions Model exclusively)
the error raises the initial error handler (set during the launch operation, see 11.8.4).
The Sessions Model is described in Section 11.3.

An example of such a case arises because of the nature of asynchronous communications:
MPI calls may initiate operations that continue asynchronously after the call returned. Thus,
the operation may return with a code indicating successful completion, yet later cause an
error to be raised. If there is a subsequent call that relates to the same operation (e.g., a
call that verifies that an asynchronous operation has completed) then the error argument
associated with this call will be used to indicate the nature of the error. In a few cases, the
error may occur after all calls that relate to the operation have completed, so that no error
value can be used to indicate the nature of the error (e.g., an error on the receiver in a send
with the ready mode).

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

28 CHAPTER 2. MPI TERMS AND CONVENTIONS

This document does not specify the state of a computation after an erroneous MPI call
has occurred. The desired behavior is that a relevant error code be returned, and the effect
of the error be localized to the greatest possible extent. E.g., it is highly desirable that an
erroneous receive call will not cause any part of the receiver’s memory to be overwritten,
beyond the area specified for receiving the message.

Implementations may go beyond this document in supporting in a meaningful manner
MPI calls that are defined here to be erroneous. For example, MPI specifies strict type
matching rules between matching send and receive operations: it is erroneous to send a
floating point variable and receive an integer. Implementations may go beyond these type
matching rules, and provide automatic type conversion in such situations. It will be helpful
to generate warnings for such nonconforming behavior.

MPI defines a way for users to create new error codes as defined in Section 9.5.

2.9 Implementation Issues

There are a number of areas where an MP| implementation may interact with the operating
environment and system. While MPI does not mandate that any services (such as signal
handling) be provided, it does strongly suggest the behavior to be provided if those services
are available. This is an important point in achieving portability across platforms that
provide the same set of services.

2.9.1 Independence of Basic Runtime Routines

MPI programs require that library routines that are part of the basic language environment
(such as write in Fortran and printf and malloc in ISO C) and are executed after
MPI_INIT and before MPI_FINALIZE operate independently and that their completion is
independent of the action of other processes in an MPI program.

Note that this in no way prevents the creation of library routines that provide parallel
services whose operation is collective. However, the following program is expected to com-
plete in an ISO C environment regardless of the size of MPI_COMM_WORLD (assuming that
printf is available at the executing nodes).

int commworld_rank;

MPI_Init((void *)0, (void *)0);

MPI_Comm_rank (MPI_COMM_WORLD, &commworld_rank);

if (commworld_rank == 0) printf("Starting program\n");
MPI_Finalize();

The corresponding Fortran programs are also expected to complete.

An example of what is not required is any particular ordering of the action of these
routines when called by several tasks. For example, MPl makes neither requirements nor
recommendations for the output from the following program (again assuming that I/0O is
available at the executing nodes).

MPI_Comm_rank (MPI_COMM_WORLD, &commworld_rank);
printf ("Output from MPI process where commworld_rank=%d\n", commworld_rank);

In addition, calls that fail because of resource exhaustion or other error are not con-
sidered a violation of the requirements here (however, they are required to complete, just
not to complete successfully).

2.10. EXAMPLES 29

2.9.2 Interaction with Signals

MPI does not specify the interaction of processes with signals and does not require that MPI
be signal safe. The implementation may reserve some signals for its own use. It is required
that the implementation document which signals it uses, and it is strongly recommended
that it not use SIGALRM, SIGFPE, or SIGIO0. Implementations may also prohibit the use of
MPI calls from within signal handlers.

In multithreaded environments, users can avoid conflicts between signals and the MPI
library by catching signals only on threads that do not execute MPI calls. High quality
single-threaded implementations will be signal safe: an MPI call suspended by a signal will
resume and complete normally after the signal is handled.

2.10 Examples

The examples in this document are for illustration purposes only. They are not intended to
specify the standard. Many of the examples have been compiled by tools that extract the
examples from the source files for the MPI standard. However, the examples have not been
carefully checked or verified.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

30

CHAPTER 2. MPI TERMS AND CONVENTIONS

Chapter 3

Point-to-Point Communication

3.1 Introduction

Sending and receiving of messages by processes is the basic MPI communication mechanism.
The basic point-to-point communication operations are send and receive. Their use is
illustrated in Example 3.1.

Example 3.1 A simple ‘hello world’ example usage of point-to-point communication.

#include "mpi.h"
int main(int argc, char *argvl[])

{

char message[20];
int myrank;
MPI_Status status;
MPI_Init(&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &myrank) ;
if (myrank == 0) /* code for process zero */
{
strcpy (message, "Hello, there");
MPI_Send(message, strlen(message)+1l, MPI_CHAR, 1, 99, MPI_COMM_WORLD) ;

}

else if (myrank == 1) /* code for process one */

{
MPI_Recv(message, 20, MPI_CHAR, O, 99, MPI_COMM_WORLD, &status);
printf ("received :%s:\n", message);

}

MPI_Finalize();

return O;

In Example 3.1, process zero (myrank = 0) sends a message to process one using the

send operation MPI_SEND. The operation specifies a send buffer in the sender memory
from which the message data is taken. In the example above, the send buffer consists of
the storage containing the variable message in the memory of process zero. The location,
size and type of the send buffer are specified by the first three parameters of the send

31

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

32 CHAPTER 3. POINT-TO-POINT COMMUNICATION

operation. The message sent will contain the 13 characters of this variable. In addition,
the send operation associates an envelope with the message. This envelope specifies the
message destination and contains distinguishing information that can be used by the receive
operation to select a particular message. The last three parameters of the send operation,
along with the rank of the sender, specify the envelope for the message sent. Process one
(myrank = 1) receives this message with the receive operation MPI_RECV. The message to
be received is selected according to the value of its envelope, and the message data is stored
into the receive buffer. In the example above, the receive buffer consists of the storage
containing the string message in the memory of process one. The first three parameters
of the receive operation specify the location, size and type of the receive buffer. The next
three parameters are used for selecting the incoming message. The last parameter is used
to return information on the message just received.

The next sections describe the blocking send and receive operations. We discuss send,
receive, blocking communication semantics, type matching requirements, type conversion in
heterogeneous environments, and more general communication modes. Nonblocking com-
munication is addressed next, followed by probing and cancelling a message, channel-like
constructs and send-receive operations, ending with a description of the “dummy” process,
MPI_PROC_NULL.

3.2 Blocking Send and Receive Operations
3.2.1 Blocking Send

The syntax of the blocking send procedure is given below.

MPI_SEND(buf, count, datatype, dest, tag, comm)

IN buf initial address of send buffer (choice)
IN count number of elements in send buffer (non-negative
integer)
IN datatype datatype of each send buffer element (handle)
IN dest rank of destination (integer)
IN tag message tag (integer)
IN comm communicator (handle)
C binding

int MPI_Send(const void *buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

int MPI_Send_c(const void *buf, MPI_Count count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

Fortran 2008 binding

MPI_Send(buf, count, datatype, dest, tag, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype

3.2. BLOCKING SEND AND RECEIVE OPERATIONS 33

TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Send(buf, count, datatype, dest, tag, comm, ierror) !(_c)
TYPE(*), DIMENSION(..), INTENT(IN) :: buf
INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(IN) :: dest, tag
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF (%)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

The blocking semantics of this call are described in Section 3.4.

3.2.2 Message Data

The send buffer specified by the MPI_SEND procedure consists of count successive entries of
the type indicated by datatype, starting with the entry at address buf. Note that we specify
the message length in terms of number of elements, not number of bytes. The former is
machine independent and closer to the application level.

The data part of the message consists of a sequence of count values, each of the type
indicated by datatype. count may be zero, in which case the data part of the message is
empty. The basic datatypes that can be specified for message data values correspond to
the basic datatypes of the host language. Possible values of this argument for Fortran and
the corresponding Fortran types are listed in Table 3.1. Possible values for this argument
for C and the corresponding C types are listed in Table 3.2.

MPI datatype Fortran datatype
MPI_INTEGER INTEGER
MPI_REAL REAL
MPI_DOUBLE_PRECISION | DOUBLE PRECISION
MPI_COMPLEX COMPLEX
MPI_LOGICAL LOGICAL
MPI_CHARACTER CHARACTER (1)
MPI_BYTE

MPI_PACKED

Table 3.1: Predefined MPI datatypes corresponding to Fortran datatypes

The datatypes MPI_BYTE and MPI_PACKED do not correspond to a Fortran or C
datatype. A value of type MPI_BYTE consists of a byte (8 binary digits). A byte is
uninterpreted and is different from a character. Different machines may have different
representations for characters, or may use more than one byte to represent characters. On
the other hand, a byte has the same binary value on all machines. The use of the type
MPI_PACKED is explained in Section 5.2.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

43

44

45

46

47

48

34 CHAPTER 3. POINT-TO-POINT COMMUNICATION
MPI datatype C datatype
MPI_CHAR char
(treated as printable character)
MPI_SHORT signed short int
MPI_INT signed int
MPI_LONG signed long int

MPI_LONG_LONG_INT
MPI_LONG_LONG (as a synonym)
MPI_SIGNED_CHAR

MPI_UNSIGNED_CHAR

MPI_UNSIGNED_SHORT
MPI_UNSIGNED
MPI_UNSIGNED_LONG
MPI_UNSIGNED_LONG_LONG
MPI_FLOAT

signed long long int
signed long long int
signed char
(treated as integral value)
unsigned char

(treated as integral value)
unsigned short int
unsigned int

unsigned long int
unsigned long long int
float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_WCHAR wchar_t
(defined in <stddef .h>)
(treated as printable character)

MPI_C_BOOL _Bool

MPI_INTS_T int8_t

MPI_INT16_T intl6_t

MPI_INT32_T int32_t

MPI_INT64_T int64_t

MPI_UINT8_T uint8_t

MPI_UINT16_T uintl6_t

MPI_UINT32_T uint32_t

MPI_UINT64_T uint64_t

MPI_C_COMPLEX

MPI_C_FLOAT_COMPLEX (as a synonym)

MPI_C_DOUBLE_COMPLEX
MPI_C_LONG_DOUBLE_COMPLEX
MPI_BYTE

MPI_PACKED

float _Complex
float _Complex
double _Complex
long double _Complex

Table 3.2: Predefined MPI datatypes corresponding to C datatypes

MPI requires support of these datatypes, which match the basic datatypes of Fortran
and ISO C. Additional MPI datatypes should be provided if the host language has additional
datatypes': MPI_DOUBLE_COMPLEX for double precision complex in Fortran declared to
be of type DOUBLE COMPLEX; MPI_REAL2, MPI_REAL4, MPI_REALS, and

!These types, such as DOUBLE COMPLEX and INTEGER*4, are not specified by any Fortran standard but are
extensions commonly accepted by Fortran compilers

3.2. BLOCKING SEND AND RECEIVE OPERATIONS 35

MPI datatype | C datatype | Fortran datatype

MPI_AINT MPI_Aint INTEGER (KIND=MPI_ADDRESS_KIND)
MPI_OFFSET MPI_Offset INTEGER (KIND=MPI_QOFFSET_KIND)
MPI_COUNT MPI_Count INTEGER (KIND=MPI_COUNT_KIND)

Table 3.3: Predefined MPI datatypes corresponding to both C and Fortran datatypes

MPI_REAL16 for Fortran reals, declared to be of type REAL*2 REAL*4,

REAL*8, and REAL*16, respectively; MPI_INTEGER1, MPI_INTEGER2, MPI_INTEGER4, and
MPI_INTEGERS for Fortran integers, declared to be of type INTEGER*1, INTEGER*2,
INTEGER*4, and INTEGER*8, respectively; MPI_COMPLEX4, MPI_COMPLEXS,
MPI_COMPLEX16, and MPI_COMPLEX32 for complex numbers in Fortran declared to be of
type COMPLEX*4, COMPLEX*8, COMPLEX*16, and COMPLEX*32, respectively; etc.

Rationale. One goal of the design is to allow for MPI to be implemented as a
library, with no need for additional preprocessing or compilation. Thus, one cannot
assume that a communication call has information on the datatype of variables in the
communication buffer; this information must be supplied by an explicit argument.
The need for such datatype information will become clear in Section 3.3.2. (End of
rationale.)

The datatypes MPI_AINT, MPI_OFFSET, and MPI_COUNT correspond to the MPI-defined
C types MPI_Aint, MPI_Offset, and MPI_Count and their Fortran equivalents INTEGER (KIND=
MPI_ADDRESS_KIND), INTEGER(KIND=MPI_OFFSET_KIND), and INTEGER (KIND=
MPI_COUNT_KIND) . This is described in Table 3.3. All predefined datatype handles are
available in all language bindings. See Sections 19.3.6 and 19.3.10 on page 846 and 854 for
information on interlanguage communication with these types.

If there is an accompanying C++ compiler then the datatypes in Table 3.4 are also
supported in C and Fortran.

MPI datatype C++ datatype
MPI_CXX_BOOL bool
MPI_CXX_FLOAT_COMPLEX std::complex<float>
MPI_CXX_DOUBLE_COMPLEX std: :complex<double>
MPI_CXX_LONG_DOUBLE_COMPLEX | std::complex<long double>

Table 3.4: Predefined MPI datatypes corresponding to C++ datatypes

3.2.3 Message Envelope

In addition to the data part, messages carry information that can be used to distinguish
messages and selectively receive them. This information consists of a fixed number of fields,
which we collectively call the message envelope. These fields are

source
destination
tag

10

11

12

13

14

15

16

17

18

19

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

44

45

46

47

48

36 CHAPTER 3. POINT-TO-POINT COMMUNICATION

communicator

The message source is implicitly determined by the identity of the message sender. The
other fields are specified by arguments in the send procedure.

The message destination is specified by the dest argument.

The integer-valued message tag is specified by the tag argument. This integer can be
used by the program to distinguish different types of messages. The range of valid tag
values is 0, . .., UB, where the value of UB is implementation dependent. It can be found by
querying the value of the attribute MPI_TAG_UB, as described in Chapter 9. MPI requires
that UB be no less than 32767.

The comm argument specifies the communicator that is used for the send operation.
Communicators are explained in Chapter 7; below is a brief summary of their usage.

A communicator specifies the communication context for a communication operation.
Each communication context provides a separate “communication universe”: messages are
always received within the context they were sent, and messages sent in different contexts
do not interfere.

The communicator also specifies the set of processes that share this communication
context. This process group is ordered and processes are identified by their rank within this
group. Thus, the range of valid values for dest is 0,...,n — 1 U {MPI_PROC_NULL}, where
n is the number of processes in the group. (If the communicator is an inter-communicator,
then destinations are identified by their rank in the remote group. See Chapter 7.)

When using the World Model (see Section 11.2), a predefined communicator
MPI_COMM_WORLD is provided by MPI. It allows communication with all processes that
are accessible after MPI initialization and processes are identified by their rank in the group
of MPI_COMM_WORLD.

Advice to users. Users that are comfortable with the notion of a flat name space
for processes, and a single communication context, as offered by most existing com-
munication libraries, need only use the World Model for MPI initialization, and the
predefined variable MPI_COMM_WORLD as the comm argument. This will allow com-
munication with all the processes available at initialization time.

Users may define new communicators, as explained in Chapter 7. Communicators
provide an important encapsulation mechanism for libraries and modules. They allow
modules to have their own disjoint communication universe and their own process
numbering scheme. (End of advice to users.)

Advice to implementors. The message envelope would normally be encoded by a
fixed-length message header. However, the actual encoding is implementation depen-
dent. Some of the information (e.g., source or destination) may be implicit, and need
not be explicitly carried by messages. Also, processes may be identified by relative
ranks, or absolute ids, etc. (End of advice to implementors.)

3.2.4 Blocking Receive

The syntax of the blocking receive procedure is given below.

3.2. BLOCKING SEND AND RECEIVE OPERATIONS 37

MPI_RECV/(buf, count, datatype, source, tag, comm, status)

ouT buf initial address of receive buffer (choice)
IN count number of elements in receive buffer (non-negative
integer)
IN datatype datatype of each receive buffer element (handle)
IN source rank of source or MPI_ANY_SOURCE (integer)
IN tag message tag or MPI_ANY_TAG (integer)
IN comm communicator (handle)
ouT status status object (status)
C binding

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Status #*status)

int MPI_Recv_c(void *buf, MPI_Count count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Status *status)

Fortran 2008 binding
MPI_Recv(buf, count, datatype, source, tag, comm, status, ierror)
TYPE(*), DIMENSION(..) :: buf
INTEGER, INTENT(IN) :: count, source, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Recv(buf, count, datatype, source, tag, comm, status, ierror) !(_c)
TYPE(*), DIMENSION(..) :: buf
INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(IN) :: source, tag
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS, IERROR)
<type> BUF (%)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE),
TERROR

The blocking semantics of this call are described in Section 3.4.

The receive buffer consists of the storage containing count consecutive elements of the
type specified by datatype, starting at address buf. The length of the received message must
be less than or equal to the length of the receive buffer. An overflow error occurs if all
incoming data does not fit, without truncation, into the receive buffer.

If a message that is shorter than the receive buffer arrives, then only those locations
corresponding to the (shorter) message are modified.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

38 CHAPTER 3. POINT-TO-POINT COMMUNICATION

Advice to users. The MPI_PROBE function described in Section 3.8 can be used to
receive messages of unknown length. (End of advice to users.)

Advice to implementors. Even though no specific behavior is mandated by MPI for
erroneous programs, the recommended handling of overflow situations is to return in
status information about the source and tag of the incoming message. The receive
procedure will return an error code. A quality implementation will also ensure that
no memory that is outside the receive buffer will ever be overwritten.

In the case of a message shorter than the receive buffer, MPI is quite strict in that it
allows no modification of the other locations. A more lenient statement would allow
for some optimizations but this is not allowed. The implementation must be ready to
end a copy into the receiver memory exactly at the end of the receive buffer, even if
it is an odd address. (End of advice to implementors.)

The selection of a message by a receive operation is governed by the value of the
message envelope. A message can be received by a receive operation if its envelope matches
the source, tag and comm values specified by the receive operation. The receiver may specify
a wildcard MPI_ANY_SOURCE value for source, and/or a wildcard MPI_ANY_TAG value for
tag, indicating that any source and/or tag are acceptable. It cannot specify a wildcard value
for comm. Thus, a message can be received by a receive operation only if it is addressed
to the receiving process, has a matching communicator, has matching source unless source
= MPI_ANY_SOURCE in the pattern, and has a matching tag unless tag = MPI_ANY_TAG in
the pattern.

The message tag is specified by the tag argument of the receive operation. The
argument source, if different from MPI_ANY_SOURCE, is specified as a rank within the
process group associated with that same communicator (remote process group, for inter-
communicators). Thus, the range of valid values for the source argument is {0,...,n—1}U
{MPI_ANY_SOURCE} U{MPI_PROC_NULL}, where n is the number of processes in this group.

Note the asymmetry between send and receive operations: A receive operation may
accept messages from an arbitrary sender, on the other hand, a send operation must specify
a unique receiver. This matches a “push” communication mechanism, where data transfer
is effected by the sender (rather than a “pull” mechanism, where data transfer is effected
by the receiver).

Source = destination is allowed, that is, a process can send a message to itself. However,
it is unsafe to do so with the blocking send and receive operations described above, since
this may lead to deadlock. See Section 3.5.

Advice to implementors. Message context and other communicator information can
be implemented as an additional tag field. It differs from the regular message tag
in that wild card matching is not allowed on this field, and that value setting for
this field is controlled by communicator manipulation functions. (End of advice to
implementors.)

The use of dest = MPI_PROC_NULL or source = MPI_PROC_NULL to define a “dummy”
destination or source in any send or receive call is described in Section 3.10.
3.2.5 Return Status

The source or tag of a received message may not be known if wildcard values were used
in the receive operation. Also, if multiple requests are completed by a single MPI function

3.2. BLOCKING SEND AND RECEIVE OPERATIONS 39

(see Section 3.7.5), a distinct error code may need to be returned for each request. The
information is returned by the status argument of MPI_RECV. The type of status is MPI-
defined. Status variables need to be explicitly allocated by the user, that is, they are not
system objects.

In C, status is a structure that contains three fields named MPI_SOURCE, MPI_TAG,
and MPI_ERROR; the structure may contain additional fields. Thus,
status.MPI_SOURCE, status.MPI_TAG, and status. MPI_ERROR contain the source, tag, and
error code, respectively, of the received message.

In Fortran with USE mpi or INCLUDE ’mpif.h’, status is an array of INTEGERs of size
MPI_STATUS_SIZE. The constants MPI_SOURCE, MPI_TAG, and MPI_ERROR are the indices
of the entries that store the source, tag, and error fields. Thus, status(MPI_SOURCE),
status(MPI_TAG), and status(MPI_ERROR) contain, respectively, the source, tag, and error
code of the received message.

With Fortran USE mpi_£08, status is defined as the Fortran BIND(C) derived type
TYPE(MPI_Status) containing three public INTEGER fields named MPI_SOURCE, MPI_TAG,
and MPI_ERROR. TYPE(MPI_Status) may contain additional, implementation-specific fields.
Thus, status’MPI_SOURCE, status’%MPI_TAG, and status%MPI_ERROR contain the source,
tag, and error code of a received message respectively. Additionally, within both the mpi
and the mpi_f08 modules, the constants MPI_STATUS_SIZE, MPI_SOURCE,

MPI_TAG, MPI_ERROR, and TYPE(MPI_Status) are defined to allow conversion between both
status representations. Conversion routines are provided in Section 19.3.5.

Rationale. The Fortran TYPE(MPI_Status) is defined as a BIND(C) derived type so
that it can be used at any location where the status integer array representation can
be used, e.g., in user defined common blocks. (End of rationale.)

Rationale. It is allowed to have the same name (e.g., MPI_SOURCE) defined as a
constant (e.g., Fortran parameter) and as a field of a derived type. (End of rationale.)

In general, message-passing calls do not modify the value of the error code field of
status variables. This field may be updated only by the functions in Section 3.7.5 which
return multiple statuses. The field is updated if and only if such function returns with an
error code of MPI_ERR_IN_STATUS.

Rationale. The error field in status is not needed for calls that return only one status,
such as MPI_WAIT, since that would only duplicate the information returned by the
function itself. The current design avoids the additional overhead of setting it, in such
cases. The field is needed for calls that return multiple statuses, since each request
may have had a different failure. (End of rationale.)

The status argument also returns information on the length of the message received.
However, this information is not directly available as a field of the status variable and a call
to MPI_GET_COUNT is required to “decode” this information.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

40 CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI_GET_COUNT (status, datatype, count)

IN status return status of receive operation (status)
IN datatype datatype of each receive buffer entry (handle)
ouT count number of received entries (integer)

C binding

int MPI_Get_count(const MPI_Status *status, MPI_Datatype datatype,
int *count)

int MPI_Get_count_c(const MPI_Status *status, MPI_Datatype datatype,
MPI_Count *count)

Fortran 2008 binding

MPI_Get_count(status, datatype, count, ierror)
TYPE(MPI_Status), INTENT(IN) :: status
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(QOUT) :: count
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Get_count(status, datatype, count, ierror) !(_c)
TYPE(MPI_Status), INTENT(IN) :: status
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER (KIND=MPI_COUNT_KIND), INTENT(OUT) :: count
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_GET_COUNT(STATUS, DATATYPE, COUNT, IERROR)
INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR

Returns the number of entries received. (Again, we count entries, each of type datatype,
not bytes.) The datatype argument should match the argument provided by the receive call
that set the status variable. If the number of entries received exceeds the limits of the count
parameter, then MPI_GET_COUNT sets the value of count to MPI_UNDEFINED. There are
other situations where the value of count can be set to MPI_UNDEFINED; see Section 5.1.11.

Rationale. Some message-passing libraries use INOUT count, tag and source argu-
ments, thus using them both to specify the selection criteria for incoming messages
and return the actual envelope values of the received message. The use of a separate
status argument prevents errors that are often attached with INOUT argument (e.g.,
using the MPI_ANY_TAG constant as the tag in a receive). Some libraries use calls
that refer implicitly to the “last message received.” This is not thread safe.

The datatype argument is passed to MPI_GET_COUNT so as to improve performance.
A message might be received without counting the number of elements it contains,
and the count value is often not needed. Also, this allows the same function to be
used after a call to MPI_PROBE or MPI_IPROBE. With a status from MPI_PROBE
or MPI_IPROBE, the same datatypes are allowed as in a call to MPI_RECV to receive
this message. (End of rationale.)

3.2. BLOCKING SEND AND RECEIVE OPERATIONS 41

The value returned as the count argument of MPI_GET_COUNT for a datatype of length
zero where zero bytes have been transferred is zero. If the number of bytes transferred is
greater than zero, MPI_UNDEFINED is returned.

Rationale. Zero-length datatypes may be created in a number of cases. An important
case is MPI_TYPE_CREATE_DARRAY, where the definition of the particular darray
results in an empty block on some MPI process. Programs written in an SPMD style
will not check for this special case and may want to use MPI_GET_COUNT to check
the status. (End of rationale.)

Advice to users. The buffer size required for the receive can be affected by data con-
versions and by the stride of the receive datatype. In most cases, the safest approach
is to use the same datatype with MPI_GET_COUNT and the receive. (End of advice
to users.)

All send and receive operations use the buf, count, datatype, source, dest, tag, comm, and
status arguments in the same way as the blocking MPI_SEND and MPI_RECV procedures
described in this section.

3.2.6 Passing MPI_STATUS_IGNORE for Status

Every call to MPI_RECV includes a status argument, wherein the system can return details
about the message received. There are also a number of other MPI calls where status is
returned. An object of type MPI_Status is not an MPI opaque object; its structure is declared
in mpi.h and mpif.h, and it exists in the user’s program. In many cases, application
programs are constructed so that it is unnecessary for them to examine the status fields.
In these cases, it is a waste for the user to allocate a status object, and it is particularly
wasteful for the MPI implementation to fill in fields in this object.

To cope with this problem, there are two predefined constants, MPI_STATUS_IGNORE
and MPI_STATUSES_IGNORE, which when passed to a receive, probe, wait, or test function,
inform the implementation that the status fields are not to be filled in. Note that
MPI_STATUS_IGNORE is not a special type of MPI_Status object; rather, it is a special value
for the argument. In C one would expect it to be NULL, not the address of a special
MPI_Status.

MPI_STATUS_IGNORE, and the array version MPI_STATUSES_IGNORE, can be used every-
where a status argument is passed to a receive, wait, or test function. MPI_STATUS_IGNORE
cannot be used when status is an IN argument. Note that in Fortran MPI_STATUS_IGNORE
and MPI_STATUSES_IGNORE are objects like MPI_BOTTOM (not usable for initialization or
assignment). See Section 2.5.4.

In general, this optimization can apply to all functions for which status or an array of
statuses is an OUT argument. Note that this converts status into an INOUT argument. The
functions that can be passed MPI_STATUS_IGNORE are all the various forms of MPI_RECV,
MPI_PROBE, MPI_TEST, and MPI_WAIT, as well as MPI_REQUEST_GET_STATUS. When
an array is passed, as in the MPI_{TEST|WAIT}{ALL|SOME} functions, a separate constant,
MPI_STATUSES_IGNORE, is passed for the array argument. It is possible for an MPI function
to return MPI_ERR_IN_STATUS even when MPI_STATUS_IGNORE or MPI_STATUSES_IGNORE
has been passed to that function.

MPI_STATUS_IGNORE and MPI_STATUSES_IGNORE are not required to have the same
values in C and Fortran.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

46

47

48

42 CHAPTER 3. POINT-TO-POINT COMMUNICATION

It is not allowed to have some of the statuses in an array of statuses for
MPI_{TEST|WAIT }{ALL|SOME} functions set to MPI_STATUS_IGNORE; one either specifies
ignoring all of the statuses in such a call with MPI_STATUSES_IGNORE, or none of them by
passing normal statuses in all positions in the array of statuses.

3.2.7 Blocking Send-Receive

The send-receive operations combine in one operation the sending of a message to one
destination and the receiving of another message, from another process. The two (source
and destination) are possibly the same. A send-receive operation is very useful for executing
a shift operation across a chain of processes. If blocking sends and receives are used for such
a shift, then one needs to order the sends and receives correctly (for example, even processes
send, then receive, odd processes receive first, then send) so as to prevent cyclic dependencies
that may lead to deadlock. When a send-receive operation is used, the communication
subsystem takes care of these issues. The send-receive operation can be used in conjunction
with the procedures described in Chapter 8 in order to perform shifts on various logical
topologies. Also, a send-receive operation is useful for implementing remote procedure
calls.

A message sent by a send-receive operation can be received by a regular receive oper-
ation or probed by a probe operation; a send-receive operation can receive a message sent
by a regular send operation.

MPI_SENDRECV(sendbuf, sendcount, sendtype, dest, sendtag, recvbuf, recvcount, recvtype,
source, recvtag, comm, status)

IN sendbuf initial address of send buffer (choice)

IN sendcount number of elements in send buffer (non-negative
integer)

IN sendtype type of elements in send buffer (handle)

IN dest rank of destination (integer)

IN sendtag send tag (integer)

ouT recvbuf initial address of receive buffer (choice)

IN recvcount number of elements in receive buffer (non-negative
integer)

IN recvtype type of elements receive buffer element (handle)

IN source rank of source or MPI_ANY_SOURCE (integer)

IN recvtag receive tag or MPI_ANY_TAG (integer)

IN comm communicator (handle)

ouT status status object (status)

C binding

int MPI_Sendrecv(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
int dest, int sendtag, void *recvbuf, int recvcount,

3.2. BLOCKING SEND AND RECEIVE OPERATIONS 43

MPI_Datatype recvtype, int source, int recvtag, MPI_Comm comm,
MPI_Status *status)

int MPI_Sendrecv_c(const void *sendbuf, MPI_Count sendcount,
MPI_Datatype sendtype, int dest, int sendtag, void *recvbuf,
MPI_Count recvcount, MPI_Datatype recvtype, int source,
int recvtag, MPI_Comm comm, MPI_Status *status)

Fortran 2008 binding
MPI_Sendrecv(sendbuf, sendcount, sendtype, dest, sendtag, recvbuf,
recvcount, recvtype, source, recvtag, comm, status, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
INTEGER, INTENT(IN) :: sendcount, dest, sendtag, recvcount, source,
recvtag
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..) :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Sendrecv(sendbuf, sendcount, sendtype, dest, sendtag, recvbuf,

recvcount, recvtype, source, recvtag, comm, status, ierror)
1(_c)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcount

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

INTEGER, INTENT(IN) :: dest, sendtag, source, recvtag

TYPE(*), DIMENSION(..) :: recvbuf

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_SENDRECV (SENDBUF, SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVBUF,
RECVCOUNT, RECVTYPE, SOURCE, RECVTAG, COMM, STATUS, IERROR)
<type> SENDBUF (), RECVBUF (x)
INTEGER SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVCOUNT, RECVTYPE,
SOURCE, RECVTAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

Execute a blocking send-receive operation. Both send and receive use the same com-
municator, but possibly different tags. The send buffer and receive buffers must be disjoint,
and may have different lengths and datatypes

The semantics of a send-receive operation is what would be obtained if the caller forked
two concurrent threads, one to execute the send, and one to execute the receive, followed
by a join of these two threads.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

-

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

46

47

48

44

CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI_SENDRECV_REPLACE(buf, count, datatype, dest, sendtag, source, recvtag, comm,

status)
INOUT buf initial address of send and receive buffer (choice)
IN count number of elements in send and receive buffer
(non-negative integer)
IN datatype type of elements in send and receive buffer (handle)
IN dest rank of destination (integer)
IN sendtag send message tag (integer)
IN source rank of source or MPI_ANY_SOURCE (integer)
IN recvtag receive message tag or MPI_ANY_TAG (integer)
IN comm communicator (handle)
ouT status status object (status)
C binding
int MPI_Sendrecv_replace(void *buf, int count, MPI_Datatype datatype,
int dest, int sendtag, int source, int recvtag, MPI_Comm comm,
MPI_Status *status)
int MPI_Sendrecv_replace_c(void *buf, MPI_Count count,

MPI_Datatype datatype, int dest, int sendtag, int source,
int recvtag, MPI_Comm comm, MPI_Status *status)

Fortran 2008 binding

MPI_

MPI_

Sendrecv_replace(buf, count, datatype, dest, sendtag, source, recvtag,
comm, status, ierror)

TYPE(*), DIMENSIONC(..) :: buf

INTEGER, INTENT(IN) :: count, dest, sendtag, source, recvtag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Sendrecv_replace(buf, count, datatype, dest, sendtag, source, recvtag,
comm, status, ierror) !'(_c)

TYPE(*), DIMENSION(..) :: buf

INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, INTENT(IN) :: dest, sendtag, source, recvtag

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_

SENDRECV_REPLACE (BUF, COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG,
COMM, STATUS, IERROR)
<type> BUF ()

3.3. DATATYPE MATCHING AND DATA CONVERSION 45

INTEGER COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG, COMM,
STATUS(MPI_STATUS_SIZE), IERROR

Execute a blocking send and receive. The same buffer is used both for the send and
for the receive, so that the message sent is replaced by the message received.

Advice to implementors. Additional intermediate buffering is needed for the “replace”
variant. (End of advice to implementors.)

3.3 Datatype Matching and Data Conversion

3.3.1 Type Matching Rules

One can think of message transfer as consisting of the following three phases.
1. Data is pulled out of the send buffer and a message is assembled.
2. A message is transferred from sender to receiver.
3. Data is pulled from the incoming message and disassembled into the receive buffer.

Type matching has to be observed at each of these three phases: The type of each
variable in the sender buffer has to match the type specified for that entry by the send
operation; the type specified by the send operation has to match the type specified by the
receive operation; and the type of each variable in the receive buffer has to match the type
specified for that entry by the receive operation. A program that fails to observe these three
rules is erroneous.

To define type matching more precisely, we need to deal with two issues: matching of
types of the host language with types specified in communication operations; and matching
of types at sender and receiver.

The types of a send and receive match (phase two) if both operations use identical
names. That is, MPI_INTEGER matches MPI_INTEGER, MPI_REAL matches MPI_REAL, and
so on. There is one exception to this rule, discussed in Section 5.2: the type MPI_PACKED
can match any other type.

The type of a variable in a host program matches the type specified in the commu-
nication operation if the datatype name used by that operation corresponds to the basic
type of the host program variable. For example, an entry with type name MPI_INTEGER
matches a Fortran variable of type INTEGER. A table giving this correspondence for Fortran
and C appears in Section 3.2.2. There are two exceptions to this last rule: an entry with
type name MPI_BYTE or MPI_PACKED can be used to match any byte of storage (on a byte-
addressable machine), irrespective of the datatype of the variable that contains this byte.
The type MPI_PACKED is used to send data that has been explicitly packed, or receive data
that will be explicitly unpacked, see Section 5.2. The type MPI_BYTE allows one to transfer
the binary value of a byte in memory unchanged.

To summarize, the type matching rules fall into the three categories below.

e Communication of typed values (e.g., with datatype different from MPI_BYTE), where
the datatypes of the corresponding entries in the sender program, in the send call, in
the receive call and in the receiver program must all match.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46 CHAPTER 3. POINT-TO-POINT COMMUNICATION

e Communication of untyped values (e.g., of datatype MPI_BYTE), where both sender
and receiver use the datatype MPI_BYTE. In this case, there are no requirements on
the types of the corresponding entries in the sender and the receiver programs, nor is
it required that they be the same.

e Communication involving packed data, where MPI_PACKED is used.
The following examples illustrate the first two cases.
Example 3.2 Sender and receiver specify matching types.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank .EQ. 0) THEN
CALL MPI_SEND(a(1), 10, MPI_REAL, 1, tag, comm, ierr)
ELSE IF (rank .EQ. 1) THEN
CALL MPI_RECV(b(1), 15, MPI_REAL, O, tag, comm, status, ierr)
END IF

This code is correct if both a and b are real arrays of size > 10. (In Fortran, it might be
correct to use this code even if a or b have size < 10: e.g., when a(1) can be equivalenced
to an array with ten reals.)

Example 3.3 Sender and receiver do not specify matching types.

I THIS EXAMPLE IS ERRONEOUS ---—————-——-——-
CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank .EQ. 0) THEN

CALL MPI_SEND(a(1), 10, MPI_REAL, 1, tag, comm, ierr)
ELSE IF (rank .EQ. 1) THEN

CALL MPI_RECV(b(1), 40, MPI_BYTE, O, tag, comm, status, ierr)
END IF

This code is erroneous, since sender and receiver do not provide matching datatype argu-
ments.

Example 3.4 Sender and receiver specify communication of untyped values.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank .EQ. 0) THEN
CALL MPI_SEND(a(1), 40, MPI_BYTE, 1, tag, comm, ierr)
ELSE IF (rank .EQ. 1) THEN
CALL MPI_RECV(b(1), 60, MPI_BYTE, O, tag, comm, status, ierr)
END IF

This code is correct, irrespective of the type and size of a and b (unless this results in an
out of bounds memory access).

Advice to users. If a buffer of type MPI_BYTE is passed as an argument to MPI_SEND,
then MPI will send the data stored at contiguous locations, starting from the address
indicated by the buf argument. This may have unexpected results when the data

3.3. DATATYPE MATCHING AND DATA CONVERSION 47

layout is not as a casual user would expect it to be. For example, some Fortran
compilers implement variables of type CHARACTER as a structure that contains the
character length and a pointer to the actual string. In such an environment, sending
and receiving a Fortran CHARACTER variable using the MPI_BYTE type will not have
the anticipated result of transferring the character string. For this reason, the user is
advised to use typed communications whenever possible. (End of advice to users.)

Type MPI_CHARACTER

The type MPI_CHARACTER matches one character of a Fortran variable of type
CHARACTER, rather than the entire character string stored in the variable. Fortran variables
of type CHARACTER or substrings are transferred as if they were arrays of characters. This
is illustrated in the example below.

Example 3.5 Transfer of Fortran CHARACTERs.

CHARACTER*10 a
CHARACTER*10 b

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank .EQ. 0) THEN
CALL MPI_SEND(a, 5, MPI_CHARACTER, 1, tag, comm, ierr)
ELSE IF (rank .EQ. 1) THEN
CALL MPI_RECV(b(6:10), 5, MPI_CHARACTER, O, tag, comm, status, ierr)
END IF

The last five characters of string b at process 1 are replaced by the first five characters of
string a at process 0.

Rationale. The alternative choice would be for MPI_CHARACTER to match a character
of arbitrary length. This runs into problems.

A Fortran character variable is a constant length string, with no special termina-
tion symbol. There is no fixed convention on how to represent characters, and how
to store their length. Some compilers pass a character argument to a routine as a
pair of arguments, one holding the address of the string and the other holding the
length of string. Consider the case of an MPIl communication call that is passed a
communication buffer with type defined by a derived datatype (Section 5.1). If this
communicator buffer contains variables of type CHARACTER then the information on
their length will not be passed to the MPI routine.

This problem forces us to provide explicit information on character length with the
MPI call. One could add a length parameter to the type MPI_CHARACTER, but this
does not add much convenience and the same functionality can be achieved by defining
a suitable derived datatype. (End of rationale.)

Advice to implementors. Some compilers pass Fortran CHARACTER arguments as a
structure with a length and a pointer to the actual string. In such an environment,
the MPI call needs to dereference the pointer in order to reach the string. (End of
advice to implementors.)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

48 CHAPTER 3. POINT-TO-POINT COMMUNICATION

3.3.2 Data Conversion

One of the goals of MPI is to support parallel computations across heterogeneous environ-
ments. Communication in a heterogeneous environment may require data conversions. We
use the following terminology.

type conversion changes the datatype of a value, e.g., by rounding a REAL to an INTEGER.

representation conversion changes the binary representation of a value, e.g., from Hex
floating point to IEEE floating point.

The type matching rules imply that MPl communication never entails type conversion.
On the other hand, MPI requires that a representation conversion be performed when a
typed value is transferred across environments that use different representations for the
datatype of this value. MPI does not specify rules for representation conversion. Such
conversion is expected to preserve integer, logical and character values, and to convert a
floating point value to the nearest value that can be represented on the target system.

Overflow and underflow exceptions may occur during floating point conversions. Con-
version of integers or characters may also lead to exceptions when a value that can be
represented in one system cannot be represented in the other system. An exception occur-
ring during representation conversion results in a failure of the communication. An error
occurs either in the send operation, or the receive operation, or both.

If a value sent in a message is untyped (i.e., of type MPI_BYTE), then the binary
representation of the byte stored at the receiver is identical to the binary representation
of the byte loaded at the sender. This holds true, whether sender and receiver run in the
same or in distinct environments. No representation conversion is required. (Note that
representation conversion may occur when values of type MPI_CHARACTER or MPI_CHAR
are transferred, for example, from an EBCDIC encoding to an ASCII encoding.)

No conversion need occur when an MPI| program executes in a homogeneous system,
where all processes run in the same environment.

Consider the three examples, 3.2-3.4. The first program is correct, assuming that a and
b are REAL arrays of size > 10. If the sender and receiver execute in different environments,
then the ten real values that are fetched from the send buffer will be converted to the
representation for reals on the receiver site before they are stored in the receive buffer.
While the number of real elements fetched from the send buffer equal the number of real
elements stored in the receive buffer, the number of bytes stored need not equal the number
of bytes loaded. For example, the sender may use a four byte representation and the receiver
an eight byte representation for reals.

The second program is erroneous, and its behavior is undefined.

The third program is correct. The exact same sequence of forty bytes that were loaded
from the send buffer will be stored in the receive buffer, even if sender and receiver run in
a different environment. The message sent has exactly the same length (in bytes) and the
same binary representation as the message received. If a and b are of different types, or if
they are of the same type but different data representations are used, then the bits stored
in the receive buffer may encode values that are different from the values they encoded in
the send buffer.

Data representation conversion also applies to the envelope of a message: source, des-
tination and tag are all integers that may need to be converted.

3.4. COMMUNICATION MODES 49

Advice to implementors. The current definition does not require messages to carry
data type information. Both sender and receiver provide complete data type infor-
mation. In a heterogeneous environment, one can either use a machine independent
encoding such as XDR, or have the receiver convert from the sender representation
to its own, or even have the sender do the conversion.

Additional type information might be added to messages in order to allow the sys-
tem to detect mismatches between datatype at sender and receiver. This might be
particularly useful in a slower but safer debug mode. (End of advice to implementors.)

MPI requires support for inter-language communication, e.g., if messages are sent using
an MPI procedure from the MPI C language interface and received using an MPI procedure
from one of the MPI Fortran language interfaces. The behavior is defined in Section 19.3.

3.4 Communication Modes

The send call described in Section 3.2.1 is blocking: it does not return until the message
data and envelope have been safely stored away so that the sender is free to modify the
send buffer. The message might be copied directly into the matching receive buffer, or it
might be copied into a temporary system buffer.

Message buffering decouples the send and receive operations. A blocking send can com-
plete as soon as the message was buffered, even if no matching receive has been executed by
the receiver. On the other hand, message buffering can be expensive, as it entails additional
memory-to-memory copying, and it requires the allocation of memory for buffering. MPI
offers the choice of several communication modes that allow one to control the choice of
the communication protocol.

The send call described in Section 3.2.1 uses the standard communication mode. In
this mode, it is up to MPI to decide whether outgoing messages will be buffered. MPI| may
buffer outgoing messages. In such a case, the send call may complete before a matching
receive is invoked. On the other hand, buffer space may be unavailable, or MPI may choose
not to buffer outgoing messages, for performance reasons. In this case, the send call will
not complete until a matching receive has been posted, and the data has been moved to the
receiver.

Thus, a standard mode send can be started whether or not a matching receive has been
posted. It may complete before a matching receive is posted. The standard mode send is
non-local: successful completion of the send operation may depend on the occurrence of a
matching receive.

Rationale. The reluctance of MPI to mandate whether standard sends are buffering
or not stems from the desire to achieve portable programs. Since any system will run
out of buffer resources as message sizes are increased, and some implementations may
want to provide little buffering, MPI takes the position that correct (and therefore,
portable) programs do not rely on system buffering in standard mode. Buffering may
improve the performance of a correct program, but it doesn’t affect the result of the
program. If the user wishes to guarantee a certain amount of buffering, the user-
provided buffer system of Section 3.6 should be used, along with the buffered-mode
send. (End of rationale.)

There are three additional communication modes.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

47

48

50 CHAPTER 3. POINT-TO-POINT COMMUNICATION

A buffered mode send operation can be started whether or not a matching receive
has been posted. It may complete before a matching receive is posted. However, unlike the
standard send, this operation is local, and its completion does not depend on the occurrence
of a matching receive. Thus, if a send is executed and no matching receive is posted, then
MPI must buffer the outgoing message, so as to allow the send call to complete. An error will
occur if there is insufficient buffer space. The amount of available buffer space is controlled
by the user—see Section 3.6. Buffer allocation by the user may be required for the buffered
mode to be effective.

A send that uses the synchronous mode can be started whether or not a matching
receive was posted. However, the send will complete successfully only if a matching receive is
posted, and the receive operation has started to receive the message sent by the synchronous
send. Thus, the completion of a synchronous send not only indicates that the send buffer
can be reused, but it also indicates that the receiver has reached a certain point in its
execution, namely that it has started executing the matching receive. If both sends and
receives are blocking operations then the use of the synchronous mode provides synchronous
communication semantics: a communication does not complete at either end before both
processes rendezvous at the communication. A send executed in this mode is non-local.

A send that uses the ready communication mode may be started only if the matching
receive is already posted. Otherwise, the operation is erroneous and its outcome is unde-
fined. On some systems, this allows the removal of a hand-shake protocol that is otherwise
required and results in improved performance. The completion of the send operation does
not depend on the status of a matching receive, and merely indicates that the send buffer
can be reused. A send operation that uses the ready mode has the same semantics as a
standard send operation, or a synchronous send operation; it is merely that the sender
provides additional information to the system (namely that a matching receive is already
posted), that can save some overhead. In a correct program, therefore, a ready send could
be replaced by a standard send with no effect on the behavior of the program other than
performance.

Three additional send functions are provided for the three additional communication
modes. The communication mode is indicated by a one letter prefix: B for buffered, S for
synchronous, and R for ready.

MPI_BSEND(buf, count, datatype, dest, tag, comm)

IN buf initial address of send buffer (choice)
IN count number of elements in send buffer (non-negative
integer)
IN datatype datatype of each send buffer element (handle)
IN dest rank of destination (integer)
IN tag message tag (integer)
IN comm communicator (handle)
C binding

int MPI_Bsend(const void *buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

3.4. COMMUNICATION MODES ol

int MPI_Bsend_c(const void *buf, MPI_Count count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

Fortran 2008 binding

MPI_Bsend(buf, count, datatype, dest, tag, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Bsend(buf, count, datatype, dest, tag, comm, ierror) !(_c)
TYPE(*), DIMENSION(..), INTENT(IN) :: buf
INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(IN) :: dest, tag
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_BSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF (%)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

Send in buffered mode.

According to the definitions in Section 2.4.2, MPI_BSEND is a completing procedure
and the user can re-use all resources given as arguments, including the message data buffer.
It is also a local procedure because it returns immediately without depending on the exe-
cution of any MPI procedure in any other MPI process.

Advice to users. This is one of the exceptions in which a completing and therefore
blocking operation-related procedure is local. (End of advice to users.)

MPI_SSEND(buf, count, datatype, dest, tag, comm)

IN buf initial address of send buffer (choice)
IN count number of elements in send buffer (non-negative
integer)
IN datatype datatype of each send buffer element (handle)
IN dest rank of destination (integer)
IN tag message tag (integer)
IN comm communicator (handle)
C binding

int MPI_Ssend(const void *buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

52 CHAPTER 3. POINT-TO-POINT COMMUNICATION

int MPI_Ssend_c(const void *buf, MPI_Count count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

Fortran 2008 binding

MPI_Ssend(buf, count, datatype, dest, tag, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ssend(buf, count, datatype, dest, tag, comm, ierror) !(_c)
TYPE(*), DIMENSION(..), INTENT(IN) :: buf
INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(IN) :: dest, tag
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_SSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF (%)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

Send in synchronous mode.

MPI_RSEND(buf, count, datatype, dest, tag, comm)

IN buf initial address of send buffer (choice)
IN count number of elements in send buffer (non-negative
integer)
IN datatype datatype of each send buffer element (handle)
IN dest rank of destination (integer)
IN tag message tag (integer)
IN comm communicator (handle)
C binding

int MPI_Rsend(const void *buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

int MPI_Rsend_c(const void *buf, MPI_Count count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

Fortran 2008 binding

MPI_Rsend(buf, count, datatype, dest, tag, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm

3.4. COMMUNICATION MODES 93

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Rsend(buf, count, datatype, dest, tag, comm, ierror) !(_c)
TYPE(*), DIMENSION(..), INTENT(IN) :: buf
INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(IN) :: dest, tag
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_RSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF ()
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

Send in ready mode.

There is only one receive operation, but it matches any of the send modes. The receive
procedure described in the last section is blocking: it returns only after the receive buffer
contains the newly received message. A receive can complete before the matching send has
completed (of course, it can complete only after the matching send has started).

In a multithreaded implementation of MPI, the system may de-schedule a thread that
is blocked on a send or receive operation, and schedule another thread for execution in
the same address space. In such a case it is the user’s responsibility not to modify a
communication buffer until the communication completes. Otherwise, the outcome of the
computation is undefined.

Adwvice to implementors. Since a synchronous send cannot complete before a matching
receive is posted, one will not normally buffer messages sent by such an operation.

It is recommended to choose buffering over blocking the sender, whenever possible,
for standard sends. The programmer can signal a preference for blocking the sender
until a matching receive occurs by using the synchronous send mode.

A possible communication protocol for the various communication modes is outlined
below.

ready send: The message is sent as soon as possible.

synchronous send: The sender sends a request-to-send message. The receiver stores
this request. When a matching receive is posted, the receiver sends back a permission-
to-send message, and the sender now sends the message.

standard send: First protocol may be used for short messages, and second protocol
for long messages.

buffered send: The sender copies the message into a buffer and then sends it with a
nonblocking send (using the same protocol as for standard send).

Additional control messages might be needed for flow control and error recovery. Of
course, there are many other possible protocols.

Ready send can be implemented as a standard send. In this case there will be no
performance advantage (or disadvantage) for the use of ready send.

A standard send can be implemented as a synchronous send. In such a case, no data
buffering is needed. However, users may expect some buffering.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

54 CHAPTER 3. POINT-TO-POINT COMMUNICATION

In a multithreaded environment, the execution of a blocking communication should
block only the executing thread, allowing the thread scheduler to de-schedule this
thread and schedule another thread for execution. (End of advice to implementors.)

3.5 Semantics of Point-to-Point Communication

A valid MPI implementation guarantees certain general properties of point-to-point com-
munication, which are described in this section.

Order Messages are non-overtaking: If a sender sends two messages in succession to the
same destination, and both match the same receive, then this operation cannot receive the
second message if the first one is still pending. If a receiver posts two receives in succession,
and both match the same message, then the second receive operation cannot be satisfied
by this message, if the first one is still pending. This requirement facilitates matching of
sends to receives. It guarantees that message-passing code is deterministic, if processes are
single-threaded and the wildcard MPI_ANY_SOURCE is not used in receives. (Some of the
calls described later, such as MPI_CANCEL or MPI_WAITANY, are additional sources of
nondeterminism.)

If a process has a single thread of execution, then any two communications executed
by this process are ordered. On the other hand, if the process is multithreaded, then the
semantics of thread execution may not define a relative order between two send operations
executed by two distinct threads. The operations are logically concurrent, even if one
physically precedes the other. In such a case, the two messages sent can be received in
any order. Similarly, if two receive operations that are logically concurrent receive two
successively sent messages, then the two messages can match the two receives in either
order.

Example 3.6 An example of non-overtaking messages.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank .EQ. 0) THEN
CALL MPI_BSEND(bufl, count, MPI_REAL, 1, tag, comm, ierr)
CALL MPI_BSEND(buf2, count, MPI_REAL, 1, tag, comm, ierr)
ELSE IF (rank .EQ. 1) THEN
CALL MPI_RECV(bufl, count, MPI_REAL, O, MPI_ANY_TAG, comm, status, ierr)
CALL MPI_RECV(buf2, count, MPI_REAL, O, tag, comm, status, ierr)
END IF

The message sent by the first send must be received by the first receive, and the message
sent by the second send must be received by the second receive.

Progress If a pair of matching send and receives have been initiated on two processes, then
at least one of these two operations will complete, independently of other actions in the
system: the send operation will complete, unless the receive is satisfied by another message,
and completes; the receive operation will complete, unless the message sent is consumed by
another matching receive that was posted at the same destination process.

3.5. SEMANTICS OF POINT-TO-POINT COMMUNICATION 95

Example 3.7 An example of two, intertwined matching pairs.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank .EQ. 0) THEN
CALL MPI_BSEND(bufl, count, MPI_REAL, 1, tagl, comm, ierr)
CALL MPI_SSEND(buf2, count, MPI_REAL, 1, tag2, comm, ierr)
ELSE IF (rank .EQ. 1) THEN
CALL MPI_RECV(bufl, count, MPI_REAL, O, tag2, comm, status, ierr)
CALL MPI_RECV(buf2, count, MPI_REAL, O, tagl, comm, status, ierr)
END IF

Both processes invoke their first communication call. Since the first send of process zero
uses the buffered mode, it must complete, irrespective of the state of process one. Since
no matching receive is posted, the message will be copied into buffer space. (If insufficient
buffer space is available, then the program will fail.) The second send is then invoked. At
that point, a matching pair of send and receive operation is enabled, and both operations
must complete. Process one next invokes its second receive call, which will be satisfied by
the buffered message. Note that process one received the messages in the reverse order they
were sent.

Fairness MPI makes no guarantee of fairness in the handling of communication. Suppose
that a send is posted. Then it is possible that the destination process repeatedly posts a
receive that matches this send, yet the message is never received, because it is each time
overtaken by another message, sent from another source. Similarly, suppose that a receive
was posted by a multithreaded process. Then it is possible that messages that match this
receive are repeatedly received, yet the receive is never satisfied, because it is overtaken
by other receives posted at this node (by other executing threads). It is the programmer’s
responsibility to prevent starvation in such situations.

Resource limitations Any pending communication operation consumes system resources
that are limited. Errors may occur when lack of resources prevent the execution of an MPI
call. A quality implementation will use a (small) fixed amount of resources for each pending
send in the ready or synchronous mode and for each pending receive. However, buffer space
may be consumed to store messages sent in standard mode, and must be consumed to store
messages sent in buffered mode, when no matching receive is available. The amount of space
available for buffering will be much smaller than program data memory on many systems.
Then, it will be easy to write programs that overrun available buffer space.

MPI allows the user to provide buffer memory for messages sent in the buffered mode.
Furthermore, MPI specifies a detailed operational model for the use of this buffer. An MPI
implementation is required to do no worse than implied by this model. This allows users to
avoid buffer overflows when they use buffered sends. Buffer allocation and use is described
in Section 3.6.

A buffered send operation that cannot complete because of a lack of buffer space is
erroneous. When such a situation is detected, an error is signaled that may cause the
program to terminate abnormally. On the other hand, a standard send operation that
cannot complete because of lack of buffer space will merely block, waiting for buffer space
to become available or for a matching receive to be posted. This behavior is preferable in
many situations. Consider a situation where a producer repeatedly produces new values

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

56 CHAPTER 3. POINT-TO-POINT COMMUNICATION

and sends them to a consumer. Assume that the producer produces new values faster
than the consumer can consume them. If buffered sends are used, then a buffer overflow
will result. Additional synchronization has to be added to the program so as to prevent
this from occurring. If standard sends are used, then the producer will be automatically
throttled, as its send operations will block when buffer space is unavailable.

In some situations, a lack of buffer space leads to deadlock situations. This is illustrated
by the examples below.

Example 3.8 An exchange of messages.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank .EQ. 0) THEN
CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)
CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)
ELSE IF (rank .EQ. 1) THEN
CALL MPI_RECV(recvbuf, count, MPI_REAL, O, tag, comm, status, ierr)
CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag, comm, ierr)
END IF

This program will succeed even if no buffer space for data is available. The standard send
operation can be replaced, in this example, with a synchronous send.

Example 3.9 An errant attempt to exchange messages.

I THIS EXAMPLE IS ERRONEOUS ----——-—-—-——-——-

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank .EQ. 0) THEN
CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)
CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)

ELSE IF (rank .EQ. 1) THEN
CALL MPI_RECV(recvbuf, count, MPI_REAL, 0O, tag, comm, status, ierr)
CALL MPI_SEND(sendbuf, count, MPI_REAL, O, tag, comm, ierr)

END IF

The receive operation of the first process must complete before its send, and can complete
only if the matching send of the second processor is executed. The receive operation of the
second process must complete before its send and can complete only if the matching send
of the first process is executed. This program will always deadlock. The same holds for any
other send mode.

Example 3.10 An exchange that relies on buffering.

D ————— THIS EXAMPLE IS ERRONEOUS --———————-—————-
CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank .EQ. 0) THEN
CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)
CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)
ELSE IF (rank .EQ. 1) THEN

3.6. BUFFER ALLOCATION AND USAGE o7

CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag, comm, ierr)
CALL MPI_RECV(recvbuf, count, MPI_REAL, O, tag, comm, status, ierr)
END IF

The message sent by each process has to be copied out before the send operation returns
and the receive operation starts. For the program to complete, it is necessary that at least
one of the two messages sent be buffered. Thus, this program can succeed only if the
communication system can buffer at least count words of data.

Advice to users. When standard send operations are used, then a deadlock situation
may occur where both processes are blocked because buffer space is not available. The
same will certainly happen, if the synchronous mode is used. If the buffered mode is
used, and not enough buffer space is available, then the program will not complete
either. However, rather than a deadlock situation, we shall have a buffer overflow
erTor.

A program is “safe” if no message buffering is required for the program to complete.
One can replace all sends in such program with synchronous sends, and the pro-
gram will still run correctly. This conservative programming style provides the best
portability, since program completion does not depend on the amount of buffer space
available or on the communication protocol used.

Many programmers prefer to have more leeway and opt to use the “unsafe” program-
ming style shown in Example 3.10. In such cases, the use of standard sends is likely
to provide the best compromise between performance and robustness: quality imple-
mentations will provide sufficient buffering so that “common practice” programs will
not deadlock. The buffered send mode can be used for programs that require more
buffering, or in situations where the programmer wants more control. This mode
might also be used for debugging purposes, as buffer overflow conditions are easier to
diagnose than deadlock conditions.

Nonblocking message-passing operations, as described in Section 3.7, can be used to
avoid the need for buffering outgoing messages. This prevents deadlocks due to lack
of buffer space, and improves performance, by allowing overlap of computation and
communication, and avoiding the overheads of allocating buffers and copying messages
into buffers. (End of advice to users.)

3.6 Buffer Allocation and Usage

A user may specify a buffer to be used for buffering messages sent in buffered mode. Buffer-
ing is done by the sender.

MPI_BUFFER_AT TACH(buffer, size)

IN buffer initial buffer address (choice)
IN size buffer size, in bytes (non-negative integer)
C binding

int MPI_Buffer_attach(void *buffer, int size)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

o8 CHAPTER 3. POINT-TO-POINT COMMUNICATION

int MPI_Buffer_attach_c(void *buffer, MPI_Count size)

Fortran 2008 binding

MPI_Buffer_attach(buffer, size, ierror)
TYPE(*), DIMENSION(..), ASYNCHRONQUS :: buffer
INTEGER, INTENT(IN) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Buffer_attach(buffer, size, ierror) !(_c)
TYPE(*), DIMENSION(..), ASYNCHRONQUS :: buffer
INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_BUFFER_ATTACH(BUFFER, SIZE, IERROR)
<type> BUFFER(*)
INTEGER SIZE, IERROR

Provides to MPI a buffer in the user’s memory to be used for buffering outgoing mes-
sages. The buffer is used only by messages sent in buffered mode. Only one buffer can be
attached to a process at a time. In C, buffer is the starting address of a memory region. In
Fortran, one can pass the first element of a memory region or a whole array, which must be
‘simply contiguous’ (for ‘simply contiguous,” see also Section 19.1.12).

MPI_BUFFER_DETACH(buffer_addr, size)

ouT buffer_addr initial buffer address (choice)
ouT size buffer size, in bytes (integer)
C binding

int MPI_Buffer_detach(void *buffer_addr, int *size)
int MPI_Buffer_detach_c(void *buffer_addr, MPI_Count *size)

Fortran 2008 binding
MPI_Buffer_detach(buffer_addr, size, ierror)
USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
TYPE(C_PTR), INTENT(OUT) :: buffer_addr
INTEGER, INTENT(QUT) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Buffer_detach(buffer_addr, size, ierror) !(_c)
USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
TYPE(C_PTR), INTENT(OUT) :: buffer_addr
INTEGER (KIND=MPI_COUNT_KIND), INTENT(OUT) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_BUFFER_DETACH(BUFFER_ADDR, SIZE, IERROR)
<type> BUFFER_ADDR (*)
INTEGER SIZE, IERROR

3.6. BUFFER ALLOCATION AND USAGE 99

Detach the buffer currently associated with MPI. The call returns the address and the
size of the detached buffer. This procedure will block until all messages currently in the
buffer have been transmitted. Upon return of this function, the user may reuse or deallocate
the space taken by the buffer.

If the size of the detached buffer cannot be represented in size, it is set to
MPI_UNDEFINED.

Example 3.11 Calls to attach and detach buffers.

#define BUFFSIZE 10000

int size;

char *xbuff;

MPI_Buffer_attach(malloc(BUFFSIZE), BUFFSIZE);

/* a buffer of 10000 bytes can now be used by MPI_Bsend */
MPI_Buffer_detach(&buff, &size);

/* Buffer size reduced to zero */

MPI_Buffer_attach(buff, size);

/* Buffer of 10000 bytes available again */

Advice to users. Even though the C functions MPI_Buffer_attach and
MPI_Buffer_detach both have a first argument of type void*, these arguments are
used differently: A pointer to the buffer is passed to MPI_Buffer_attach; the address
of the pointer is passed to MPI_Buffer_detach, so that this call can return the pointer
value. In Fortran with the mpi module or mpif .h, the type of the buffer_addr argument
is wrongly defined and the argument is therefore unused. In Fortran with the mpi_£08
module, the address of the buffer is returned as TYPE(C_PTR), see also Example 9.1
about the use of C_PTR pointers. (End of advice to users.)

Rationale. Both arguments are defined to be of type void* (rather than void* and
void**, respectively), so as to avoid complex type casts. E.g., in the last example,
&buff, which is of type char**, can be passed as argument to MPI_Buffer_detach
without type casting. If the formal parameter had type void** then we would need
a type cast before and after the call. (End of rationale.)

The statements made in this section describe the behavior of MPI for buffered-mode
sends. When no buffer is currently associated, MPIl behaves as if a zero-sized buffer is
associated with the process.

MPI must provide as much buffering for outgoing messages as if outgoing message
data were buffered by the sending process, in the specified buffer space, using a circular,
contiguous-space allocation policy. We outline below a model implementation that defines
this policy. MPI may provide more buffering, and may use a better buffer allocation algo-
rithm than described below. On the other hand, MPI may signal an error whenever the
simple buffering allocator described below would run out of space. In particular, if no buffer
is explicitly associated with the process, then any buffered send may cause an error.

MPI does not provide mechanisms for querying or controlling buffering done by standard
mode sends. It is expected that vendors will provide such information for their implemen-
tations.

Rationale. There is a wide spectrum of possible implementations of buffered com-
munication: buffering can be done at sender, at receiver, or both; buffers can be

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

60 CHAPTER 3. POINT-TO-POINT COMMUNICATION

dedicated to one sender-receiver pair, or be shared by all communications; buffering
can be done in real or in virtual memory; it can use dedicated memory, or memory
shared by other processes; buffer space may be allocated statically or be changed dy-
namically; etc. It does not seem feasible to provide a portable mechanism for querying
or controlling buffering that would be compatible with all these choices, yet provide
meaningful information. (End of rationale.)

3.6.1 Model Implementation of Buffered Mode

The model implementation uses the packing and unpacking functions described in Sec-
tion 5.2 and the nonblocking communication functions described in Section 3.7.

We assume that a circular queue of pending message entries (PME) is maintained.
Each entry contains a communication request handle that identifies a pending nonblocking
send, a pointer to the next entry and the packed message data. The entries are stored in
successive locations in the buffer. Free space is available between the queue tail and the
queue head.

A buffered send call results in the execution of the following code.

e Traverse sequentially the PME queue from head towards the tail, deleting all entries
for communications that have completed, up to the first entry with an uncompleted
request; update queue head to point to that entry.

e Compute the number, n, of bytes needed to store an entry for the new message. An
upper bound on n can be computed as follows: A call to the function
MPI_PACK_SIZE(count, datatype, comm, size), with the count, datatype and comm
arguments used in the MPI_BSEND call, returns an upper bound on the amount
of space needed to buffer the message data (see Section 5.2). The MPI constant
MPI_BSEND_OVERHEAD provides an upper bound on the additional space consumed
by the entry (e.g., for pointers or envelope information).

e Find the next contiguous empty space of n bytes in buffer (space following queue tail,
or space at start of buffer if queue tail is too close to end of buffer). If space is not
found then raise buffer overflow error.

e Append to end of PME queue in contiguous space the new entry that contains request
handle, next pointer and packed message data; MPI_PACK is used to pack data.

e Post nonblocking send (standard mode) for packed data.

e Return

3.7 Nonblocking Communication

Nonblocking communication is important both for reasons of correctness and perfor-
mance. For complex communication patterns, the use of only blocking communication
(without buffering) is difficult because the programmer must ensure that each send is
matched with a receive in an order that avoids deadlock. For communication patterns that
are determined only at run time, this is even more difficult. Nonblocking communication
can be used to avoid this problem, allowing programmers to express complex and possibly
dynamic communication patterns without needing to ensure that all sends and receives

3.7. NONBLOCKING COMMUNICATION 61

are issued in an order that prevents deadlock (see Section 3.5 and the discussion of “safe”
programs). Nonblocking communication also allows for the overlap of communication with
different communication operations, e.g., to prevent the serialization of such operations,
and for the overlap of communication with computation. Whether an implementation is
able to accomplish an effective (from a performance standpoint) overlap of operations de-
pends on the implementation itself and the system on which the implementation is running.
Using nonblocking operations permits an implementation to overlap communication with
computation, but does not require it to do so.

A nonblocking send start call initiates the send operation, but does not complete it.
The send start call can return before the message was copied out of the send buffer. A
separate send complete call is needed to complete the communication, i.e., to verify that
the data has been copied out of the send buffer. With suitable hardware, the transfer of data
out of the sender memory may proceed concurrently with computations done at the sender
after the send was initiated and before it completed. Similarly, a nonblocking receive start
call initiates the receive operation, but does not complete it. The call can return before a
message is stored into the receive buffer. A separate receive complete call is needed to
complete the receive operation and verify that the data has been received into the receive
buffer. With suitable hardware, the transfer of data into the receiver memory may proceed
concurrently with computations done after the receive was initiated and before it completed.
The use of nonblocking receives may also avoid system buffering and memory-to-memory
copying, as information is provided early on the location of the receive buffer.

Nonblocking send start calls can use the same four modes as blocking sends: standard,
buffered, synchronous, and ready. These carry the same meaning. Sends of all modes, ready
excepted, can be started whether a matching receive has been posted or not; a nonblocking
ready send can be started only if a matching receive is posted. In all cases, the send start
call is local: it returns immediately, irrespective of the status of other processes. If the call
causes some system resource to be exhausted, then it will fail and return an error code.
Quality implementations of MPI should ensure that this happens only in “pathological”
cases. That is, an MPI implementation should be able to support a large number of pending
nonblocking operations.

The send-complete call returns when data has been copied out of the send buffer. It
may carry additional meaning, depending on the send mode.

If the send mode is synchronous, then the send can complete only if a matching
receive has started. That is, a receive has been posted, and has been matched with the
send. In this case, the send-complete call is non-local. Note that a synchronous, nonblocking
send may complete, if matched by a nonblocking receive, before the receive complete call
occurs. (It can complete as soon as the sender “knows” the transfer will complete, but
before the receiver “knows” the transfer will complete.)

If the send mode is buffered then the message must be buffered if there is no pending
receive. In this case, the send-complete call is local, and must succeed irrespective of the
status of a matching receive.

If the send mode is standard then the send-complete call may return before a matching
receive is posted, if the message is buffered. On the other hand, the send-complete may not
complete until a matching receive is posted, and the message was copied into the receive
buffer.

Nonblocking sends can be matched with blocking receives, and vice-versa.

Advice to users. The completion of a send operation may be delayed, for standard

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

62 CHAPTER 3. POINT-TO-POINT COMMUNICATION

mode, and must be delayed, for synchronous mode, until a matching receive is posted.
The use of nonblocking sends in these two cases allows the sender to proceed ahead
of the receiver, so that the computation is more tolerant of fluctuations in the speeds
of the two processes.

Nonblocking sends in the buffered and ready modes have a more limited impact, e.g.,
the blocking version of buffered send is capable of completing regardless of when a
matching receive call is made. However, separating the start from the completion
of these sends still gives some opportunity for optimization within the MPI library.
For example, starting a buffered send gives an implementation more flexibility in
determining if and how the message is buffered. There are also advantages for both
nonblocking buffered and ready modes when data copying can be done concurrently
with computation.

The message-passing model implies that communication is initiated by the sender.
The communication will generally have lower overhead if a receive is already posted
when the sender initiates the communication (data can be moved directly to the
receive buffer, and there is no need to queue a pending send request). However, a
receive operation can complete only after the matching send has occurred. The use
of nonblocking receives allows one to achieve lower communication overheads without
blocking the receiver while it waits for the send. (End of advice to users.)

3.7.1 Communication Request Objects

Nonblocking communications use opaque request objects to identify communication oper-
ations and match the operation that initiates the communication with the operation that
terminates it. These are system objects that are accessed via a handle. A request object
identifies various properties of a communication operation, such as the send mode, the com-
munication buffer that is associated with it, its context, the tag and destination arguments
to be used for a send, or the tag and source arguments to be used for a receive. In addition,
this object stores information about the status of the pending communication operation.

3.7.2 Communication Initiation

For the functions defined in this section, we use the same naming conventions as for blocking
communication: a prefix of B, S, or R is used for buffered, synchronous, or ready mode. In
addition, for these functions a prefix of | (for immediate and incomplete) indicates that the
call is nonblocking.

3.7.

NONBLOCKING COMMUNICATION

MPI_ISEND(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)
IN count number of elements in send buffer (non-negative
integer)
IN datatype datatype of each send buffer element (handle)
IN dest rank of destination (integer)
IN tag message tag (integer)
IN comm communicator (handle)
ouT request communication request (handle)
C binding

63

int MPI_Isend(const void *buf, int count, MPI_Datatype datatype, int dest,

int MPI_Isend_c(const void *buf, MPI_Count count, MPI_Datatype datatype,

int tag, MPI_Comm comm, MPI_Request *request)

int dest, int tag, MPI_Comm comm, MPI_Request *request)

Fortran 2008 binding
MPI_Isend(buf, count, datatype, dest, tag, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONQUS :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Isend(buf, count, datatype, dest, tag, comm, request, ierror) !(_c)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONQUS :: buf
INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, INTENT(IN) :: dest, tag

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(QOUT) :: request

INTEGER, OPTIONAL, INTENT(QOUT) :: ierror

Fortran binding
MPI_ISEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF ()
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Start a standard mode nonblocking send.

10

11

12

13

14

15

16

17

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

38

39

41

42

43

44

45

46

47

48

64

CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI_IBSEND(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)
IN count number of elements in send buffer (non-negative
integer)
IN datatype datatype of each send buffer element (handle)
IN dest rank of destination (integer)
IN tag message tag (integer)
IN comm communicator (handle)
ouT request communication request (handle)
C binding
int MPI_Ibsend(const void *buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm, MPI_Request *request)
int MPI_Ibsend_c(const void *buf, MPI_Count count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm, MPI_Request *request)

Fortran 2008 binding
MPI_TIbsend(buf, count, datatype, dest, tag, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONQUS :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ibsend(buf, count, datatype, dest, tag, comm, request, ierror) !(_c)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONQUS :: buf
INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, INTENT(IN) :: dest, tag

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(QOUT) :: request

INTEGER, OPTIONAL, INTENT(QOUT) :: ierror

Fortran binding
MPI_IBSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF ()
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Start a buffered mode nonblocking send.

3.7.

NONBLOCKING COMMUNICATION

MPI_ISSEND(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)
IN count number of elements in send buffer (non-negative
integer)
IN datatype datatype of each send buffer element (handle)
IN dest rank of destination (integer)
IN tag message tag (integer)
IN comm communicator (handle)
ouT request communication request (handle)
C binding

65

int MPI_Issend(const void *buf, int count, MPI_Datatype datatype, int dest,

int MPI_Issend_c(const void *buf, MPI_Count count, MPI_Datatype datatype,

int tag, MPI_Comm comm, MPI_Request *request)

int dest, int tag, MPI_Comm comm, MPI_Request *request)

Fortran 2008 binding
MPI_Issend(buf, count, datatype, dest, tag, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONQUS :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Issend(buf, count, datatype, dest, tag, comm, request, ierror) !(_c)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONQUS :: buf
INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, INTENT(IN) :: dest, tag

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(QOUT) :: request

INTEGER, OPTIONAL, INTENT(QOUT) :: ierror

Fortran binding
MPI_ISSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF ()
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Start a synchronous mode nonblocking send.

10

11

12

13

14

16

17

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

38

39

41

42

43

44

45

46

47

48

66

CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI_IRSEND(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)
IN count number of elements in send buffer (non-negative
integer)
IN datatype datatype of each send buffer element (handle)
IN dest rank of destination (integer)
IN tag message tag (integer)
IN comm communicator (handle)
ouT request communication request (handle)
C binding
int MPI_Irsend(const void *buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm, MPI_Request *request)
int MPI_Irsend_c(const void *buf, MPI_Count count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm, MPI_Request *request)

Fortran 2008 binding
MPI_Irsend(buf, count, datatype, dest, tag, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONQUS :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Irsend(buf, count, datatype, dest, tag, comm, request, ierror) !(_c)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONQUS :: buf
INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, INTENT(IN) :: dest, tag

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(QOUT) :: request

INTEGER, OPTIONAL, INTENT(QOUT) :: ierror

Fortran binding
MPI_IRSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF ()
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Start a ready mode nonblocking send.

3.7.

NONBLOCKING COMMUNICATION

MPI_IRECV(buf, count, datatype, source, tag, comm, request)

ouT buf initial address of receive buffer (choice)
IN count number of elements in receive buffer (non-negative
integer)
IN datatype datatype of each receive buffer element (handle)
IN source rank of source or MPI_ANY_SOURCE (integer)
IN tag message tag or MPI_ANY_TAG (integer)
IN comm communicator (handle)
ouT request communication request (handle)
C binding
int MPI_Irecv(void *buf, int count, MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Request *request)
int MPI_Irecv_c(void *buf, MPI_Count count, MPI_Datatype datatype,

int source, int tag, MPI_Comm comm, MPI_Request *request)

Fortran 2008 binding
MPI_Irecv(buf, count, datatype, source, tag, comm, request, ierror)

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
INTEGER, INTENT(IN) :: count, source, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Irecv(buf, count, datatype, source, tag, comm, request, ierror) !(_c)

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(IN) :: source, tag
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(QOUT) :: request
INTEGER, OPTIONAL, INTENT(QOUT) :: ierror

Fortran binding
MPI_IRECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)

<type> BUF ()
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR

Start a nonblocking receive.

67

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

68 CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI_ISENDRECV((sendbuf, sendcount, sendtype, dest, sendtag, recvbuf, recvcount, recvtype,
source, recvtag, comm, request)

IN sendbuf initial address of send buffer (choice)

IN sendcount number of elements in send buffer (non-negative
integer)

IN sendtype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN sendtag send tag (integer)

ouT recvbuf initial address of receive buffer (choice)

IN recvcount number of elements in receive buffer (non-negative
integer)

IN recvtype datatype of each receive buffer element (handle)

IN source rank of source or MPI_ANY_SOURCE (integer)

IN recvtag receive tag or MPI_ANY_TAG (integer)

IN comm communicator (handle)

ouT request communication request (handle)

C binding

int MPI_Isendrecv(const void *sendbuf, int sendcount,
MPI_Datatype sendtype, int dest, int sendtag, void *recvbuf,
int recvcount, MPI_Datatype recvtype, int source, int recvtag,
MPI_Comm comm, MPI_Request *request)

int MPI_Isendrecv_c(const void *sendbuf, MPI_Count sendcount,
MPI_Datatype sendtype, int dest, int sendtag, void *recvbuf,
MPI_Count recvcount, MPI_Datatype recvtype, int source,
int recvtag, MPI_Comm comm, MPI_Request xrequest)

Fortran 2008 binding
MPI_Isendrecv(sendbuf, sendcount, sendtype, dest, sendtag, recvbuf,
recvcount, recvtype, source, recvtag, comm, request, ierror)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
INTEGER, INTENT(IN) :: sendcount, dest, sendtag, recvcount, source,
recvtag
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(QOUT) :: request
INTEGER, OPTIONAL, INTENT(QOUT) :: ierror

MPI_Isendrecv(sendbuf, sendcount, sendtype, dest, sendtag, recvbuf,
recvcount, recvtype, source, recvtag, comm, request, ierror)
1(_c)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONQOUS :: sendbuf
INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcount

3.7. NONBLOCKING COMMUNICATION 69

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
INTEGER, INTENT(IN) :: dest, sendtag, source, recvtag
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_ISENDRECV (SENDBUF, SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVBUF,
RECVCOUNT, RECVTYPE, SOURCE, RECVTAG, COMM, REQUEST, IERROR)
<type> SENDBUF (%), RECVBUF (%)
INTEGER SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVCOUNT, RECVTYPE,
SOURCE, RECVTAG, COMM, REQUEST, IERROR

Initiate a nonblocking communication request for a send and receive operation.

MPI_ISENDRECV_REPLACE(buf, count, datatype, dest, sendtag, source, recvtag, comm,

request)
INOUT buf initial address of send and receive buffer (choice)
IN count number of elements in send and receive buffer

(non-negative integer)

IN datatype type of elements in send and receive buffer (handle)
IN dest rank of destination (integer)
IN sendtag send message tag (integer)
IN source rank of source or MPI_ANY_SOURCE (integer)
IN recvtag receive message tag or MPI_ANY_TAG (integer)
IN comm communicator (handle)
ouT request communication request (handle)

C binding

int MPI_Isendrecv_replace(void *buf, int count, MPI_Datatype datatype,
int dest, int sendtag, int source, int recvtag, MPI_Comm comm,
MPI_Request *request)

int MPI_Isendrecv_replace_c(void *buf, MPI_Count count,
MPI_Datatype datatype, int dest, int sendtag, int source,
int recvtag, MPI_Comm comm, MPI_Request *request)

Fortran 2008 binding
MPI_Isendrecv_replace(buf, count, datatype, dest, sendtag, source, recvtag,
comm, request, ierror)
TYPE(*), DIMENSION(..), ASYNCHRONQUS :: buf
INTEGER, INTENT(IN) :: count, dest, sendtag, source, recvtag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

70 CHAPTER 3. POINT-TO-POINT COMMUNICATION

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Isendrecv_replace(buf, count, datatype, dest, sendtag, source, recvtag,
comm, request, ierror) !(_c)
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(IN) :: dest, sendtag, source, recvtag
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(QOUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_ISENDRECV_REPLACE(BUF, COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG,
COMM, REQUEST, IERROR)
<type> BUF (%)
INTEGER COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG, COMM, REQUEST,
TERROR

Initiate a nonblocking communication request for a send and receive operation. The
same buffer is used both for the send and for the receive, so that the message sent is replaced
by the message received.

These calls allocate a communication request object and associate it with the request
handle (the argument request). The request can be used later to query the status of the
communication or wait for its completion.

A nonblocking send call indicates that the system may start copying data out of the
send buffer. The sender should not modify any part of the send buffer after a nonblocking
send operation is called, until the send completes.

A nonblocking receive call indicates that the system may start writing data into the re-
ceive buffer. The receiver should not access any part of the receive buffer after a nonblocking
receive operation is called, until the receive completes.

Advice to users. To prevent problems with the argument copying and register
optimization done by Fortran compilers, please note the hints in Sections 19.1.10-
19.1.20. (End of advice to users.)

3.7.3 Communication Completion

The functions MPI_WAIT and MPI_TEST are used to complete a nonblocking communica-
tion. The completion of a send operation indicates that the sender is now free to update the
locations in the send buffer (the send operation itself leaves the content of the send buffer
unchanged). It does not indicate that the message has been received, rather, it may have
been buffered by the communication subsystem. However, if a synchronous mode send was
used, the completion of the send operation indicates that a matching receive was initiated,
and that the message will eventually be received by this matching receive.

The completion of a receive operation indicates that the receive buffer contains the
received message, the receiver is now free to access it, and that the status object is set. It
does not indicate that the matching send operation has completed (but indicates, of course,
that the send was initiated).

3.7. NONBLOCKING COMMUNICATION 71

We shall use the following terminology: A null handle is a handle with value
MPI_REQUEST_NULL. A persistent commumnication request and the handle to it are inactive
if the request is not associated with any ongoing communication (see Section 3.9). A handle
is active if it is neither null nor inactive. An empty status is a status which is set to
return tag = MPI_ANY_TAG, source = MPI_ANY_SOURCE, error = MPI_SUCCESS, and is
also internally configured so that calls to MPI_GET_COUNT, MPI_GET_ELEMENTS, and
MPI_GET_ELEMENTS_X return count = 0 and MPI_TEST_CANCELLED returns false. We
set a status variable to empty when the value returned by it is not significant. Status is set
in this way so as to prevent errors due to accesses of stale information.

The fields in a status object returned by a call to MPI_WAIT, MPI_TEST, or any
of the other derived functions (MPI_{TEST|WAIT}{ALL|SOME|ANY}), where the request
corresponds to a send call, are undefined, with two exceptions: The error status field will
contain valid information if the wait or test call returned with MPI_ERR_IN_STATUS; and
the returned status can be queried by the call MPI_TEST_CANCELLED.

Error codes belonging to the error class MPI_ERR_IN_STATUS should be returned only
by the MPI completion functions that take arrays of MPI_Status. For the functions that take
a single MPI_Status argument, the error code is returned by the function, and the value of
the MPI_ERROR field in the MPI_Status argument is undefined (see 3.2.5).

MPI_WAIT (request, status)

INOUT request request (handle)
ouT status status object (status)
C binding

int MPI_Wait(MPI_Request *request, MPI_Status *status)

Fortran 2008 binding

MPI_Wait(request, status, ierror)
TYPE(MPI_Request), INTENT(INOUT) :: request
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_WAIT(REQUEST, STATUS, IERROR)
INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR

A call to MPI_WAIT returns when the operation identified by request is complete. If the
request is an active persistent communication request, it is marked inactive. Any other type
of request is deallocated and the request handle is set to MPI_REQUEST_NULL. MPI_WAIT
is a mon-local procedure.

The call returns, in status, information on the completed operation. The content of
the status object for a receive operation can be accessed as described in Section 3.2.5. The
status object for a send operation may be queried by a call to MPI_TEST_CANCELLED
(see Section 3.8).

One is allowed to call MPI_WAIT with a null or inactive request argument. In this case
the procedure returns immediately with empty status.

Advice to users. Successful return of MPI_WAIT after a MPI_IBSEND implies that

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

48

72 CHAPTER 3. POINT-TO-POINT COMMUNICATION

the user send buffer can be reused—i.e., data has been sent out or copied into a buffer
attached with MPI_BUFFER_ATTACH. Note that, at this point, we can no longer
cancel the send (see Section 3.8). If a matching receive is never posted, then the
buffer cannot be freed. This runs somewhat counter to the stated goal of MPI_CANCEL
(always being able to free program space that was committed to the communication
subsystem). (End of advice to users.)

Advice to implementors. In a multithreaded environment, a call to MPI_WAIT should
block only the calling thread, allowing the thread scheduler to schedule another thread
for execution. (End of advice to implementors.)

MPI_TEST (request, flag, status)

INOUT request communication request (handle)
ouT flag true if operation completed (logical)
ouT status status object (status)

C binding

int MPI_Test(MPI_Request *request, int *flag, MPI_Status *status)

Fortran 2008 binding

MPI_Test(request, flag, status, ierror)
TYPE(MPI_Request), INTENT(INOUT) :: request
LOGICAL, INTENT(QUT) :: flag
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_TEST(REQUEST, FLAG, STATUS, IERROR)
INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR
LOGICAL FLAG

A call to MPI_TEST returns flag = true if the operation identified by request is complete.
In such a case, the status object is set to contain information on the completed operation.
If the request is an active persistent communication request, it is marked as inactive. Any
other type of request is deallocated and the request handle is set to MPI_REQUEST _NULL.
The call returns flag = false if the operation identified by request is not complete. In this
case, the value of the status object is undefined. MPI_TEST is a local procedure.

The return status object for a receive operation carries information that can be accessed
as described in Section 3.2.5. The status object for a send operation carries information
that can be accessed by a call to MPI_TEST_CANCELLED (see Section 3.8).

One is allowed to call MPI_TEST with a null or inactive request argument. In such a
case the procedure returns with flag = true and empty status.

The procedures MPI_WAIT and MPI_TEST can be used to complete any request-based
nonblocking or persistent operation.

Advice to users. The use of the nonblocking MPI_TEST call allows the user to
schedule alternative activities within a single thread of execution. An event-driven

3.7. NONBLOCKING COMMUNICATION 73

thread scheduler can be emulated with periodic calls to MPI_TEST. (End of advice to
users.)

Example 3.12 Simple usage of nonblocking operations and MPI_WAIT.

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank .EQ. 0) THEN
CALL MPI_ISEND(a(1), 10, MPI_REAL, 1, tag, comm, request, ierr)
***x*x do some computation to mask latency *x*x*
CALL MPI_WAIT(request, status, ierr)

ELSE IF (rank .EQ. 1) THEN
CALL MPI_IRECV(a(1), 15, MPI_REAL, O, tag, comm, request, ierr)
**kxx do some computation to mask latency *k*x*
CALL MPI_WAIT(request, status, ierr)

END IF

A request object can be freed using the following MPI procedure.

MPI_REQUEST _FREE(request)

INOUT request communication request (handle)

C binding
int MPI_Request_free(MPI_Request *request)

Fortran 2008 binding

MPI_Request_free(request, ierror)
TYPE(MPI_Request), INTENT(INOUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_REQUEST_FREE (REQUEST, IERROR)
INTEGER REQUEST, IERROR

MPI_REQUEST_FREE is a local procedure. Upon successful return,
MPI_REQUEST_FREE sets request to MPI_REQUEST_NULL. For an inactive
request representing any type of MPI operation, MPI_REQUEST _FREE shall do the freeing
stage of the associated operation during its execution.

For a request representing a nonblocking point-to-point or a persistent point-to-point
operation, it is permitted (although strongly discouraged) to call MPI_REQUEST_FREE
when the request is active. In this special case, MPI_REQUEST_FREE will only mark the
request for freeing and MPI will actually do the freeing stage of the associated operation
later.

The use of this procedure for generalized requests is described in Section 13.2.

Calling MPI_REQUEST_FREE with an active request representing any other type of
MPI operation (e.g., any partitioned operation (see Chapter 4), any collective operation
(see Chapter 6), any I/O operation (see Chapter 14), or any request-based RMA operation
(see Chapter 12)) is erroneous.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

74

CHAPTER 3. POINT-TO-POINT COMMUNICATION

Rationale. For point-to-point operations, the MPI_REQUEST_FREE mechanism is
provided for reasons of performance and convenience on the sending side. (End of
rationale.)

Advice to users. Once a request is freed by a call to MPI_REQUEST_FREE, it is not
possible to check for the successful completion of the associated communication with
calls to MPI_WAIT or MPI_TEST. Also, if an error occurs subsequently during the
communication, an error code cannot be returned to the user—such an error must be
treated as fatal. An active receive request should never be freed as the receiver will
have no way to verify that the receive has completed and the receive buffer can be
reused. (End of advice to users.)

Example 3.13 An example using MPI_REQUEST _FREE.

CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
IF (rank .EQ. 0) THEN

DO i=1,n
CALL MPI_ISEND(outval, 1, MPI_REAL, 1, 0, MPI_COMM_WORLD, req, ierr)
CALL MPI_REQUEST_FREE(req, ierr)
CALL MPI_IRECV(inval, 1, MPI_REAL, 1, O, MPI_COMM_WORLD, req, ierr)
CALL MPI_WAIT(req, status, ierr)

END DO

ELSE IF (rank .EQ. 1) THEN

CALL MPI_IRECV(inval, 1, MPI_REAL, O, O, MPI_COMM_WORLD, req, ierr)
CALL MPI_WAIT(req, status, ierr)
DO I=1,n-1
CALL MPI_ISEND(outval, 1, MPI_REAL, O, 0, MPI_COMM_WORLD, req, ierr)
CALL MPI_REQUEST_FREE(req, ierr)
CALL MPI_IRECV(inval, 1, MPI_REAL, O, O, MPI_COMM_WORLD, req, ierr)
CALL MPI_WAIT(req, status, ierr)
END DO
CALL MPI_ISEND(outval, 1, MPI_REAL, 0, O, MPI_COMM_WORLD, req, ierr)
CALL MPI_WAIT(req, status, ierr)

END IF

3.7.4 Semantics of Nonblocking Communications

The semantics of nonblocking communication is defined by suitably extending the definitions

in Section 3.5.

Order Nonblocking communication operations are ordered according to the execution

order of the calls that initiate the communication. The non-overtaking requirement of

Section 3.5 is extended to nonblocking communication, with this definition of order being

used.

Example 3.14 Message ordering for nonblocking operations.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (RANK .EQ. 0) THEN

3.7. NONBLOCKING COMMUNICATION 75

CALL MPI_ISEND(a, 1, MPI_REAL, 1, O, comm, rl, ierr)
CALL MPI_ISEND(b, 1, MPI_REAL, 1, O, comm, r2, ierr)
ELSE IF (rank .EQ. 1) THEN
CALL MPI_IRECV(a, 1, MPI_REAL, O, MPI_ANY_TAG, comm, ril, ierr)
CALL MPI_IRECV(b, 1, MPI_REAL, O, O, comm, r2, ierr)
END IF
CALL MPI_WAIT(r1, status, ierr)
CALL MPI_WAIT(r2, status, ierr)

The first send of process zero will match the first receive of process one, even if both messages
are sent before process one executes either receive.

Progress A call to MPI_WAIT that completes a receive will eventually terminate and return
if a matching send has been started, unless the send is satisfied by another receive. In
particular, if the matching send is nonblocking, then the receive should complete even if no
call is executed by the sender to complete the send. Similarly, a call to MPI_WAIT that
completes a send will eventually return if a matching receive has been started, unless the
receive is satisfied by another send, and even if no call is executed to complete the receive.

Example 3.15 An illustration of progress semantics.

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (RANK .EQ. 0) THEN
CALL MPI_SSEND(a, 1, MPI_REAL, 1, O, comm, ierr)
CALL MPI_SEND(b, 1, MPI_REAL, 1, 1, comm, ierr)

ELSE IF (rank .EQ. 1) THEN
CALL MPI_IRECV(a, 1, MPI_REAL, O, O, comm, r, ierr)
CALL MPI_RECV(b, 1, MPI_REAL, 0, 1, comm, status, ierr)
CALL MPI_WAIT(r, status, ierr)

END IF

This code should not deadlock in a correct MPI implementation. The first synchronous send
of process zero must complete after process one posts the matching (nonblocking) receive
even if process one has not yet reached the completing wait call. Thus, process zero will
continue and execute the second send, allowing process one to complete execution.

If an MPI_TEST that completes a receive is repeatedly called with the same arguments,
and a matching send has been started, then the call will eventually return flag = true, unless
the send is satisfied by another receive. If an MPI_TEST that completes a send is repeatedly
called with the same arguments, and a matching receive has been started, then the call will
eventually return flag = true, unless the receive is satisfied by another send.

3.7.5 Multiple Completions

It is convenient to be able to wait for the completion of any, some, or all the operations
in a list, rather than having to wait for a specific message. A call to MPI_WAITANY or
MPI_TESTANY can be used to wait for the completion of one out of several operations. A
call to MPI_WAITALL or MPI_TESTALL can be used to wait for all pending operations in
a list. A call to MPI_WAITSOME or MPI_TESTSOME can be used to complete all enabled

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

76 CHAPTER 3. POINT-TO-POINT COMMUNICATION

operations in a list.

MPI_WAITANY (count, array_of _requests, index, status)

IN count list length (non-negative integer)
INOUT array_of_requests array of requests (array of handles)
ouT index index of handle for operation that completed
(integer)
ouT status status object (status)
C binding

int MPI_Waitany(int count, MPI_Request array_of_requests[], int *index,
MPI_Status *status)

Fortran 2008 binding

MPI_Waitany(count, array_of_requests, index, status, ierror)
INTEGER, INTENT(IN) :: count
TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)
INTEGER, INTENT(OUT) :: index
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_WAITANY(COUNT, ARRAY_OF_REQUESTS, INDEX, STATUS, IERROR)
INTEGER COUNT, ARRAY_OF_REQUESTS(*), INDEX, STATUS(MPI_STATUS_SIZE),
TERROR

Blocks until one of the operations associated with the active requests in the array has
completed. If more than one operation is enabled and can terminate, one is arbitrarily
chosen. Returns in index the index of that request in the array and returns in
status the status of the completing operation. (The array is indexed from zero in C, and
from one in Fortran.) If the request is an active persistent communication request, it is
marked inactive. Any other type of request is deallocated and the request handle is set to
MPI_REQUEST_NULL.

The array_of _requests list may contain null or inactive handles. If the list contains no
active handles (list has length zero or all entries are null or inactive), then the call returns
immediately with index = MPI_UNDEFINED, and an empty status.

The execution of MPI_WAITANY with an array containing multiple entries has the
same effect as the execution of MPI_WAIT with the array entry indicated by the output
value of index (unless the output value of index is MPI_UNDEFINED). MPI_WAITANY with
an array containing one active entry is equivalent to MPI_WAIT.

3.7. NONBLOCKING COMMUNICATION 7

MPI_TESTANY (count, array_of _requests, index, flag, status)

IN count list length (non-negative integer)
INOUT array_of_requests array of requests (array of handles)
ouT index index of operation that completed or
MPI_UNDEFINED if none completed (integer)
ouT flag true if one of the operations is complete (logical)
ouT status status object (status)
C binding

int MPI_Testany(int count, MPI_Request array_of_requests[], int *index,
int *flag, MPI_Status *status)

Fortran 2008 binding

MPI_Testany(count, array_of_requests, index, flag, status, ierror)
INTEGER, INTENT(IN) :: count
TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)
INTEGER, INTENT(OUT) :: index
LOGICAL, INTENT(QUT) :: flag
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_TESTANY(COUNT, ARRAY_OF_REQUESTS, INDEX, FLAG, STATUS, IERROR)
INTEGER COUNT, ARRAY_OF_REQUESTS(*), INDEX, STATUS(MPI_STATUS_SIZE),
TERROR
LOGICAL FLAG

Tests for completion of either one or none of the operations associated with active
handles. In the former case, it returns flag = true, returns in index the index of this request
in the array, and returns in status the status of that operation. If the request is an active
persistent communication request, it is marked as inactive. Any other type of request is
deallocated and the handle is set to MPI_REQUEST_NULL. (The array is indexed from zero
in C, and from one in Fortran.) In the latter case (no operation completed), it returns flag
= false, returns a value of MPI_UNDEFINED in index and status is undefined.

The array may contain null or inactive handles. If the array contains no active handles
then the call returns immediately with flag = true, index = MPI_UNDEFINED, and an empty
status.

If the array of requests contains active handles then the execution of MPI_TESTANY
has the same effect as the execution of MPI_TEST with each of the array elements in some
arbitrary order, until one call returns flag = true, or all fail. In the former case, index is
set to indicate which array element returned flag = true and in the latter case, it is set to
MPI_UNDEFINED. MPI_TESTANY with an array containing one active entry is equivalent
to MPI_TEST.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

78 CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI_WAITALL(count, array_of _requests, array_of _statuses)

IN count list length (non-negative integer)

INOUT array_of_requests array of requests (array of handles)

ouT array_of _statuses array of status objects (array of status)
C binding

int MPI_Waitall(int count, MPI_Request array_of_requests[],
MPI_Status array_of_statuses[])

Fortran 2008 binding

MPI_Waitall(count, array_of_requests, array_of_statuses, ierror)
INTEGER, INTENT(IN) :: count
TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)
TYPE(MPI_Status) :: array_of_statuses(x)
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_WAITALL(COUNT, ARRAY_OF_REQUESTS, ARRAY_OF_STATUSES, IERROR)
INTEGER COUNT, ARRAY_OF_REQUESTS(x*),
ARRAY_QOF _STATUSES (MPI_STATUS_SIZE, *), IERROR

Blocks until all communication operations associated with active handles in the list
complete, and returns the status of all these operations (this includes the case where no
handle in the list is active). Both arrays have the same number of valid entries. The
i-th entry in array_of _statuses is set to the return status of the i-th operation. Active
persistent requests are marked inactive. Requests of any other type are deallocated and the
corresponding handles in the array are set to MPI_REQUEST_NULL. The list may contain
null or inactive handles. The call sets to empty the status of each such entry.

The error-free execution of MPI_WAITALL has the same effect as the execution of
MPI_WAIT for each of the array elements in some arbitrary order. MPI_WAITALL with an
array of length one is equivalent to MPI_WAIT.

When one or more of the communications completed by a call to MPI_WAITALL fail,
it is desirable to return specific information on each communication. The function
MPI_WAITALL will return in such case the error code MPI_ERR_IN_STATUS and will set the
error field of each status to a specific error code. This code will be MPI_SUCCESS, if the
specific communication completed; it will be another specific error code, if it failed; or it can
be MPI_ERR_PENDING if it has neither failed nor completed. The function MPI_WAITALL
will return MPI_SUCCESS if no request had an error, or will return another error code if it
failed for other reasons (such as invalid arguments). In such cases, it will not update the
error fields of the statuses.

Rationale. This design streamlines error handling in the application. The application
code need only test the (single) function result to determine if an error has occurred. It
needs to check each individual status only when an error occurred. (End of rationale.)

3.7. NONBLOCKING COMMUNICATION 79

MPI_TESTALL(count, array_of _requests, flag, array_of _statuses)

IN count list length (non-negative integer)
INOUT array_of_requests array of requests (array of handles)
ouT flag true if all of the operations are complete (logical)
ouT array_of _statuses array of status objects (array of status)
C binding

int MPI_Testall(int count, MPI_Request array_of_requests[], int *flag,
MPI_Status array_of_statuses[])

Fortran 2008 binding

MPI_Testall(count, array_of_requests, flag, array_of_statuses, ierror)
INTEGER, INTENT(IN) :: count
TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)
LOGICAL, INTENT(QUT) :: flag
TYPE(MPI_Status) :: array_of_statuses(*)
INTEGER, OPTIONAL, INTENT(QUT) :: ierror

Fortran binding
MPI_TESTALL(COUNT, ARRAY_OF_REQUESTS, FLAG, ARRAY_OF_STATUSES, IERROR)
INTEGER COUNT, ARRAY_OF_REQUESTS(x*),
ARRAY_OF_STATUSES(MPI_STATUS_SIZE, *), IERROR
LOGICAL FLAG

Returns flag = true if all communications associated with active handles in the array
have completed (this includes the case where no handle in the list is active). In this case, each
status entry that corresponds to an active request is set to the status of the corresponding
operation. Active persistent requests are marked inactive. Requests of any other type are
deallocated and the corresponding handles in the array are set to MPI_REQUEST_NULL.
Each status entry that corresponds to a null or inactive handle is set to empty.

Otherwise, flag = false is returned, no request is modified and the values of the status
entries are undefined. This is a local procedure.

Errors that occurred during the execution of MPI_TESTALL are handled in the same
manner as errors in MPI_WAITALL.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

80 CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI_WAITSOME(incount, array_of _requests, outcount, array_of _indices, array_of _statuses)

IN incount length of array_of_requests (non-negative integer)
INOUT array_of _requests array of requests (array of handles)

ouT outcount number of completed requests (integer)

ouT array_of _indices array of indices of operations that completed (array

of integers)

ouT array_of _statuses array of status objects for operations that completed
(array of status)

C binding

int MPI_Waitsome(int incount, MPI_Request array_of_requests[],
int *outcount, int array_of_indices[],
MPI_Status array_of_statuses[])

Fortran 2008 binding
MPI_Waitsome(incount, array_of_requests, outcount, array_of_indices,
array_of_statuses, ierror)

INTEGER, INTENT(IN) :: incount
TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(incount)
INTEGER, INTENT(OUT) :: outcount, array_of_indices(*)
TYPE(MPI_Status) :: array_of_statuses(x)
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_WAITSOME (INCOUNT, ARRAY_OF_REQUESTS, OUTCOUNT, ARRAY_OF_INDICES,
ARRAY_OF_STATUSES, IERROR)
INTEGER INCOUNT, ARRAY_OF_REQUESTS(*), OUTCOUNT, ARRAY_OF_INDICES(x*),
ARRAY_OF_STATUSES(MPI_STATUS_SIZE, *), IERROR

Waits until at least one of the operations associated with active handles in the list have
completed. Returns in outcount the number of requests from the list array_of _requests that
have completed. Returns in the first outcount locations of the array array_of_indices the
indices of these operations (index within the array array_of _requests; the array is indexed
from zero in C and from one in Fortran). Returns in the first outcount locations of the array
array_of _statuses the status for these completed operations. Completed active persistent
requests are marked as inactive. Any other type or request that completed is deallocated,
and the associated handle is set to MPI_REQUEST_NULL.

If the list contains no active handles, then the call returns immediately with outcount
= MPI_UNDEFINED.

When one or more of the communications completed by MPI_WAITSOME fails, then it
is desirable to return specific information on each communication. The arguments
outcount, array_of _indices and array_of_statuses will be adjusted to indicate completion of
all communications that have succeeded or failed. The call will return the error code
MPI_ERR_IN_STATUS and the error field of each status returned will be set to indicate
success or to indicate the specific error that occurred. The call will return MPI_SUCCESS
if no request resulted in an error, and will return another error code if it failed for other

3.7. NONBLOCKING COMMUNICATION 81

reasons (such as invalid arguments). In such cases, it will not update the error fields of the
statuses.

MPI_TESTSOME(incount, array_of _requests, outcount, array_of _indices, array_of _statuses)

IN incount length of array_of_requests (non-negative integer)
INOUT array_of _requests array of requests (array of handles)

ouT outcount number of completed requests (integer)

ouT array_of _indices array of indices of operations that completed (array

of integers)

ouT array_of _statuses array of status objects for operations that completed
(array of status)

C binding

int MPI_Testsome(int incount, MPI_Request array_of_requestsl[],
int *outcount, int array_of_indices[],
MPI_Status array_of_statuses[])

Fortran 2008 binding
MPI_Testsome(incount, array_of_requests, outcount, array_of_indices,
array_of_statuses, ierror)

INTEGER, INTENT(IN) :: incount
TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(incount)
INTEGER, INTENT(OUT) :: outcount, array_of_indices(*)
TYPE(MPI_Status) :: array_of_statuses(x)
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_TESTSOME (INCOUNT, ARRAY_OF_REQUESTS, OUTCOUNT, ARRAY_OF_INDICES,
ARRAY_OF_STATUSES, IERROR)
INTEGER INCOUNT, ARRAY_OF_REQUESTS(*), OUTCOUNT, ARRAY_OF_INDICES(x*),
ARRAY_OF _STATUSES(MPI_STATUS_SIZE, *), IERROR

Behaves like MPI_WAITSOME, except that it returns immediately. If no operation has
completed it returns outcount = 0. If there is no active handle in the list it returns outcount
= MPI_UNDEFINED.

MPI_TESTSOME is a local procedure, which returns immediately, whereas
MPI_WAITSOME will block until a communication completes, if it was passed a list that
contains at least one active handle. Both calls fulfill a fairness requirement: If a request
for a receive repeatedly appears in a list of requests passed to MPI_WAITSOME or
MPI_TESTSOME, and a matching send has been posted, then the receive will eventually
succeed, unless the send is satisfied by another receive; and similarly for send requests.

Errors that occur during the execution of MPI_TESTSOME are handled as for
MPI_WAITSOME.

Advice to users. The use of MPI_TESTSOME is likely to be more efficient than the use
of MPI_TESTANY. The former returns information on all completed communications,

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

82 CHAPTER 3. POINT-TO-POINT COMMUNICATION

with the latter, a new call is required for each communication that completes.

A server with multiple clients can use MPI_WAITSOME so as not to starve any client.
Clients send messages to the server with service requests. The server calls
MPI_WAITSOME with one receive request for each client, and then handles all receives
that completed. If a call to MPI_WAITANY is used instead, then one client could starve
while requests from another client always sneak in first. (End of advice to users.)

Advice to implementors. MPI_TESTSOME should complete as many pending com-
munications as possible. (End of advice to implementors.)

Example 3.16 Client-server code (starvation can occur).

CALL MPI_COMM_SIZE(comm, size, ierr)
CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank .GT. 0) THEN I client code
DO WHILE(.TRUE.)
CALL MPI_ISEND(a, n, MPI_REAL, O, tag, comm, request, ierr)
CALL MPI_WAIT(request, status, ierr)
END DO
ELSE ! rank=0 -- server code
DO i=1,size-1
CALL MPI_IRECV(a(1l,i), n, MPI_REAL, i, tag, &
comm, request_list(i), ierr)
END DO
DO WHILE(.TRUE.)
CALL MPI_WAITANY(size-1, request_list, index, status, ierr)
CALL DO_SERVICE(a(l,index)) ! handle one message
CALL MPI_IRECV(a(l, index), n, MPI_REAL, index, tag, &
comm, request_list(index), ierr)
END DO
END IF

Example 3.17 Same code, using MPI_WAITSOME.

CALL MPI_COMM_SIZE(comm, size, ierr)
CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank .GT. 0) THEN I client code
DO WHILE(.TRUE.)
CALL MPI_ISEND(a, n, MPI_REAL, O, tag, comm, request, ierr)
CALL MPI_WAIT(request, status, ierr)
END DO
ELSE ! rank=0 —-- server code
DO i=1,size-1
CALL MPI_IRECV(a(1,i), n, MPI_REAL, i, tag, &
comm, request_list(i), ierr)
END DO
DO WHILE(.TRUE.)
CALL MPI_WAITSOME(size, request_list, numdone, &

3.7. NONBLOCKING COMMUNICATION 83

indices, statuses, ierr)
DO i=1,numdone
CALL DO_SERVICE(a(1, indices(i)))
CALL MPI_IRECV(a(1, indices(i)), n, MPI_REAL, 0, tag, &
comm, request_list(indices(i)), ierr)
END DO
END DO
END IF

3.7.6 Non-Destructive Test of status

This call is useful for accessing the information associated with a request, without freeing
the request (in case the user is expected to access it later). It allows one to layer libraries
more conveniently, since multiple layers of software may access the same completed request
and extract from it the status information.

MPI_REQUEST_GET_STATUS(request, flag, status)

IN request request (handle)
ouT flag boolean flag, same as from MPI_TEST (logical)
ouT status status object if flag is true (status)

C binding

int MPI_Request_get_status(MPI_Request request, int *flag,
MPI_Status *status)

Fortran 2008 binding
MPI_Request_get_status(request, flag, status, ierror)
TYPE(MPI_Request), INTENT(IN) :: request
LOGICAL, INTENT(QOUT) :: flag
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_REQUEST_GET_STATUS (REQUEST, FLAG, STATUS, IERROR)
INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR
LOGICAL FLAG

Sets flag = true if the operation is complete, and, if so, returns in status the request
status. However, unlike test or wait, it does not deallocate or inactivate the request; a
subsequent call to test, wait or free should be executed with that request. It sets flag
false if the operation is not complete.

One is allowed to call MPI_REQUEST_GET_STATUS with a null or inactive request
argument. In such a case the procedure returns with flag = true and empty status.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

84 CHAPTER 3. POINT-TO-POINT COMMUNICATION

3.8 Probe and Cancel

The MPI_PROBE, MPI_IPROBE, MPI_MPROBE, and MPI_IMPROBE procedures allow in-
coming messages to be checked for, without actually receiving them. The user can then
decide how to receive them, based on the information returned by the probe (basically,
the information returned by status). In particular, the user may allocate memory for the
receive buffer, according to the length of the probed message.

The MPI_CANCEL procedure allows pending communications to be cancelled. This
is required for cleanup. Posting a send or a receive ties up user resources (send or receive
buffers), and a cancel may be needed to free these resources gracefully.

Cancelling a send request by calling MPI_CANCEL is deprecated. Cancelling a send-
recv request by calling MPI_CANCEL is not allowed.

3.8.1 Probe

MPI_IPROBE(source, tag, comm, flag, status)

IN source rank of source or MPI_ANY_SOURCE (integer)
IN tag message tag or MPI_ANY_TAG (integer)
IN comm communicator (handle)
ouT flag true if there is a matching message that can be
received (logical)
ouT status status object (status)
C binding

int MPI_Iprobe(int source, int tag, MPI_Comm comm, int *flag,
MPI_Status *status)

Fortran 2008 binding

MPI_Iprobe(source, tag, comm, flag, status, ierror)
INTEGER, INTENT(IN) :: source, tag
TYPE(MPI_Comm), INTENT(IN) :: comm
LOGICAL, INTENT(OUT) :: flag
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_IPROBE(SOURCE, TAG, COMM, FLAG, STATUS, IERROR)
INTEGER SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR
LOGICAL FLAG

MPI_IPROBE returns flag = true if there is a message that can be received and that
matches the pattern specified by the arguments source, tag, and comm. The call matches the
same message that would have been received by a call to MPI_RECV with the same argument
values for source, tag, comm, and status executed at the same point in the program, and
returns in status the same value that would have been returned by MPI_RECV. Otherwise,
the call returns flag = false, and leaves status undefined.

3.8. PROBE AND CANCEL 85

If MPI_IPROBE returns flag = true, then the content of the status object can be sub-
sequently accessed as described in Section 3.2.5 to find the source, tag, and length of the
probed message.

MPI_IPROBE is a local procedure since its return does not depend on MPI calls in other
MPI processes, which is marked with the prefix | (for immediate).

A subsequent receive executed with the same communicator, and the source and tag re-
turned in status by MPI_IPROBE will receive the message that was matched by the probe, if
no other intervening receive occurs after the probe, and the send is not successfully cancelled
before the receive. If the receiving process is multithreaded, it is the user’s responsibility
to ensure that the last condition holds.

The source argument of MPI_IPROBE can be MPI_ANY_SOURCE, and the tag argument
can be MPI_ANY_TAG, so that one can probe for messages from an arbitrary source and/or
with an arbitrary tag. However, a specific communication context must be provided with
the comm argument.

It is not necessary to receive a message immediately after it has been probed for, and
the same message may be probed for several times before it is received.

A probe with MPI_PROC_NULL as source returns flag = true, and the status object
returns source = MPI_PROC_NULL, tag = MPI_ANY_TAG, and count = 0; see Section 3.10.

MPI_PROBE(source, tag, comm, status)

IN source rank of source or MPI_ANY_SOURCE (integer)
IN tag message tag or MPI_ANY_TAG (integer)
IN comm communicator (handle)
ouT status status object (status)
C binding

int MPI_Probe(int source, int tag, MPI_Comm comm, MPI_Status *status)

Fortran 2008 binding

MPI_Probe(source, tag, comm, status, ierror)
INTEGER, INTENT(IN) :: source, tag
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(QOUT) :: ierror

Fortran binding
MPI_PROBE(SOURCE, TAG, COMM, STATUS, IERROR)
INTEGER SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

MPI_PROBE behaves like MPI_IPROBE except that it is a non-local call that returns
only after a matching message has been found.

The MPI implementation of MPI_PROBE and MPI_IPROBE needs to guarantee progress:

if a call to MPI_PROBE has been issued by a process, and a send that matches the probe
has been initiated by some process, then the call to MPI_PROBE will return, unless the
message is received by another concurrent receive operation (that is executed by another
thread at the probing process).

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

86 CHAPTER 3. POINT-TO-POINT COMMUNICATION

Similarly, if a process busy waits with MPI_IPROBE and a matching message has been
issued, then the call to MPI_IPROBE will eventually return flag = true unless the message
is received by another concurrent receive operation or matched by a concurrent matching
probe.

Example 3.18 Use probe to wait for an incoming message.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank .EQ. 0) THEN
CALL MPI_SEND(i, 1, MPI_INTEGER, 2, O, comm, ierr)
ELSE IF (rank .EQ. 1) THEN
CALL MPI_SEND(x, 1, MPI_REAL, 2, 0, comm, ierr)
ELSE IF (rank .EQ. 2) THEN
DO i=1,2
CALL MPI_PROBE(MPI_ANY_SOURCE, O, &
comm, status, ierr)
IF (status(MPI_SOURCE) .EQ. 0) THEN

100 CALL MPI_RECV(i, 1, MPI_INTEGER, O, O, comm, status, ierr)
ELSE
200 CALL MPI_RECV(x, 1, MPI_REAL, 1, O, comm, status, ierr)
END IF
END DO
END IF

Each message is received with the right type.

Example 3.19 A similar program to the previous example, but now it has a problem.

D ———— THIS EXAMPLE IS ERRONEOUS ---——————-—————-
CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank .EQ. 0) THEN
CALL MPI_SEND(i, 1, MPI_INTEGER, 2, O, comm, ierr)
ELSE IF (rank .EQ. 1) THEN
CALL MPI_SEND(x, 1, MPI_REAL, 2, 0, comm, ierr)
ELSE IF (rank .EQ. 2) THEN
DO i=1,2
CALL MPI_PROBE(MPI_ANY_SOURCE, 0, &
comm, status, ierr)
IF (status(MPI_SOURCE) .EQ. 0) THEN
100 CALL MPI_RECV(i, 1, MPI_INTEGER, MPI_ANY_SOURCE, &
0, comm, status, ierr)

ELSE
200 CALL MPI_RECV(x, 1, MPI_REAL, MPI_ANY_SOURCE, &
0, comm, status, ierr)
END IF
END DO

END IF

3.8. PROBE AND CANCEL 87

In Example 3.19, the two receive calls in statements labeled 100 and 200 in Example 3.18
are slightly modified, using MPI_ANY_SOURCE as the source argument. The program is now
incorrect: the receive operation may receive a message that is distinct from the message
probed by the preceding call to MPI_PROBE.

Advice to users. In a multithreaded MPI program, MPI_PROBE and
MPI_IPROBE might need special care. If a thread probes for a message and then
immediately posts a matching receive, the receive may match a message other than
that found by the probe since another thread could concurrently receive that original
message [33]. MPI_MPROBE and MPI_IMPROBE solve this problem by matching the
incoming message so that it may only be received with MPI_MRECV or MPI_IMRECV
on the corresponding message handle. (End of advice to users.)

Advice to implementors. A call to MPI_PROBE will match the message that would
have been received by a call to MPI_RECV with the same argmument values for
source, tag, comm, and status executed at the same point. Suppose that this message
has source s, tag t and communicator c. If the tag argument in the probe call has
value MPI_ANY_TAG then the message probed will be the earliest pending message
from source s with communicator ¢ and any tag; in any case, the message probed
will be the earliest pending message from source s with tag t and communicator ¢
(this is the message that would have been received, so as to preserve message order).
This message continues as the earliest pending message from source s with tag t and
communicator ¢, until it is received. A receive operation subsequent to the probe
that uses the same communicator as the probe and uses the tag and source values
returned by the probe, must receive this message, unless it has already been received
by another receive operation. (End of advice to implementors.)

3.8.2 Matching Probe

The function MPI_PROBE checks for incoming messages without receiving them. Since the
list of incoming messages is global among the threads of each MPI process, it can be hard
to use this functionality in threaded environments [33, 30].

Like MPI_PROBE and MPI_IPROBE, the matching probe operation (MPI_MPROBE
and MPI_IMPROBE procedures) allow incoming messages to be queried without actually
receiving them, except that MPI_MPROBE and MPI_IMPROBE provide a mechanism to
receive the specific message that was matched regardless of other intervening probe or
receive operations. This gives the application an opportunity to decide how to receive the
message, based on the information returned by the probe. In particular, the user may
allocate memory for the receive buffer, according to the length of the probed message.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

88 CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI_IMPROBE((source, tag, comm, flag, message, status)

IN source rank of source or MPI_ANY_SOURCE (integer)
IN tag message tag or MPI_ANY_TAG (integer)
IN comm communicator (handle)
ouT flag true if there is a matching message that can be
received (logical)
ouT message returned message (handle)
ouT status status object (status)
C binding

int MPI_Improbe(int source, int tag, MPI_Comm comm, int *flag,
MPI_Message *message, MPI_Status *status)

Fortran 2008 binding

MPI_Improbe(source, tag, comm, flag, message, status, ierror)
INTEGER, INTENT(IN) :: source, tag
TYPE(MPI_Comm), INTENT(IN) :: comm
LOGICAL, INTENT(OUT) :: flag
TYPE(MPI_Message), INTENT(OUT) :: message
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_IMPROBE(SOURCE, TAG, COMM, FLAG, MESSAGE, STATUS, IERROR)
INTEGER SOURCE, TAG, COMM, MESSAGE, STATUS(MPI_STATUS_SIZE), IERROR
LOGICAL FLAG

MPI_IMPROBE returns flag = true if there is a message that can be received and that
matches the pattern specified by the arguments source, tag, and comm. The call matches the
same message that would have been received by a call to MPI_RECV with the same argument
values for source, tag, comm, and status executed at the same point in the program and
returns in status the same value that would have been returned by MPI_RECV. In addition,
it returns in message a message handle to the matched message. Otherwise, the call
returns flag = false, and leaves status and message undefined.

MPI_IMPROBE is a local procedure. According to the definitions in Section 2.4.2 and
in contrast to MPI_IPROBE, it is a nonblocking procedure because it is the initialization of
a matched receive operation.

A matched receive (MPI_MRECV or MPI_IMRECV) executed with the message handle
will receive the message that was matched by the matching probe. Unlike MPI_IPROBE, no
other probe or receive operation may match the message returned by MPI_IMPROBE. Each
message handle returned by MPI_IMPROBE must be received with either MPI_MRECV or
MPI_IMRECV.

The source argument of MPI_IMPROBE can be MPI_ANY_SOURCE, and the
tag argument can be MPI_ANY_TAG, so that one can probe for messages from an arbitrary
source and/or with an arbitrary tag. However, a specific communication context must be
provided with the comm argument.

3.8. PROBE AND CANCEL 89

A synchronous mode send operation that is matched with MPI_IMPROBE or
MPI_MPROBE will complete successfully only if both a matching receive is posted with
MPI_MRECV or MPI_IMRECV, and the matching receive operation has started to receive
the message sent by the synchronous mode send.

There is a special predefined message handle: MPI_MESSAGE_NO_PROC, which
is a message which has MPI_PROC_NULL as its source process. The predefined constant
MPI_MESSAGE_NULL is the value used for invalid message handles.

A matching probe with source = MPI_PROC_NULL returns flag = true, message =
MPI_MESSAGE_NO_PROC, and the status object returns source = MPI_PROC_NULL, tag =
MPI_ANY _TAG, and count = 0; see Section 3.10. It is not necessary to call MPI_MRECV or
MPI_IMRECV with MPI_MESSAGE_NO_PROC, but it is not erroneous to do so.

Rationale. MPI_MESSAGE_NO_PROC was chosen instead of
MPI_MESSAGE_PROC_NULL to avoid possible confusion as another null handle con-
stant. (End of rationale.)

MPI_MPROBE((source, tag, comm, message, status)

IN source rank of source or MPI_ANY_SOURCE (integer)
IN tag message tag or MPI_ANY_TAG (integer)
IN comm communicator (handle)
ouT message returned message (handle)
ouT status status object (status)
C binding

int MPI_Mprobe(int source, int tag, MPI_Comm comm, MPI_Message *message,
MPI_Status *status)

Fortran 2008 binding

MPI_Mprobe(source, tag, comm, message, status, ierror)
INTEGER, INTENT(IN) :: source, tag
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Message), INTENT(OUT) :: message
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_MPROBE (SOURCE, TAG, COMM, MESSAGE, STATUS, IERROR)
INTEGER SOURCE, TAG, COMM, MESSAGE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_MPROBE behaves like MPI_IMPROBE except that it is a blocking call that returns
only after a matching message has been found.

The implementation of MPI_MPROBE and MPI_IMPROBE needs to guarantee progress
in the same way as in the case of MPI_PROBE and MPI_IPROBE.

According to the definitions in Section 2.4.2, MPI_MPROBE is incomplete. It is also a
non-local procedure.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

90 CHAPTER 3. POINT-TO-POINT COMMUNICATION

Advice to users. This is one of the exceptions in which incomplete procedures are
non-local. (End of advice to users.)

3.8.3 Matched Receives

The matched receive operation (MPI_MRECV and MPI_IMRECV procedures) receive mes-
sages that have been previously matched by a matching probe operation (Section 3.8.2).

MPI_MRECV(buf, count, datatype, message, status)

ouT buf initial address of receive buffer (choice)
IN count number of elements in receive buffer (non-negative
integer)
IN datatype datatype of each receive buffer element (handle)
INOUT message message (handle)
ouT status status object (status)
C binding

int MPI_Mrecv(void *buf, int count, MPI_Datatype datatype,
MPI_Message *message, MPI_Status *status)

int MPI_Mrecv_c(void *buf, MPI_Count count, MPI_Datatype datatype,
MPI_Message *message, MPI_Status *status)

Fortran 2008 binding

MPI_Mrecv(buf, count, datatype, message, status, ierror)
TYPE(*), DIMENSION(..) :: buf
INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Message), INTENT(INOUT) :: message
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Mrecv(buf, count, datatype, message, status, ierror) !(_c)
TYPE(*), DIMENSION(..) :: buf
INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Message), INTENT(INOUT) :: message
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_MRECV(BUF, COUNT, DATATYPE, MESSAGE, STATUS, IERROR)
<type> BUF (%)
INTEGER COUNT, DATATYPE, MESSAGE, STATUS(MPI_STATUS_SIZE), IERROR

This call receives a message matched by a matching probe operation (Section 3.8.2).
The receive buffer consists of the storage containing count consecutive elements of the
type specified by datatype, starting at address buf. The length of the received message must

3.8. PROBE AND CANCEL 91

be less than or equal to the length of the receive buffer. An overflow error occurs if all
incoming data does not fit, without truncation, into the receive buffer.

If the message is shorter than the receive buffer, then only those locations corresponding
to the (shorter) message are modified.

On return from this function, the message handle is set to MPI_MESSAGE_NULL. All
errors that occur during the execution of this operation are handled according to the error
handler set for the communicator used in the matching probe call that produced the message
handle.

If MPI_MRECV is called with MPI_MESSAGE_NO_PROC as the message argument, the
call returns immediately with the status object set to source = MPI_PROC_NULL, tag =
MPI_ANY _TAG, and count = 0. This is consistent with the status object produced by a call
to MPI_RECV or to MPI_PROBE with source = MPI_PROC_NULL (see Section 3.10). A call
to MPI_MRECV with MPI_MESSAGE_NULL is erroneous.

MPI_IMRECV(buf, count, datatype, message, request)

ouT buf initial address of receive buffer (choice)
IN count number of elements in receive buffer (non-negative
integer)
IN datatype datatype of each receive buffer element (handle)
INOUT message message (handle)
ouT request communication request (handle)
C binding

int MPI_Imrecv(void *buf, int count, MPI_Datatype datatype,
MPI_Message *message, MPI_Request *request)

int MPI_Imrecv_c(void *buf, MPI_Count count, MPI_Datatype datatype,
MPI_Message *message, MPI_Request *request)

Fortran 2008 binding

MPI_Imrecv(buf, count, datatype, message, request, ierror)
TYPE(*), DIMENSION(..), ASYNCHRONQUS :: buf
INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Message), INTENT(INOUT) :: message
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(QUT) :: ierror

MPI_Imrecv(buf, count, datatype, message, request, ierror) !(_c)
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Message), INTENT(INOUT) :: message
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

92 CHAPTER 3. POINT-TO-POINT COMMUNICATION

Fortran binding

MPI_IMRECV(BUF, COUNT, DATATYPE, MESSAGE, REQUEST, IERROR)
<type> BUF (%)
INTEGER COUNT, DATATYPE, MESSAGE, REQUEST, IERROR

MPI_IMRECV is the nonblocking variant of MPI_MRECV and starts a nonblocking
receive of a matched message. Completion semantics are similar to MPI_IRECV as described
in Section 3.7.2. On return from this function, the message handle is set to
MPI_MESSAGE_NULL.

If MPI_IMRECYV is called with MPI_MESSAGE_NO_PROC as the message argument, the
call returns immediately with a request object which, when completed, will yield a status
object set to source = MPI_PROC_NULL, tag = MPI_ANY_TAG, and count = 0, as if a receive
from MPI_PROC_NULL was issued (see Section 3.10). A call to MPI_IMRECV with
MPI_MESSAGE_NULL is erroneous.

Advice to implementors. If reception of a matched message is started with
MPI_IMRECV, then it is possible to cancel the returned request with MPI_CANCEL. If
MPI_CANCEL succeeds, the matched message must be found by a subsequent message
probe (MPI_PROBE, MPI_IPROBE, MPI_MPROBE, or MPI_IMPROBE), received by
a subsequent receive operation or cancelled by the sender. See Section 3.8.4 for details
about MPI_CANCEL. The cancellation of operations initiated with MPI_IMRECV may
fail. (End of advice to implementors.)

3.8.4 Cancel

MPI_CANCEL(request)

IN request communication request (handle)

C binding
int MPI_Cancel(MPI_Request *request)

Fortran 2008 binding

MPI_Cancel(request, ierror)
TYPE(MPI_Request), INTENT(IN) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_CANCEL (REQUEST, IERROR)
INTEGER REQUEST, IERROR

A call to MPI_CANCEL marks for cancellation a pending, nonblocking communica-
tion operation (send or receive). Cancelling a send request by calling MPI_CANCEL is
deprecated. The cancel call is local. It returns immediately, possibly before the communi-
cation is actually cancelled. It is still necessary to call MPI_REQUEST_FREE, MPI_WAIT or
MPI_TEST (or any of the derived procedures) with the cancelled request as argument after
the call to MPI_CANCEL. If a communication is marked for cancellation, then a MPI_WAIT
call for that communication is guaranteed to return, irrespective of the activities of other
processes (i.e., MPI_WAIT behaves as a local function); similarly if MPI_TEST is repeatedly

3.8. PROBE AND CANCEL 93

called in a busy wait loop for a cancelled communication, then MPI_TEST will eventually
be successful.

MPI_CANCEL can be used to cancel a communication that uses a persistent commu-
nication request (see Section 3.9), in the same way it is used for nonpersistent requests.
Cancelling a persistent send request by calling MPI_CANCEL is deprecated. A successful
cancellation cancels the active communication, but not the request itself. After the call to
MPI_CANCEL and the subsequent call to MPI_WAIT or MPI_TEST, the request becomes
inactive and can be activated for a new communication.

The successful cancellation of a buffered mode send frees the buffer space occupied by
the pending message. Cancelling a buffered mode send request by calling MPI_CANCEL is
deprecated.

Either the cancellation succeeds, or the communication succeeds, but not both. If a
send is marked for cancellation, which is deprecated, then it must be the case that either
the send completes normally, in which case the message sent was received at the destination
process, or that the send is successfully cancelled, in which case no part of the message
was received at the destination. Then, any matching receive has to be satisfied by another
send. If a receive is marked for cancellation, then it must be the case that either the receive
completes normally, or that the receive is successfully cancelled, in which case no part of the
receive buffer is altered. Then, any matching send has to be satisfied by another receive.

If the operation has been cancelled, then information to that effect will be returned in
the status argument of the operation that completes the communication.

Rationale. Although the IN request handle parameter should not need to be passed
by reference, the C binding has listed the argument type as MPI_Request* since MPI-
1.0. This function signature therefore cannot be changed without breaking existing
MPI applications. (End of rationale.)

MPI_TEST_CANCELLED(status, flag)

IN status status object (status)
ouT flag true if the operation has been cancelled (logical)
C binding

int MPI_Test_cancelled(const MPI_Status *status, int *flag)

Fortran 2008 binding
MPI_Test_cancelled(status, flag, ierror)
TYPE(MPI_Status), INTENT(IN) :: status
LOGICAL, INTENT(OUT) :: flag
INTEGER, OPTIONAL, INTENT(QOUT) :: ierror

Fortran binding

MPI_TEST_CANCELLED(STATUS, FLAG, IERROR)
INTEGER STATUS(MPI_STATUS_SIZE), IERROR
LOGICAL FLAG

Returns flag = true if the communication associated with the status object was cancelled
successfully. In such a case, all other fields of status (such as count or tag) are undefined.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

94 CHAPTER 3. POINT-TO-POINT COMMUNICATION

Returns flag = false, otherwise. If a receive operation might be cancelled then one should
call MPI_TEST_CANCELLED first, to check whether the operation was cancelled, before
checking on the other fields of the return status.

Advice to users. Cancel can be an expensive operation that should be used only
exceptionally. (End of advice to users.)

Advice to implementors. If a send operation uses an “eager” protocol (data is
transferred to the receiver before a matching receive is posted), then the cancellation
of this send may require communication with the intended receiver in order to free
allocated buffers. On some systems this may require an interrupt to the intended
receiver. Note that, while communication may be needed to implement
MPI_CANCEL, this is still a local procedure, since its completion does not depend on
the code executed by other processes. If processing is required on another process,
this should be transparent to the application (hence the need for an interrupt and an
interrupt handler). (End of advice to implementors.)

3.9 Persistent Communication Requests

Often a communication with the same argument list (with the exception of the buffer con-
tents) is repeatedly executed within the inner loop of a parallel computation. In such a
situation, it may be possible to optimize the communication by binding the list of commu-
nication arguments to a persistent communication request once and then repeatedly using
the request to start and complete operations. In the case of point-to-point communication,
the persistent communication request thus created can be thought of as a communication
port or a “half-channel.” It does not provide the full functionality of a conventional channel,
since there is no binding of the send port to the receive port. This construct allows reduction
of the overhead for communication between the process and communication controller, but
not of the overhead for communication between one communication controller and another.
It is not necessary that messages sent with a persistent point-to-point request be received
by a receive operation using a persistent point-to-point request, or vice versa.

There are also persistent collective communication operations defined in Section 6.13
and Section 8.8. The remainder of this section covers the point-to-point persistent ini-
tialization operations and the start routines, which are used for persistent point-to-point,
partitioned point-to-point, and persistent collective communication operations.

A point-to-point persistent communication request is created using one of the five
following calls. These point-to-point persistent initialization calls involve no communica-
tion.

3.9. PERSISTENT COMMUNICATION REQUESTS 95

MPI_SEND_INIT (buf, count, datatype, dest, tag, comm, request) !
IN buf initial address of send buffer (choice) j
IN count number of elements sent (non-negative integer) 4
IN datatype type of each element (handle) 5
IN dest rank of destination (integer) i
IN tag message tag (integer) 8
IN comm communicator (handle) o
ouT request communication request (handle) 1?

12

C binding 13

int MPI_Send_init(const void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm, MPI_Request *request)

14

15

int MPI_Send_init_c(const void *buf, MPI_Count count, 16
MPI_Datatype datatype, int dest, int tag, MPI_Comm comm, 7

MPI_Request *request) "

19

Fortran 2008 binding 20
MPI_Send_init(buf, count, datatype, dest, tag, comm, request, ierror) 21
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf 29
INTEGER, INTENT(IN) :: count, dest, tag 23
TYPE(MPI_Datatype), INTENT(IN) :: datatype 24
TYPE(MPI_Comm), INTENT(IN) :: comm 25
TYPE(MPI_Request), INTENT(OUT) :: request 2%
INTEGER, OPTIONAL, INTENT(OUT) :: ierror o7
MPI_Send_init(buf, count, datatype, dest, tag, comm, request, ierror) !(_c) *
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONQUS :: buf 29
INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: count 30
TYPE(MPI_Datatype), INTENT(IN) :: datatype o
INTEGER, INTENT(IN) :: dest, tag -
TYPE(MPI_Comm), INTENT(IN) :: comm 33
TYPE(MPI_Request), INTENT(QOUT) :: request o
INTEGER, OPTIONAL, INTENT(OUT) :: ierror 5

36

Fortran binding 37
MPI_SEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR) 38
<type> BUF (%) 39
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR 40

Creates a persistent communication request for a standard mode send operation. :
43
44
45
46
47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

96

CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI_BSEND_INIT (buf, count, datatype, dest, tag, comm, request)

IN buf

IN count

IN datatype

IN dest

IN tag

IN comm

ouT request
C binding

initial address of send buffer (choice)

number of elements sent (non-negative integer)
type of each element (handle)

rank of destination (integer)

message tag (integer)

communicator (handle)

communication request (handle)

int MPI_Bsend_init(const void *buf, int count, MPI_Datatype datatype,

int dest,

int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Bsend_init_c(const void *buf, MPI_Count count,
MPI_Datatype datatype, int dest, int tag, MPI_Comm comm,
MPI_Request *request)

Fortran 2008 binding

MPI_Bsend_init(buf, count, datatype, dest, tag, comm, request, ierror)
TYPE(*), DIMENSIONC(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN)
TYPE(MPI_Datatype),

count, dest, tag
INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request),
INTEGER, OPTIONAL,

INTENT(OUT) :: request
INTENT(OUT) :: ierror

MPI_Bsend_init(buf, count, datatype, dest, tag, comm, request, ierror)

1(_c)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONQUS :: buf
INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: count

TYPE(MPI_Datatype),
INTEGER, INTENT(IN)

INTENT(IN) :: datatype
:: dest, tag

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request),
INTEGER, OPTIONAL,

Fortran binding

INTENT(OUT) :: request
INTENT(OUT) :: ierror

MPI_BSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF (%)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Creates a persistent communication request for a buffered mode send operation.

3.9.

PERSISTENT COMMUNICATION REQUESTS

MPI_SSEND_INIT (buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)
IN count number of elements sent (non-negative integer)
IN datatype type of each element (handle)
IN dest rank of destination (integer)
IN tag message tag (integer)
IN comm communicator (handle)
ouT request communication request (handle)
C binding
int MPI_Ssend_init(const void *buf, int count, MPI_Datatype datatype,

int

int dest, int tag, MPI_Comm comm, MPI_Request *request)

MPI_Ssend_init_c(const void *buf, MPI_Count count,
MPI_Datatype datatype, int dest, int tag, MPI_Comm comm,
MPI_Request *request)

Fortran 2008 binding
MPI_Ssend_init(buf, count, datatype, dest, tag, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONQUS :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ssend_init(buf, count, datatype, dest, tag, comm, request, ierror)

1(_c)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(IN) :: dest, tag
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(QOUT) :: ierror

Fortran binding
MPI_SSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF (%)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

97

Creates a persistent communication request for a synchronous mode send operation.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

98 CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI_RSEND_INIT (buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)
IN count number of elements sent (non-negative integer)
IN datatype type of each element (handle)
IN dest rank of destination (integer)
IN tag message tag (integer)
IN comm communicator (handle)
ouT request communication request (handle)
C binding

int MPI_Rsend_init(const void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Rsend_init_c(const void *buf, MPI_Count count,
MPI_Datatype datatype, int dest, int tag, MPI_Comm comm,
MPI_Request *request)

Fortran 2008 binding
MPI_Rsend_init(buf, count, datatype, dest, tag, comm, request, ierror)
TYPE(*), DIMENSIONC(..), INTENT(IN), ASYNCHRONOUS :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Rsend_init(buf, count, datatype, dest, tag, comm, request, ierror)
t(_c)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONQOUS :: buf
INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(IN) :: dest, tag
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_RSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF (%)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Creates a persistent communication request for a ready mode send operation.

3.9. PERSISTENT COMMUNICATION REQUESTS 99

MPI_RECV_INIT (buf, count, datatype, source, tag, comm, request)

ouT buf initial address of receive buffer (choice)
IN count number of elements received (non-negative integer)
IN datatype type of each element (handle)
IN source rank of source or MPI_ANY_SOURCE (integer)
IN tag message tag or MPI_ANY_TAG (integer)
IN comm communicator (handle)
ouT request communication request (handle)
C binding

int MPI_Recv_init(void *buf, int count, MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Recv_init_c(void *buf, MPI_Count count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Request *request)

Fortran 2008 binding
MPI_Recv_init(buf, count, datatype, source, tag, comm, request, ierror)
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
INTEGER, INTENT(IN) :: count, source, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(QOUT) :: request
INTEGER, OPTIONAL, INTENT(QOUT) :: ierror

MPI_Recv_init(buf, count, datatype, source, tag, comm, request, ierror)
1(_c)
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(IN) :: source, tag
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_RECV_INIT(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)
<type> BUF ()
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR

Creates a persistent communication request for a receive operation. The argument buf
is marked as OUT because the user gives permission to write on the receive buffer by passing
the argument to MPI_RECV_INIT.

A persistent communication request is inactive after it was created—no active commu-
nication is attached to the request.

A communication that uses a persistent communication request is started by the func-
tion MPI_START.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

100 CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI_START (request)

INOUT request communication request (handle)

C binding
int MPI_Start(MPI_Request *request)

Fortran 2008 binding

MPI_Start(request, ierror)
TYPE(MPI_Request), INTENT(INOUT) :: request
INTEGER, OPTIONAL, INTENT(QOUT) :: ierror

Fortran binding
MPI_START (REQUEST, IERROR)
INTEGER REQUEST, IERROR

The argument, request, is a handle returned by any of the initialization procedures for
persistent point-to-point communication (the previous five procedures), or for partitioned
point-to-point communication (see Section 4), or for persistent collective communication
(see Sections 6.13 and 8.8). The associated request should be inactive. The request becomes
active once the call is made.

If the request is for a ready mode send operation, then a matching receive operation
should be posted before the call is made. The communication buffer should not be modified
after the call, and until the operation completes.

The call is local, with similar semantics to the nonblocking communication operations
described in Section 3.7. That is, a call to MPI_START with a request created by
MPI_SEND_INIT starts a communication in the same manner as a call to MPI_ISEND; a
call to MPI_START with a request created by MPI_BSEND_INIT starts a communication
in the same manner as a call to MPI_IBSEND; and so on.

MPI_STARTALL(count, array_of _requests)

IN count list length (non-negative integer)
INOUT array_of_requests array of requests (array of handles)
C binding

int MPI_Startall(int count, MPI_Request array_of_requests[])

Fortran 2008 binding

MPI_Startall(count, array_of_requests, ierror)
INTEGER, INTENT(IN) :: count
TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_STARTALL(COUNT, ARRAY_OF_REQUESTS, IERROR)
INTEGER COUNT, ARRAY_OF_REQUESTS(*), IERROR

The execution of MPI_STARTALL has the same effect as the execution of MPI_START
for each of the array elements in some arbitrary order. MPI_STARTALL with an array of

3.10. NULL PROCESSES 101

length one is equivalent to MPI_START.

A communication started with a call to MPI_START or MPI_STARTALL is completed
by a call to MPI_WAIT, MPI_TEST, or one of the derived functions described in Sec-
tion 3.7.5. The request becomes inactive after successful completion of such call. The re-
quest is not deallocated and it can be activated anew by an MPI_START or MPI_STARTALL
call.

A persistent communication request is deallocated by a call to MPI_REQUEST _FREE
(Section 3.7.3). The call to MPI_REQUEST_FREE can occur at any point in the program
after the persistent request was created. However, the request will be deallocated only after
it becomes inactive. Active receive requests should not be freed. Otherwise, it will not
be possible to check that the receive has completed. Collective operation requests (defined
in Section 6.12 and Section 8.7 for nonblocking collective operations, and Section 6.13
and Section 8.8 for persistent collective operations) must not be freed while active. It is
preferable, in general, to free requests when they are inactive. If this rule is followed, then
the functions described in this section will be invoked in a sequence of the form,

Create (Start Complete)* Free

where * indicates zero or more repetitions. If the same persistent communication request is
used in several concurrent threads, it is the user’s responsibility to coordinate calls so that
the correct sequence is obeyed.

A send operation started with MPI_START can be matched with any receive operation
and, likewise, a receive operation started with MPI_START can receive messages generated
by any send operation.

Advice to users. To prevent problems with the argument copying and register
optimization done by Fortran compilers, please note the hints in Sections 19.1.10-
19.1.20. (End of advice to users.)

3.10 Null Processes

In many instances, it is convenient to specify a “dummy” source or destination for commu-
nication. This simplifies the code that is needed for dealing with boundaries, for example,
in the case of a noncircular shift done with calls to send-receive.

The special value MPI_PROC_NULL can be used instead of a rank wherever a source or a
destination argument is required in a call. A communication with process MPI_PROC_NULL
has no effect. A send to MPI_PROC_NULL succeeds and returns as soon as possible. A receive
from MPI_PROC_NULL succeeds and returns as soon as possible with no modifications to
the receive buffer. When a receive with source = MPI_PROC_NULL is executed then the
status object returns source = MPI_PROC_NULL, tag = MPI_ANY_TAG and count = 0. A
probe or matching probe with source = MPI_PROC_NULL succeeds and returns as soon as
possible, and the status object returns source = MPI_PROC_NULL, tag = MPI_ANY_TAG and
count = 0. A matching probe (cf. Section 3.8.2) with source = MPI_PROC_NULL returns
flag = true, message = MPI_MESSAGE_NO_PROC, and the status object returns source =
MPI_PROC_NULL, tag = MPI_ANY_TAG, and count = 0.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

'S

© oo ~ =] ot

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

102

CHAPTER 3. POINT-TO-POINT COMMUNICATION

Chapter 4

Partitioned Point-to-Point
Communication

4.1 Introduction

Partitioned communication extends persistent point-to-point communication as defined in
Chapter 3. Partitioned communication operations are matched based on the order in which
the local initialization calls are performed. Partitioned communication is “partitioned”
because it allows for multiple contributions of data to be made, potentially, from multiple
actors (e.g., threads or tasks) in an MPI process to a single communication operation.

Advice to users. The techniques of partitioned communication were known as “fine-
points” before their adoption into the MPI standard. We refer the interested reader to
the original literature describing the design goals, functioning, initial implementation
and performance improvements [28, 29]. (End of advice to users.)

Partitioned communication operations use a persistent communication style that in-
volves a sequence of start and test or wait operations. For this sequence, partitioned commu-
nications use MPI_START or MPI_STARTALL calls and completion mechanisms (MPI_TEST
or MPI_WAIT). Partitioned communication is different in three fundamental ways from per-
sistent point-to-point operations in MPI. First, partitioned communication allows additional
partitioned test function calls that can expose partial completion of the operation. Second,
partitioned communication may perform all of the initialization required to enable data
transfer as early as its initialization phase. Third, partitioned communication allows for
MPI to be independently notified of multiple contributions from the send-side to a single
data buffer of a single MPI| message.

Rationale. The rationale behind having different initialization behavior allowed for
partitioned communication as opposed to persistent point-to-point communication is
to enable flexibility and optimization possibilities in implementations. Buffer setup
can occur in the partitioned communication initialization functions (see Section 4.2.1).
However, such negotiation can be deferred until data is to be moved between two
processes. This means that partitioned communication can lazily negotiate as late as
testing for completion of the operation on the first iteration of a sequence of partitioned
communication start and test or wait operations. Matching still occurs as if matching
happened at the partitioned communication initialization functions as noted in the
function descriptions. (End of rationale.)

103

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

104 CHAPTER 4. PARTITIONED POINT-TO-POINT COMMUNICATION

4.2 Semantics of Partitioned Point-to-Point Communication

MPI guarantees certain general properties of partitioned point-to-point communication
progress, which are described in this section.

Persistent communications use opaque MPI_REQUEST objects as described in Sec-
tion 3. Partitioned communication uses these same semantics for MPI_REQUEST objects.

Partitioned communication provides fine-grained transfers on either or both sides of a
send-receive operation described by requests. Persistent communication semantics are ideal
for partitioned communication: they provide MPI_PSEND_INIT and MPI_PRECV_INIT
functions that allow partitioned communication setup to occur prior to message transfers.
Partitioned communication initialization functions are local. The partitioned communica-
tion initialization includes inputs on the number of user-visible partitions on the send-side
and receive-side, which may differ. Valid partitioned communication operations must have
one or more partitions specified.

Once an MPI_PSEND_INIT call has been made, the user may start the operation with
a call to a starting procedure and complete the operation with a number of MPI_PREADY
calls equal to the requested number of send partitions followed by a call to a completing
procedure. A call to MPI_PREADY notifies the MPI library that a specified portion of the
data buffer (a specific partition) is ready to be sent. Notification of partial completion can
be done via fine-grained MPI_PARRIVED calls at the receiver before a final MPI_TEST/
MPI_WAIT on the request itself; the latter represents overall operation completion upon
success. A full set of methods for starting and completing partitioned communication is
given in the following sections.

Adwvice to users. Having a large number of receiver-side partitions can increase over-
heads as the completion mechanism may need to work with finer-grained notifications.
Using a small number of receiver-side partitions may provide higher performance.

A large number of sender-side partitions may be aggregated by an MPI implementa-
tion, making performance concerns of a large number of sender-side partitions poten-
tially less impactful than receiver-side granularity. (End of advice to users.)

Advice to implementors. It is expected that an MPI implementation will attempt to
balance latency and aggregation for data transfers for the requested partition counts on
the sender-side and receiver-side to allow optimization for different hardware. A high
quality implementation may perform significant optimizations to enhance performance
in this way; they may, for example, resize the data transfers of the partitions to
combine partitions in fractional partition sizes (e.g., 2.5 partitions in a single data
transfer). (End of advice to implementors.)

Example 4.1 shows a simple partitioned transfer in which the sender-side and receiver-
side partitioning is identical in partition count.

Example 4.1 Simple partitioned communication example.

#include "mpi.h"

#define PARTITIONS 8

#define COUNT 5

int main(int argc, char *argv[])

{

4.2. SEMANTICS OF PARTITIONED POINT-TO-POINT COMMUNICATION 105

double message [PARTITIONS*COUNT] ;

MPI_Count partitions = PARTITIONS;

int source = 0, dest = 1, tag = 1, flag = O;

int myrank, ij;

int provided;

MPI_Request request;

MPI_Init_thread(&argc, &argv, MPI_THREAD_SERIALIZED, &provided);
if (provided < MPI_THREAD_SERIALIZED)

MPI_Abort (MPI_COMM_WORLD, EXIT_FAILURE);

MPI_Comm_rank (MPI_COMM_WORLD, &myrank);
if (myrank == 0)

{

}

MPI_Psend_init(message, partitions, COUNT, MPI_DOUBLE, dest, tag,
MPI_COMM_WORLD, MPI_INFO_NULL, &request);
MPI_Start(&request);
for(i = 0; i < partitions; ++i)
{
/* compute and fill partition #i, then mark ready: */
MPI_Pready(i, request);
}
while(!flag)
{
/* do useful work #1 */
MPI_Test(&request, &flag, MPI_STATUS_IGNORE);
/* do useful work #2 */
}
MPI_Request_free(&request);

else if (myrank == 1)

{

¥

MPI_Precv_init(message, partitions, COUNT, MPI_DOUBLE, source, tag,
MPI_COMM_WORLD, MPI_INFO_NULL, &request);
MPI_Start(&request);
while(!flag)
{
/* do useful work #1 */
MPI_Test(&request, &flag, MPI_STATUS_IGNORE);
/* do useful work #2 */
}
MPI_Request_free(&request);

MPI_Finalize();
return O;

}

Rationale. Partitioned communication is designed to provide opportunities for MPI
implementations to optimize data transfers. MPI is free to choose how many transfers
to do within a partitioned communication send independent of how many partitions

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

106

CHAPTER 4. PARTITIONED POINT-TO-POINT COMMUNICATION

are reported as ready to MPI through MPI_PREADY calls. Aggregation of partitions
is permitted but not required. Ordering of partitions is permitted but not required.
A naive implementation can simply wait for the entire message buffer to be marked
ready before any transfer(s) occur and could wait until the completion function is
called on a request before transferring data. However, this modality of communication
gives MPI implementations far more flexibility in data movement than non-partitioned
communications. (End of rationale.)

4.2.1 Communication Initialization and Starting with Partitioning

Initialization of partitioned communication operations use the initialization calls described
below. Subsequent to initialization, MPI_START/MPI_STARTALL are used as the first
indication to MPI that a message transfer will occur. For send-side operations, neither
initializing nor starting the operation enables transfer of any part of the user buffer. Freeing
or canceling a partitioned communication request that is active (i.e., initialized and started)
and not completed is erroneous. After the partitioned communication operation is started,
individual partitions of a message are indicated as ready to be sent by MPI via the
MPI_PREADY function, described below.

MPI_PSEND_INIT (buf, partitions, count, datatype, dest, tag, comm, info, request)

IN buf initial address of send buffer (choice)
IN partitions number of partitions (non-negative integer)
IN count number of elements sent per partition (non-negative
integer)
IN datatype type of each element (handle)
IN dest rank of destination (integer)
IN tag message tag (integer)
IN comm communicator (handle)
IN info info argument (handle)
ouT request communication request (handle)
C binding
int MPI_Psend_init(const void *buf, int partitions, MPI_Count count,

MPI_Datatype datatype, int dest, int tag, MPI_Comm comm,
MPI_Info info, MPI_Request *request)

Fortran 2008 binding

MPI_

Psend_init(buf, partitions, count, datatype, dest, tag, comm, info,
request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: buf

INTEGER, INTENT(IN) :: partitions, dest, tag

INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Info), INTENT(IN) :: info

4.2. SEMANTICS OF PARTITIONED POINT-TO-POINT COMMUNICATION 107

TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_PSEND_INIT(BUF, PARTITIONS, COUNT, DATATYPE, DEST, TAG, COMM, INFO,
REQUEST, IERROR)
<type> BUF ()
INTEGER PARTITIONS, DATATYPE, DEST, TAG, COMM, INFO, REQUEST, IERROR
INTEGER (KIND=MPI_COUNT_KIND) COUNT

MPI_PSEND_INIT creates a partitioned communication request and binds to it all the ar-
guments of a partitioned send operation. Matching follows the same MPI matching rules
as for point-to-point communication (see Chapter 3) with communicator, tag, and source
dictating message matching. In the event that the communicator, tag, and source do not
uniquely identify a message, the order in which partitioned communication initialization
calls are made is the order in which they will eventually match. This operation can only
match with partitioned communication initialization operations, therefore it is required to
be matched with a corresponding MPI_PRECV_INIT call. Partitioned communication ini-
tialization calls are local. It is erroneous to provide a partitions value < 0. Send-side and
receive-side buffers must be identical in size.

Advice to implementors. Unlike MPI_SEND_INIT, MPI_PSEND_INIT can be matched
as early as the initialization call. Also, unlike MPI_SEND_INIT, MPI_PSEND_INIT

takes an info argument. (End of advice to implementors.)

MPI_PRECV_INIT (buf, partitions, count, datatype, source, tag, comm, info, request)

IN buf initial address of recv buffer (choice)
IN partitions number of partitions (non-negative integer)
IN count number of elements received per partition

(non-negative integer)

IN datatype type of each element (handle)

IN source rank of source (integer)

IN tag message tag (integer)

IN comm communicator (handle)

IN info info argument (handle)

ouT request communication request (handle)
C binding

int MPI_Precv_init(void *buf, int partitions, MPI_Count count,
MPI_Datatype datatype, int source, int tag, MPI_Comm comm,
MPI_Info info, MPI_Request *request)

Fortran 2008 binding
MPI_Precv_init(buf, partitions, count, datatype, source, tag, comm, info,
request, ierror)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11

12

13

14

15

16

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

108

CHAPTER 4. PARTITIONED POINT-TO-POINT COMMUNICATION

TYPE(*), DIMENSION(..), INTENT(IN) :: buf

INTEGER,

INTENT(IN) :: partitions, source, tag

INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Request), INTENT(QOUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_PRECV_INIT(BUF, PARTITIONS, COUNT, DATATYPE, SOURCE, TAG, COMM, INFO,

REQUEST, IERROR)

<type> BUF (%)
INTEGER PARTITIONS, DATATYPE, SOURCE, TAG, COMM, INFO, REQUEST, IERROR
INTEGER (KIND=MPI_COUNT_KIND) COUNT

Rationale.

The info argument is provided in order to support per-operation imple-

mentation-defined info keys. (End of rationale.)

MPI_PRECV_INIT creates a partitioned communication receive request and binds to it
all the arguments of a partitioned receive operation. This operation can only match with
partitioned communication initialization operations, therefore the MPI library is required to
match MPI_PRECV_INIT calls only with a corresponding MPI_PSEND_INIT call. Matching
follows the same MPI matching rules as for point-to-point communication (see Chapter 3)
with communicator, tag, and source dictating message matching. In the event that the
communicator, tag, and source do not uniquely identify a message, the order in which
partitioned communication initialization calls are made is the order in which they will
eventually match. Partitioned communication initialization calls are local. That is,
MPI_PRECV_INIT may return before the operation completes. It is erroneous to provide a
partitions value < 0. Wildcards for source and tag are not allowed.

Advice to implementors. Unlike MPI_RECV_INIT, MPI_PRECV_INIT may communi-
cate. Also unlike MPI_RECV_INIT, MPI_PRECV_INIT takes an info argument. (End
of advice to implementors.)

MPI_PREADY (partition, request)

IN

INOUT

C binding

partition partition to mark ready for transfer (non-negative
integer)
request partitioned communication request (handle)

int MPI_Pready(int partition, MPI_Request request)

Fortran 2008 binding
MPI_Pready(partition, request, ierror)
INTEGER, INTENT(IN) :: partition

4.2. SEMANTICS OF PARTITIONED POINT-TO-POINT COMMUNICATION 109

TYPE(MPI_Request), INTENT(IN) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_PREADY(PARTITION, REQUEST, IERROR)
INTEGER PARTITION, REQUEST, IERROR

MPI_PREADY is a send-side call that indicates that a given partition is ready to be
transferred. It is erroneous to use MPI_PREADY on any request object that does not
correspond to a partitioned send operation. The partitioning is defined by the
MPI_PSEND_INIT call. Partition numbering starts at zero and ranges to one less than
the number of partitions declared in the MPI_PSEND_INIT call. Specifying a partition
number that is equal to or larger than the number of partitions is erroneous. After a call
to MPI_START /MPI_STARTALL, all partitions associated with that operation are inactive.
A call to MPI_PREADY marks the indicated partition as active. Calling MPI_PREADY on

an active partition is erroneous.

MPI_PREADY _RANGE(partition_low, partition_high, request)

IN partition_low lowest partition ready for transfer (non-negative
integer)
IN partition_high highest partition ready for transfer (non-negative
integer)
INOUT request partitioned communication request (handle)
C binding

int MPI_Pready_range(int partition_low, int partition_high,
MPI_Request request)

Fortran 2008 binding

MPI_Pready_range(partition_low, partition_high, request, ierror)
INTEGER, INTENT(IN) :: partition_low, partition_high
TYPE(MPI_Request), INTENT(IN) :: request
INTEGER, OPTIONAL, INTENT(QOUT) :: ierror

Fortran binding
MPI_PREADY_RANGE (PARTITION_LOW, PARTITION_HIGH, REQUEST, IERROR)
INTEGER PARTITION_LOW, PARTITION_HIGH, REQUEST, IERROR

A call to MPI_PREADY_RANGE has the same effect as calls to
MPI_PREADY, executed for i=partition_low, ..., partition_high, in some arbitrary order.
Calls to MPI_PREADY _RANGE follow the same rules as those for MPI_PREADY calls.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

110 CHAPTER 4. PARTITIONED POINT-TO-POINT COMMUNICATION

MPI_PREADY _LIST(length, array_of _partitions, request)

IN length list length (integer)
IN array_of _partitions array of partitions (array of non-negative integers)
INOUT request partitioned communication request (handle)

C binding

int MPI_Pready_list(int length, const int array_of_partitions[],
MPI_Request request)

Fortran 2008 binding

MPI_Pready_list(length, array_of_partitions, request, ierror)
INTEGER, INTENT(IN) :: length, array_of_partitions(length)
TYPE(MPI_Request), INTENT(IN) :: request
INTEGER, OPTIONAL, INTENT(QUT) :: ierror

Fortran binding
MPI_PREADY_LIST(LENGTH, ARRAY_OF_PARTITIONS, REQUEST, IERROR)
INTEGER LENGTH, ARRAY_OF_PARTITIONS(*), REQUEST, IERROR

A call to MPI_PREADY_LIST has the same effect as calls to
MPI_PREADY, executed for the partitions specified in the range array_of_partitions|0]
v oy array_of _partitions[count — 1] of the array_of _partitions, executed in some arbitrary
order. Calls to MPI_PREADY _LIST follow the same rules as those for MPI_PREADY calls.

4.2.2 Communication Completion under Partitioning

The functions MPI_WAIT and MPI_TEST (and variants) are used to complete a partitioned
communication operation. The completion of a partitioned send operation indicates that
the sender is now free to call MPI_START/MPI_STARTALL to restart the operation and
subsequently MPI_PREADY, MPI_PREADY _RANGE or MPI_PREADY_LIST. Alternatively,
the user can safely free the partitioned communication request after the completion of the
partitioned operation. For the sending process, completion of the partitioned send operation
does not indicate that the partitions of the message have all been received.

The completion of a partitioned receive operation through MPI_WAIT or MPI_TEST
indicates that the receive buffer contains all of the partitions. A function for probing the
partial reception of the receive buffer is provided by MPI_PARRIVED. The MPI_PARRIVED
function can be used to determine if the message data for the indicated partition has been
received into the receive buffer. Upon success, the receiver becomes free to access the
indicated partition (as well as any others that previously completed for that operation).

4.2. SEMANTICS OF PARTITIONED POINT-TO-POINT COMMUNICATION 111

MPI_PARRIVED(request, partition, flag)

IN request partitioned communication request (handle)
IN partition partition to be tested (non-negative integer)
ouT flag true if operation completed on the specified partition,

false if not (logical)

C binding
int MPI_Parrived(MPI_Request request, int partition, int *flag)

Fortran 2008 binding

MPI_Parrived(request, partition, flag, ierror)
TYPE(MPI_Request), INTENT(IN) :: request
INTEGER, INTENT(IN) :: partition
LOGICAL, INTENT(QOUT) :: flag
INTEGER, OPTIONAL, INTENT(QUT) :: ierror

Fortran binding

MPI_PARRIVED(REQUEST, PARTITION, FLAG, IERROR)
INTEGER REQUEST, PARTITION, IERROR
LOGICAL FLAG

The function MPI_PARRIVED can be used to test partial completion of partitioned
receive operations. A call to MPI_PARRIVED on an active partitioned communication re-
quest returns flag = true if the operation identified by request for the specified partition is
complete. The request is not marked as complete/inactive by this procedure. A subsequent
call to an MPI completing procedure (e.g., MPI_TEST/MPI_WAIT) is required to complete
the operation, as described in Chapter 3. MPI_PARRIVED may be called multiple times for
a partition. MPI_PARRIVED may be called with a null or inactive request argument. In
either case, the operation returns with flag = true. Calling MPI_PARRIVED on a request
that does not correspond to a partitioned receive operation is erroneous.

Repeated calls to MPI_PARRIVED with the same request and partition arguments will
eventually return flag = true if the corresponding partitioned send operation has been
started and all send partitions have been marked as ready. For additional information on
MPI progress see Section 3.7.4.

Advice to implementors. A high quality implementation will eventually return flag
= true from MPI_PARRIVED after all of the corresponding MPI_PREADY calls have
been made for a receive-side partition, even if other send partitions are not yet marked
as ready. (End of advice to implementors.)

4.2.3 Semantics of Communications in Partitioned Mode
The semantics of nonblocking partitioned communication are defined by suitably extending

the definitions in Section 3.5.

Interpretation of count and datatype for partitioned communication Partitioned communi-
cation uses the count and datatype arguments in the partitioned communication initializa-
tion functions to describe a single partition. The argument partitions specifies how many

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

112 CHAPTER 4. PARTITIONED POINT-TO-POINT COMMUNICATION

equal partitions of a number (count) of objects of datatypes make up the entire buffer to
be transferred in the partitioned communication. As partitioned communication describes
many partitions, using absolute displacements in datatypes (e.g., MPI_LBOTTOM) is not
supported. Partitions are contiguous in memory, there is no padding in between them.
Once a partitioned send operation is started, each partition must be marked as ready using
MPI_PREADY and the operation must be completed using a completion function, such as
MPI_TEST or MPI_WAIT.

Order Matching follows the same MPI matching rules as for point-to-point communication
(see Chapter 3) with communicator, tag, and source dictating message matching. In the
event that the communicator, tag, and source do not uniquely identify the message, the
order in which partitioned communication initialization calls are made is the order in which
they will eventually match.

4.3 Partitioned Communication Examples

This section provides concrete examples of the utility of partitioned communication in
realistic settings.

4.3.1 Partition Communication with Threads/Tasks Using OpenMP 4.0 or later

The equal partitioning on send-side and receive-side in Example 4.1 is shown using threads.
In this case, the receive-side uses the same number of partitions as the send-side like in the
previous example, but this example uses multiple threads on the send-side. Note that the
MPI_PSEND_INIT and MPI_PRECV_INIT functions match each other like in the previous

example.
Example 4.2 Equal partitioning on send-side and receive-side using threads.

#include "mpi.h"
#define NUM_THREADS 8
#define PARTITIONS 8
#define PARTLENGTH 16
int main(int argc, char *argv[]) /* same send/recv partitioning */
{
double message [PARTITIONS*PARTLENGTH] ;
int partitions = PARTITIONS;
int partlength = PARTLENGTH;
int count = 1, source = 0, dest = 1, tag = 1, flag = 0;
int myrank;
int provided;
MPI_Request request;
MPI_Info info = MPI_INFO_NULL;
MPI_Datatype xfer_type;
MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &provided);
if (provided < MPI_THREAD_MULTIPLE)
MPI_Abort (MPI_COMM_WORLD, EXIT_FAILURE);
MPI_Comm_rank (MPI_COMM_WORLD, &myrank) ;

4.3. PARTITIONED COMMUNICATION EXAMPLES

MPI_Type_contiguous(partlength, MPI_DOUBLE, &xfer_type);
MPI_Type_commit (&xfer_type);
if (myrank == 0)
{
MPI_Psend_init(message, partitions, count, xfer_type, dest, tag,
info, MPI_COMM_WORLD, &request);
MPI_Start(&request);

#pragma omp parallel for shared(request) num_threads(NUM_THREADS)
for (int i=0; i<partitions; i++)

{
/* compute and fill partition #i, then mark ready: */
MPI_Pready(i, request);
}
while(!flag)
{
/* Do useful work */
MPI_Test(&request, &flag, MPI_STATUS_IGNORE);
/* Do useful work */
}
MPI_Request_free(&request);
}
else if (myrank == 1)
{

MPI_Precv_init(message, partitions, count, xfer_type, source, tag,
info, MPI_COMM_WORLD, &request);

MPI_Start(&request);

while(!flag)

{
/* Do useful work */
MPI_Test(&request, &flag, MPI_STATUS_IGNORE);
/* Do useful work */
}
MPI_Request_free(&request);
}
MPI_Finalize();
return O;

}

4.3.2 Send-only Partitioning Example with Tasks and OpenMP version 4.0 or later

113

The previous example is tailored specifically for send-side partitioning using threads. This
is an example where parallel task producers produce input to part of an overall buffer; they

complete in any order and contribute to the overall buffer.
Example 4.3 Parallel task producers for partitioned communication using threads.

#include "mpi.h"

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

114

#defi
#defi
#defi
#defi
#defi

CHAPTER 4. PARTITIONED POINT-TO-POINT COMMUNICATION

ne NUM_THREADS 8

ne NUM_TASKS 64

ne PARTITIONS NUM_TASKS

ne PARTLENGTH 16

ne MESSAGE_LENGTH PARTITIONS*PARTLENGTH

int main(int argc, char *argv[]) /* send-side partitioning */

{

double message [MESSAGE_LENGTH] ;

int

int
int
int
MPI
MPI
MPI
MPI
if

MPI
MPI
MPI

if
{

send_partitions = PARTITIONS,

send_partlength PARTLENGTH,

recv_partitions = 1,

recv_partlength = PARTITIONS*PARTLENGTH;

count = 1, source = 0, dest = 1, tag = 1, flag = O;
myrank;

provided;

_Request request;

_Info info = MPI_INFO_NULL;

_Datatype send_type;

_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &provided);
(provided < MPI_THREAD_MULTIPLE)
MPI_Abort (MPI_COMM_WORLD, EXIT_FAILURE);

_Comm_rank (MPI_COMM_WORLD, &myrank);
_Type_contiguous(send_partlength, MPI_DOUBLE, &send_type);
_Type_commit (&send_type) ;

(myrank == 0)

MPI_Psend_init(message, send_partitions, count, send_type, dest, tag,
info, MPI_COMM_WORLD, &request);
MPI_Start (&request);

#pragma omp parallel shared(request) num_threads(NUM_THREADS)
{
#pragma omp single
{
/* single thread creates 64 tasks to be executed by 8 threads */
for (int partition_num=0;partition_num<NUM_TASKS;partition_num++)
{
#pragma omp task firstprivate(partition_num)
{
/* compute and fill partition #partition_num, then mark
ready: */
/* buffer is filled in arbitrary order from each task */
MPI_Pready(partition_num, request);
} /*end taskx*/
} /* end for */
} /* end single */

4.3. PARTITIONED COMMUNICATION EXAMPLES 115

} /* end parallel =/

while(!flag)

{
/* Do useful work */
MPI_Test(&request, &flag, MPI_STATUS_IGNORE);
/* Do useful work */

}
MPI_Request_free(&request);
}
else if (myrank == 1)
{

MPI_Precv_init(message, recv_partitions, recv_partlength, MPI_DOUBLE,
source, tag, info, MPI_COMM_WORLD, &request);

MPI_Start(&request);
while(!flag)
{
/* Do useful work */
MPI_Test(&request, &flag, MPI_STATUS_IGNORE) ;
/* Do useful work */
}
MPI_Request_free(&request);
}
MPI_Finalize();
return O;

}

4.3.3 Send and Receive Partitioning Example with OpenMP version 4.0 or later

This example demonstrates receive-side partial completion notification using more than one
partition per receive-side thread. It uses a naive flag based method to test for multiple com-
pleted partitions per thread. Note that this means that some threads may be busy polling
for completion of assigned partitions when partitions are available to work on that were not
assigned to the polling threads in this example. More advanced work stealing methods could
be employed for greater efficiency. Like previous examples, it also demonstrates send-side
production of input to part of an overall buffer. This example also uses different send-side
and receive-side partitioning.

Example 4.4 Partitioned communication receive-side partial completion.

#include "mpi.h"

#define NUM_THREADS 64

#define PARTITIONS NUM_THREADS

#define PARTLENGTH 16

#define MESSAGE_LENGTH PARTITIONS*PARTLENGTH

int main(int argc, char *argv[]) /* send-side partitioning */

{

10

11

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

116

CHAPTER 4. PARTITIONED POINT-TO-POINT COMMUNICATION

double message [MESSAGE_LENGTH] ;

int

int
int
int
MPI
MPI
MPI
MPI
if

MPI
MPI
MPI

if
{

}

send_partitions = PARTITIONS,
send_partlength = PARTLENGTH,
recv_partitions = PARTITIONS*2,
recv_partlength = PARTLENGTH/2;

source = 0, dest =1, tag = 1, flag = O;
myrank;

provided;
_Request request;
_Info info = MPI_INFO_NULL;
_Datatype send_type;
_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &provided);

(provided < MPI_THREAD_MULTIPLE)

MPI_Abort (MPI_COMM_WORLD, EXIT_FAILURE);

_Comm_rank (MPI_COMM_WORLD, &myrank) ;
_Type_contiguous(send_partlength, MPI_DOUBLE, &send_type);
_Type_commit (&send_type) ;

(myrank == 0)

MPI_Psend_init(message, send_partitions, 1, send_type, dest, tag,
info, MPI_COMM_WORLD, &request);
MPI_Start(&request);
#pragma omp parallel for shared(request) num_threads(NUM_THREADS)
for (int i=0; i<send_partitions; i++)
{
/* compute and fill partition #i, then mark ready: */
MPI_Pready(i, request);
}
while(!flag)
{
/* Do useful work */
MPI_Test(&request, &flag, MPI_STATUS_IGNORE);
/* Do useful work */
}
MPI_Request_free(&request);

else if (myrank == 1)

{

MPI_Precv_init(message, recv_partitions, recv_partlength, MPI_DOUBLE,
source, tag, info, MPI_COMM_WORLD, &request);

MPI_Start(&request);

#pragma omp parallel for shared(request) num_threads (NUM_THREADS)

for (int j=0; j<recv_partitions; j+=2)

{

int partl_complete
int part2_complete

0;
0;

4.3. PARTITIONED COMMUNICATION EXAMPLES

while(partl_complete == || part2_complete == 0)

{

}

/* test partition #j and #j+1 */
MPI_Parrived(request, j, &flag);
if (flag && partl_complete == 0)
{
partl_complete++;
/* Do work using partition j data */
}
if (j+1 < recv_partitions) {
MPI_Parrived(request, j+1, &flag);
if(flag && part2_complete == 0)

{
part2_complete++;
/* Do work using partition j+1 */
}
b
else {
part2_complete++;
b

while(!flag)

{

/* Do useful work */
MPI_Test(&request, &flag, MPI_STATUS_IGNORE) ;
/* Do useful work */

}

MPI_Request_free(&request);

¥

MPI_Finalize();

return O;

}

117

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

'S

© oo ~ =] ot

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

118

CHAPTER 4. PARTITIONED POINT-TO-POINT COMMUNICATION

Chapter 5

Datatypes

Basic datatypes were introduced in Section 3.2.2 and in Section 3.3. In this chapter, this
model is extended to describe any data layout. We consider general datatypes that allow
one to transfer efficiently heterogeneous and noncontiguous data. We conclude with the
description of calls for explicit packing and unpacking of messages.

5.1 Derived Datatypes

Up to here, all point-to-point communications have involved only buffers containing a se-
quence of identical basic datatypes. This is too constraining on two accounts. One often
wants to pass messages that contain values with different datatypes (e.g., an integer count,
followed by a sequence of real numbers); and one often wants to send noncontiguous data
(e.g., a sub-block of a matrix). One solution is to pack noncontiguous data into a contiguous
buffer at the sender site and unpack it at the receiver site. This has the disadvantage of
requiring additional memory-to-memory copy operations at both sites, even when the com-
munication subsystem has scatter-gather capabilities. Instead, MPI provides mechanisms
to specify more general, mixed, and noncontiguous communication buffers. It is up to the
implementation to decide whether data should be first packed in a contiguous buffer before
being transmitted, or whether it can be collected directly from where it resides.

The general mechanisms provided here allow one to transfer directly, without copying,
objects of various shapes and sizes. It is not assumed that the MPI library is cognizant of
the objects declared in the host language. Thus, if one wants to transfer a structure, or an
array section, it will be necessary to provide in MPI a definition of a communication buffer
that mimics the definition of the structure or array section in question. These facilities can
be used by library designers to define communication functions that can transfer objects
defined in the host language—by decoding their definitions as available in a symbol table
or a dope vector. Such higher-level communication functions are not part of MPI.

More general communication buffers are specified by replacing the basic datatypes that
have been used so far with derived datatypes that are constructed from basic datatypes using
the constructors described in this section. These methods of constructing derived datatypes
can be applied recursively.

A general datatype is an opaque object that specifies two things:

e A sequence of basic datatypes

e A sequence of integer (byte) displacements

119

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

120 CHAPTER 5. DATATYPES

The displacements are not required to be positive, distinct, or in increasing order.
Therefore, the order of items need not coincide with their order in store, and an item may
appear more than once. We call such a pair of sequences (or sequence of pairs) a type
map. The sequence of basic datatypes (displacements ignored) is the type signature of
the datatype.

Let

Typemap = {(typeo, dispo), . . ., (typen—1,dispn—1)},

be such a type map, where type; are basic types, and disp; are displacements. Let

Typesig = {typeo, - - -, typen—1}

be the associated type signature. This type map, together with a base address buf, specifies
a communication buffer: the communication buffer that consists of n entries, where the
i-th entry is at address buf + disp; and has type type;. A message assembled from such a
communication buffer will consist of n values, of the types defined by Typesig.

Most datatype constructors have replication count or block length arguments. Allowed
values are non-negative integers. If the value is zero, no elements are generated in the type
map and there is no effect on datatype bounds or extent.

We can use a handle to a general datatype as an argument in a send or receive operation,
instead of a basic datatype argument. The operation MPI_SEND(buf, 1, datatype,...) will
use the send buffer defined by the base address buf and the general datatype associated
with datatype; it will generate a message with the type signature determined by the datatype
argument. MPI_RECV(buf, 1, datatype,...) will use the receive buffer defined by the base
address buf and the general datatype associated with datatype.

General datatypes can be used in all send and receive operations. We discuss, in
Section 5.1.11, the case where the second argument count has value > 1.

The basic datatypes presented in Section 3.2.2 are particular cases of a general datatype,
and are predefined. Thus, MPI_INT is a predefined handle to a datatype with type map
{(int,0)}, with one entry of type int and displacement zero. The other basic datatypes
are similar.

The extent of a datatype is defined to be the span from the first byte to the last byte
occupied by entries in this datatype, rounded up to satisfy alignment requirements. That
is, if

Typemap = {(typeo, dispo), - . ., (typen—1, dispn-1)},

then
Ib(Typemap) = m]m disp;,
ub(T'ypemap) = mjax(dispj + sizeof(type;)) + €, and
extent(Typemap) = ub(Typemap) — Ib(Typemap). (5.1)

If type; requires alignment to a byte address that is a multiple of k;, then € is the least
non-negative increment needed to round extent(Typemap) to the next multiple of max; k;.
In Fortran, it is implementation dependent whether the MPI implementation computes
the alignments k; according to the alignments used by the compiler in common blocks,
SEQUENCE derived types, BIND(C) derived types, or derived types that are neither SEQUENCE
nor BIND(C). The complete definition of extent is given by Equation 5.1 Section 5.1.

5.1. DERIVED DATATYPES 121

Example 5.1 Assume that T'ype = {(double, 0), (char, 8)} (a double at displacement zero,
followed by a char at displacement eight). Assume, furthermore, that doubles have to be
strictly aligned at addresses that are multiples of eight. Then, the extent of this datatype is
16 (9 rounded to the next multiple of 8). A datatype that consists of a character immediately
followed by a double will also have an extent of 16.

Rationale. The definition of extent is motivated by the assumption that the amount
of padding added at the end of each structure in an array of structures is the least
needed to fulfill alignment constraints. More explicit control of the extent is provided
in Section 5.1.6. Such explicit control is needed in cases where the assumption does not
hold, for example, where union types are used. In Fortran, structures can be expressed
with several language features, e.g., common blocks, SEQUENCE derived types, or
BIND(C) derived types. The compiler may use different alignments, and therefore,
it is recommended to use MPI_TYPE_CREATE_RESIZED for arrays of structures if
an alignment may cause an alignment-gap at the end of a structure as described in
Section 5.1.6 and in Section 19.1.15. (End of rationale.)

5.1.1 Type Constructors with Explicit Addresses

In Fortran, the functions MPI_TYPE_CREATE_HVECTOR,
MPI_TYPE_CREATE_HINDEXED, MPI_TYPE_CREATE_HINDEXED_BLOCK,
MPI_TYPE_CREATE_STRUCT, and MPI_GET_ADDRESS accept arguments of type
INTEGER (KIND=MPI_ADDRESS_KIND), wherever arguments of type MPI_Aint are used in C.
For Fortran compilers that do not support the Fortran 90 KIND notation, and where ad-
dresses are 64 bits whereas default INTEGERs are 32 bits, these arguments will be of type
INTEGER#8 (assuming the Fortran compiler accepts the common extension of INTEGER#*8 for
eight-byte integers).

For the large count versions of three datatype constructors with explicit addresses,
MPI_TYPE_CREATE_HINDEXED, MPI_TYPE_CREATE_HINDEXED_BLOCK, and
MPI_TYPE_CREATE_STRUCT, absolute addresses shall not be used to specify byte dis-
placements since the parameter is of type MPI_COUNT instead of type MPI_AINT.

5.1.2 Datatype Constructors

Contiguous The simplest datatype constructor is MPI_TYPE_CONTIGUOUS which allows
replication of a datatype into contiguous locations.

MPI_TYPE_CONTIGUOUS(count, oldtype, newtype)

IN count replication count (non-negative integer)
IN oldtype old datatype (handle)
ouT newtype new datatype (handle)

C binding

int MPI_Type_contiguous(int count, MPI_Datatype oldtype,
MPI_Datatype *newtype)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

122 CHAPTER 5. DATATYPES

int MPI_Type_contiguous_c(MPI_Count count, MPI_Datatype oldtype,
MPI_Datatype *newtype)

Fortran 2008 binding

MPI_Type_contiguous(count, oldtype, newtype, ierror)
INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_contiguous(count, oldtype, newtype, ierror) !(_c)
INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(QUT) :: ierror

Fortran binding
MPI_TYPE_CONTIGUOUS(COUNT, OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, OLDTYPE, NEWTYPE, IERROR

newtype is the datatype obtained by concatenating count copies of oldtype. Concatenation
is defined using extent as the size of the concatenated copies.

Example 5.2 Let oldtype have type map {(double,0), (char,8)}, with extent 16, and let
count = 3. The type map of the datatype returned by newtype is

{(double, 0), (char, 8), (double, 16), (char, 24), (double, 32), (char, 40)};

i.e., alternating double and char elements, with displacements 0, 8, 16, 24, 32, 40.

In general, assume that the type map of oldtype is
{(typeo, dispy), ..., (typen—1,dispn—1)},
with extent ex. Then newtype has a type map with count - n entries defined by:
{(typeo, dispg), ..., (typen—1,dispn_1), (typeo, dispo + ex), ..., (typen—1,dispn—1 + ex),

..., (typeg, dispy + ex - (count — 1)), ..., (typen—1,dispp—1 + ex - (count — 1))}.

Vector The function MPI_TYPE_VECTOR is a more general constructor that allows repli-
cation of a datatype into locations that consist of equally spaced blocks. Each block is
obtained by concatenating the same number of copies of the old datatype. The spacing
between blocks is a multiple of the extent of the old datatype.

5.1. DERIVED DATATYPES 123

MPI_TYPE_VECTOR(count, blocklength, stride, oldtype, newtype)

IN count number of blocks (non-negative integer)

IN blocklength number of elements in each block (non-negative
integer)

IN stride number of elements between start of each block
(integer)

IN oldtype old datatype (handle)

ouT newtype new datatype (handle)

C binding

int MPI_Type_vector(int count, int blocklength, int stride,
MPI_Datatype oldtype, MPI_Datatype *newtype)

int MPI_Type_vector_c(MPI_Count count, MPI_Count blocklength,
MPI_Count stride, MPI_Datatype oldtype, MPI_Datatype *newtype)

Fortran 2008 binding

MPI_Type_vector(count, blocklength, stride, oldtype, newtype, ierror)
INTEGER, INTENT(IN) :: count, blocklength, stride
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(QUT) :: ierror

MPI_Type_vector(count, blocklength, stride, oldtype, newtype, ierror) !(_c)
INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: count, blocklength, stride
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_TYPE_VECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR

Example 5.3 Assume, again, that oldtype has type map {(double,O0), (char,8)}, with
extent 16. A call to MPI_TYPE_VECTOR(2, 3, 4, oldtype, newtype) will create the datatype
with type map,

{(double, 0), (char, 8), (double, 16), (char, 24), (double, 32), (char, 40),
(double, 64), (char, 72), (double, 80), (char, 88), (double, 96), (char, 104)}.

That is, two blocks with three copies each of the old type, with a stride of 4 elements (4 - 16
bytes) between the the start of each block.

Example 5.4 A call to MPI_TYPE_VECTOR(3, 1, -2, oldtype, newtype) will create the
datatype,

{(double, 0), (char, 8), (double, —32), (char, —24), (double, —64), (char, —56)}.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

124 CHAPTER 5. DATATYPES

In general, assume that oldtype has type map,

{(typeo, dispo), . .., (typen—1,dispn—1)},

with extent ex. Let bl be the blocklength. The newly created datatype has a type map with
count - bl - n entries:

{(typeo, dispy), ..., (typen—1,dispn_1),

(typeg, dispy + ex), ..., (typen—1,dispp—1 + ex), ...,

(typeo, dispg + (bl — 1) - ex), ..., (typen—1,disp,—1 + (bl — 1) - ex),

(typeo, dispg + stride - ex), ..., (typen—1,dispn_1 + stride - ex), ...,

(typeg, dispg + (stride + bl — 1) - ex), ..., (typen—1, dispp—1 + (stride + bl — 1) - ex), . ..
(typeo, dispg + stride - (count — 1) - ex), ...,

(typen—1,dispy—1 + stride - (count — 1) - ex), . . .,

(typeg, dispg + (stride - (count — 1) + bl — 1) - ex),. ..,

(typen—1,dispn—1 + (stride - (count — 1) + bl — 1) - ex)}.

A call to MPI_TYPE_CONTIGUOUS(count, oldtype, newtype) is equivalent to a call to
MPI_TYPE_VECTOR(count, 1, 1, oldtype, newtype), or to a call to MPI_TYPE_VECTOR(1,
count, n, oldtype, newtype), where n is an arbitrary integer value.

Hvector The function MPI_TYPE_CREATE_HVECTOR is identical to
MPI_TYPE_VECTOR, except that stride is given in bytes, rather than in elements. The
use for both types of vector constructors is illustrated in Section 5.1.14. (H stands for
“heterogeneous”).

MPI_TYPE_CREATE_HVECTOR(count, blocklength, stride, oldtype, newtype)

IN count number of blocks (non-negative integer)
IN blocklength number of elements in each block (non-negative
integer)
IN stride number of bytes between start of each block (integer)
IN oldtype old datatype (handle)
ouT newtype new datatype (handle)
C binding

int MPI_Type_create_hvector(int count, int blocklength, MPI_Aint stride,
MPI_Datatype oldtype, MPI_Datatype *newtype)

int MPI_Type_create_hvector_c(MPI_Count count, MPI_Count blocklength,
MPI_Count stride, MPI_Datatype oldtype, MPI_Datatype *newtype)

5.1. DERIVED DATATYPES

Fortran 2008 binding
MPI_Type_create_hvector(count, blocklength, stride, oldtype, newtype,
ierror)
INTEGER, INTENT(IN) :: count, blocklength
INTEGER (KIND=MPI_ADDRESS_KIND), INTENT(IN) :: stride
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_create_hvector(count, blocklength, stride, oldtype, newtype,
ierror) !(_c)

INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: count, blocklength, stride

TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_TYPE_CREATE_HVECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE,
IERROR)
INTEGER COUNT, BLOCKLENGTH, OLDTYPE, NEWTYPE, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) STRIDE

Assume that oldtype has type map,

{(typ€07 disp())a ey (typen—lv dispn—l)}7

with extent ex. Let bl be the blocklength. The newly created datatype has a type map with

count - bl - n entries:
{(typeo, dispy), ..., (typen—1,dispn_1),
(typeo, dispy + ex), ..., (typen—1, dispp—1 + ex), . . .,
(typeg, dispg + (bl — 1) - ex), ..., (typen—1,dispp—1 + (bl — 1) - ex),
(typeo, dispg + stride), . .., (typen—1, disp,_1 + stride), . ..,
(typeo, dispy + stride 4+ (bl — 1) - ex), ...,

(typen—1,dispp—1 + stride + (bl — 1) - ex), ...,

(typeg, dispg + stride - (count — 1)), ..., (typen—1, disp,—1 + stride - (count — 1)), ...

(typeo, dispg + stride - (count — 1) + (bl — 1) - ex), ...,

(typen—1,dispp—1 + stride - (count — 1) + (bl — 1) - ex)}

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

126 CHAPTER 5. DATATYPES

Indexed The function MPI_TYPE_INDEXED allows replication of an old datatype into a
sequence of blocks (each block is a concatenation of the old datatype), where each block
can contain a different number of copies and have a different displacement. All block
displacements are multiples of the old type extent.

MPI_TYPE_INDEXED(count, array_of_blocklengths, array_of _displacements, oldtype,

newtype)

IN count number of blocks—also number of entries in
array_of _displacements and array_of _blocklengths
(non-negative integer)

IN array_of _blocklengths number of elements per block (array of non-negative
integers)

IN array_of _displacements displacement for each block, in multiples of oldtype
(array of integers)

IN oldtype old datatype (handle)

ouT newtype new datatype (handle)

C binding

int MPI_Type_indexed(int count, const int array_of_blocklengths[],
const int array_of_displacements[], MPI_Datatype oldtype,
MPI_Datatype *newtype)

int MPI_Type_indexed_c(MPI_Count count,
const MPI_Count array_of_blocklengths[],
const MPI_Count array_of_displacements[],
MPI_Datatype oldtype, MPI_Datatype *newtype)

Fortran 2008 binding
MPI_Type_indexed(count, array_of_blocklengths, array_of_displacements,
oldtype, newtype, ierror)
INTEGER, INTENT(IN) :: count, array_of_blocklengths(count),
array_of_displacements (count)
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_indexed(count, array_of_blocklengths, array_of_displacements,
oldtype, newtype, ierror) !(_c)
INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: count,
array_of_blocklengths(count), array_of_displacements(count)
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(QOUT) :: ierror

Fortran binding
MPI_TYPE_INDEXED(COUNT, ARRAY_OF_BLOCKLENGTHS, ARRAY_OF_DISPLACEMENTS,
OLDTYPE, NEWTYPE, IERROR)

5.1. DERIVED DATATYPES 127

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_DISPLACEMENTS(*),
OLDTYPE, NEWTYPE, IERROR

Example 5.5 Let oldtype have type map {(double,0), (char, 8)}, with extent 16. Let B =
(3, 1) and let D = (4, 0). A call to MPI_TYPE_INDEXED(2, B, D, oldtype, newtype) returns
a datatype with type map,

{(double, 64), (char, 72), (double, 80), (char, 83), (double, 96), (char, 104),
(double,0), (char, 8)}.

That is, three copies of the old type starting at displacement 64, and one copy starting at
displacement 0.

In general, assume that oldtype has type map,
{(typ€07 d’l:Sp()), ey (typen—lv dZ.Spn_l)},

with extent ex. Let B be the array_of_blocklengths argument and D be the

array_of _displacements argument. The newly created datatype has n - foé’ nt-1 BJ[i] entries:

{(typeo, dispo + D[0] - ex), ..., (typen—1,disp,—1 + D[0] - ex), ...,

(typeo, dispg + (D[0] + B[0] — 1) - ex), ...,

(typen—1,disp,—1 + (D[0] + B[0] — 1) - ex), ...,

(typeo, dispg + D[count-1] - ex), ..., (typen—1,dispn—1 + D[count-1] - ex), ...,
(typeo, dispy + (D[count-1] 4+ B[count-1] — 1) - ex), ...,

(typen—1,dispp—1 + (D[count-1] + B[count-1] — 1) - ex)}.

A call to MPI_TYPE_VECTOR(count, blocklength, stride, oldtype, newtype) is equivalent
to a call to MPI_TYPE_INDEXED(count, B, D, oldtype, newtype) where

D[j] = j - stride, j =0,...,count — 1,
and
B[j] = blocklength, 7 =0,...,count — 1.
Hindexed The function MPI_TYPE_CREATE_HINDEXED is identical to

MPI_TYPE_INDEXED, except that block displacements in array_of _displacements are spec-
ified in bytes, rather than in multiples of the oldtype extent.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

128

CHAPTER 5. DATATYPES

MPI_TYPE_CREATE_HINDEXED(count, array_of _blocklengths, array_of _displacements,

oldtype, newtype)

IN count number of blocks—also number of entries in
array_of _displacements and array_of _blocklengths
(non-negative integer)
IN array_of _blocklengths number of elements in each block (array of
non-negative integers)
IN array_of _displacements byte displacement of each block (array of integers)
IN oldtype old datatype (handle)
ouT newtype new datatype (handle)
C binding
int MPI_Type_create_hindexed(int count, const int array_of_blocklengths[],

int

const MPI_Aint array_of_displacements[], MPI_Datatype oldtype,
MPI_Datatype *newtype)

MPI_Type_create_hindexed_c(MPI_Count count,
const MPI_Count array_of_blocklengthsl[],
const MPI_Count array_of_displacements[],
MPI_Datatype oldtype, MPI_Datatype *newtype)

Fortran 2008 binding
MPI_Type_create_hindexed(count, array_of_blocklengths,

array_of_displacements, oldtype, newtype, ierror)
INTEGER, INTENT(IN) :: count, array_of_blocklengths(count)
INTEGER (KIND=MPI_ADDRESS_KIND), INTENT(IN)
array_of_displacements(count)
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(QUT) :: ierror

MPI_Type_create_hindexed(count, array_of_blocklengths,

array_of_displacements, oldtype, newtype, ierror) !(_c)
INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: count,
array_of_blocklengths(count), array_of_displacements(count)
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(QUT) :: ierror

Fortran binding
MPI_TYPE_CREATE_HINDEXED(COUNT, ARRAY_OF_BLOCKLENGTHS,

ARRAY_OF_DISPLACEMENTS, OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), OLDTYPE, NEWTYPE, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) ARRAY_OF_DISPLACEMENTS (*)

Assume that oldtype has type map,

{(typeo, dispo), . .., (typen—1,disp,—1)},

5.1. DERIVED DATATYPES 129

with extent ex. Let B be the array_of_blocklengths argument and D be the

array_of _displacements argument. The newly created datatype has a type map with n -

fgg““ B[i] entries:

{(typeo, dispo + D[0]), ..., (typen—_1, disp,—1 + D[0]), ...,

(typeo, dispg + D[0] + (B[0] — 1) - ex), ...,

(typen—1,dispn—1 + D[0] + (B[0] — 1) - ex), ...,

(typeo, dispg + D[count-1]),..., (typen—1,disp,—1 + D[count-1]),...,
(typeg, dispg + D[count-1] + (B[count-1] — 1) - ex), ...,

(typen—1, dispp—1 + D[count-1] + (B[count-1] — 1) - ex)}.

Indexed_block This function is the same as MPI_TYPE_INDEXED except that the block-
length is the same for all blocks. There are many codes using indirect addressing arising
from unstructured grids where the blocksize is always 1 (gather/scatter). The following
convenience function allows for constant blocksize and arbitrary displacements.

MPI_TYPE_CREATE_INDEXED_BLOCK(count, blocklength, array_of _displacements,
oldtype, newtype)

IN count number of blocks—also number of entries in
array_of _displacements (non-negative integer)

IN blocklength number of elements in each block (non-negative
integer)
IN array_of _displacements array of displacements, in multiples of oldtype (array
of integers)
IN oldtype old datatype (handle)
ouT newtype new datatype (handle)
C binding

int MPI_Type_create_indexed_block(int count, int blocklength,
const int array_of_displacements[], MPI_Datatype oldtype,
MPI_Datatype *newtype)

int MPI_Type_create_indexed_block_c(MPI_Count count, MPI_Count blocklength,
const MPI_Count array_of_displacements[],
MPI_Datatype oldtype, MPI_Datatype *newtype)

Fortran 2008 binding
MPI_Type_create_indexed_block(count, blocklength, array_of_displacements,
oldtype, newtype, ierror)
INTEGER, INTENT(IN) :: count, blocklength,
array_of_displacements(count)
TYPE(MPI_Datatype), INTENT(IN) :: oldtype

10

11

12

13

14

15

17

19

20

21

22

23

24

25

26

27

28

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

130 CHAPTER 5. DATATYPES

TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_create_indexed_block(count, blocklength, array_of_displacements,
oldtype, newtype, ierror) !(_c)
INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: count, blocklength,
array_of_displacements (count)
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_TYPE_CREATE_INDEXED_BLOCK (COUNT, BLOCKLENGTH, ARRAY_OF_DISPLACEMENTS,
OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, BLOCKLENGTH, ARRAY_OF_DISPLACEMENTS(*), OLDTYPE,
NEWTYPE, IERROR

Hindexed_block The function MPI_TYPE_CREATE_HINDEXED_BLOCK is identical to
MPI_TYPE_CREATE_INDEXED_BLOCK, except that block displacements in
array_of _displacements are specified in bytes, rather than in multiples of the oldtype extent.

MPI_TYPE_CREATE_HINDEXED_BLOCK(count, blocklength, array_of _displacements,
oldtype, newtype)

IN count number of blocks—also number of entries in
array_of _displacements (non-negative integer)

IN blocklength number of elements in each block (non-negative
integer)
IN array_of _displacements byte displacement of each block (array of integers)
IN oldtype old datatype (handle)
ouT newtype new datatype (handle)
C binding

int MPI_Type_create_hindexed_block(int count, int blocklength,
const MPI_Aint array_of_displacements[], MPI_Datatype oldtype,
MPI_Datatype *newtype)

int MPI_Type_create_hindexed_block_c(MPI_Count count,
MPI_Count blocklength,
const MPI_Count array_of_displacements[],
MPI_Datatype oldtype, MPI_Datatype *newtype)

Fortran 2008 binding
MPI_Type_create_hindexed_block(count, blocklength, array_of_displacements,
oldtype, newtype, ierror)
INTEGER, INTENT(IN) :: count, blocklength

5.1. DERIVED DATATYPES 131

INTEGER (KIND=MPI_ADDRESS_KIND), INTENT(IN)
array_of_displacements(count)
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(QOUT) :: ierror

MPI_Type_create_hindexed_block(count, blocklength, array_of_displacements,
oldtype, newtype, ierror) !(_c)
INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: count, blocklength,
array_of_displacements(count)
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_TYPE_CREATE_HINDEXED_BLOCK(COUNT, BLOCKLENGTH, ARRAY_OF_DISPLACEMENTS,
OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, BLOCKLENGTH, OLDTYPE, NEWTYPE, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) ARRAY_OF_DISPLACEMENTS (*)

Struct MPI_TYPE_CREATE_STRUCT is the most general type constructor. It further
generalizes MPI_TYPE_CREATE_HINDEXED in that it allows each block to consist of repli-
cations of different datatypes.

MPI_TYPE_CREATE_STRUCT (count, array_of_blocklengths, array_of__displacements,
array_of _types, newtype)

IN count number of blocks—also number of entries in arrays
array_of _types, array_of _displacements, and
array_of _blocklengths (non-negative integer)

IN array_of _blocklengths number of elements in each block (array of
non-negative integers)

IN array_of _displacements byte displacement of each block (array of integers)
IN array_of _types type of elements in each block (array of handles)
ouT newtype new datatype (handle)

C binding

int MPI_Type_create_struct(int count, const int array_of_blocklengths[],
const MPI_Aint array_of_displacements[],
const MPI_Datatype array_of_types[], MPI_Datatype *newtype)

int MPI_Type_create_struct_c(MPI_Count count,
const MPI_Count array_of_blocklengths[],
const MPI_Count array_of_displacements[],
const MPI_Datatype array_of_types[], MPI_Datatype *newtype)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

132 CHAPTER 5. DATATYPES

Fortran 2008 binding
MPI_Type_create_struct(count, array_of_blocklengths,
array_of_displacements, array_of_types, newtype, ierror)
INTEGER, INTENT(IN) :: count, array_of_blocklengths(count)
INTEGER (KIND=MPI_ADDRESS_KIND), INTENT(IN)
array_of_displacements (count)
TYPE(MPI_Datatype), INTENT(IN) :: array_of_types(count)
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_create_struct(count, array_of_blocklengths,
array_of_displacements, array_of_types, newtype, ierror) !(_c)
INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: count,
array_of_blocklengths(count), array_of_displacements(count)
TYPE(MPI_Datatype), INTENT(IN) :: array_of_types(count)
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_TYPE_CREATE_STRUCT (COUNT, ARRAY_OF_BLOCKLENGTHS,
ARRAY_OF_DISPLACEMENTS, ARRAY_OF_TYPES, NEWTYPE, IERROR)
INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_TYPES(*), NEWTYPE,
TERROR
INTEGER (KIND=MPI_ADDRESS_KIND) ARRAY_OF_DISPLACEMENTS (*)

Example 5.6 Let typel have type map,
{(double, 0), (char, 8)},

with extent 16. Let B= (2, 1, 3), D = (0, 16, 26), and T = (MPI_FLOAT, typel, MPI_CHAR).
Then a call to MPI_TYPE_CREATE_STRUCT(3, B, D, T, newtype) returns a datatype with

type map,
{(float, 0), (float,4), (double, 16), (char, 24), (char, 26), (char, 27), (char, 28)}.

That is, two copies of MPI_FLOAT starting at 0, followed by one copy of typel starting at
16, followed by three copies of MPI_CHAR, starting at 26. In this example, we assume that
a float occupies four bytes.

In general, let T be the array_of _types argument, where T[i] is a handle to,
typemap; = {(typep, dispp), . .., (types,, 1. disp;,. 1)},

with extent ex;. Let B be the array_of_blocklength argument and D be the
array_of _displacements argument. Let c be the count argument. Then the newly created
datatype has a type map with 22:2—01 BJi] - ni entries:

{(typeq, dispg + D[0]), ..., (typep,, disph, + D[0]), ...,
(typeld, disp) + D[0] + (B[0] — 1) - exq), . . ., (typego, dz’sp%o + D[0] + (B[0]-1) - exp), .. .,

(typeg_l, dz'spg_1 + D[e-1]),. .., (typeggillfl, dz’spfbél,l + D[e-1]),. ..,

5.1. DERIVED DATATYPES 133

(typegila diSpgil + D[C_]'] + (B[C_l] - 1) ’ emel)a ERE

(typeggilfl,dispggilfl-+-D[c-1]+—(B[c-1}])- exc—1)}-

A call to MPI_TYPE_CREATE_HINDEXED(count, B, D, oldtype, newtype) is equivalent
to a call to MPI_TYPE_CREATE_STRUCT (count, B, D, T, newtype), where each entry of T
is equal to oldtype.

5.1.3 Subarray Datatype Constructor

MPI_TYPE_CREATE_SUBARRAY (ndims, array_of _sizes, array_of _subsizes, array_of _starts,
order, oldtype, newtype)

IN ndims number of array dimensions (positive integer)

IN array_of _sizes number of elements of type oldtype in each dimension
of the full array (array of positive integers)

IN array_of _subsizes number of elements of type oldtype in each dimension
of the subarray (array of positive integers)

IN array_of _starts starting coordinates of the subarray in each
dimension (array of non-negative integers)

IN order array storage order flag (state)
IN oldtype old datatype (handle)
ouT newtype new datatype (handle)

C binding

int MPI_Type_create_subarray(int ndims, const int array_of_sizes[],
const int array_of_subsizes[], const int array_of_startsl[],
int order, MPI_Datatype oldtype, MPI_Datatype *newtype)

int MPI_Type_create_subarray_c(int ndims, const MPI_Count array_of_sizes[],
const MPI_Count array_of_subsizes[],
const MPI_Count array_of_starts[], int order,
MPI_Datatype oldtype, MPI_Datatype *newtype)

Fortran 2008 binding
MPI_Type_create_subarray(ndims, array_of_sizes, array_of_subsizes,
array_of_starts, order, oldtype, newtype, ierror)
INTEGER, INTENT(IN) :: ndims, array_of_sizes(ndims),
array_of_subsizes(ndims), array_of_starts(ndims), order
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_create_subarray(ndims, array_of_sizes, array_of_subsizes,
array_of_starts, order, oldtype, newtype, ierror) !(_c)
INTEGER, INTENT(IN) :: ndims, order

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

134 CHAPTER 5. DATATYPES

INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: array_of_sizes(ndims),
array_of_subsizes(ndims), array_of_starts(ndims)

TYPE(MPI_Datatype), INTENT(IN) :: oldtype

TYPE(MPI_Datatype), INTENT(OUT) :: newtype

INTEGER, OPTIONAL, INTENT(QOUT) :: ierror

Fortran binding
MPI_TYPE_CREATE_SUBARRAY(NDIMS, ARRAY_OF_SIZES, ARRAY_OF_SUBSIZES,
ARRAY_OF_STARTS, ORDER, OLDTYPE, NEWTYPE, IERROR)
INTEGER NDIMS, ARRAY_OF_SIZES(*), ARRAY_OF_SUBSIZES(*),
ARRAY_OF_STARTS(*), ORDER, OLDTYPE, NEWTYPE, IERROR

The subarray type constructor creates an MPI datatype describing an n-dimensional
subarray of an n-dimensional array. The subarray may be situated anywhere within the
full array, and may be of any nonzero size up to the size of the larger array as long as it
is confined within this array. This type constructor facilitates creating filetypes to access
arrays distributed in blocks among processes to a single file that contains the global array,
see MPI 1/0, especially Section 14.1.1.

This type constructor can handle arrays with an arbitrary number of dimensions and
works for both C and Fortran ordered matrices (i.e., row-major or column-major). Note
that a C program may use Fortran order and a Fortran program may use C order.

The ndims parameter specifies the number of dimensions in the full data array and
gives the number of elements in array_of_sizes, array_of _subsizes, and array_of _starts.

The number of elements of type oldtype in each dimension of the n-dimensional ar-
ray and the requested subarray are specified by array_of _sizes and array_of_subsizes, re-
spectively. For any dimension i, it is erroneous to specify array_of _subsizes[i] < 1 or
array_of _subsizes|i] > array_of _sizesi].

The array_of _starts contains the starting coordinates of each dimension of the subarray.
Arrays are assumed to be indexed starting from zero. For any dimension 4, it is erroneous to
specify array_of _starts[i] < 0 or array_of _starts[i] > (array_of _sizes[i] — array_of _subsizes][i]).

Advice to users. In a Fortran program with arrays indexed starting from 1, if the
starting coordinate of a particular dimension of the subarray is n, then the entry in
array_of _starts for that dimension is n-1. (End of advice to users.)

The order argument specifies the storage order for the subarray as well as the full array.
It must be set to one of the following:

MPI_ORDER_C The ordering used by C arrays, (i.e., row-major order)
MPI_ORDER_FORTRAN The ordering used by Fortran arrays, (i.e., column-major order)

A ndims-dimensional subarray (newtype) with no extra padding can be defined by the
function Subarray() as follows:

newtype = Subarray(ndims, {sizeg, sizey, ..., Siz€ndims—1}»
{subsizey, subsizey, ..., subsizeéngims—1},

{starty, starty, ..., start,gims—1},oldtype)

Let the typemap of oldtype have the form:

{(typ€07 d’iSPO)a (typela d’iSpl), ceey (typ€n_1, diSPn—l)}

5.1. DERIVED DATATYPES 135

where type; is a predefined MPI datatype, and let ex be the extent of oldtype. Then we define
the Subarray() function recursively using the following three equations. Equation 5.2 defines
the base step. Equation 5.3 defines the recursion step when order = MPI_ORDER_FORTRAN,
and Equation 5.4 defines the recursion step when order = MPI_ORDER_C. These equations
use the conceptual datatypes Ib_marker and ub_marker; see Section 5.1.6 for details.

Subarray (1, {sizeo}, {subsizep}, {starto}, (5.2)
{(typeo, dispy), (type1,disp1), ..., (typen—1,dispn—1)})
= {(Ib_marker, 0),

(typeo, dispy + starty x ex), ..., (type,—_1,disp,—1 + starty X ex),

(typeo, dispg + (startg + 1) x ex), ..., (typen—1,
dispn—1 + (startg + 1) x ex), ...

(typeo, dispg + (starty + subsizey — 1) X ex), ...,
(typen—1,dispp—1 + (starty + subsizeg — 1) X ex),

(ub_marker, sizey x ex)}

Subarray (ndims, {sizeqg, size1, ..., Siz€ndims—1}, (5.3)
{subsizey, subsizey, ..., subsizendims—1}s
{starty, starty, ..., start,gims—1},oldtype)
= Subarray(ndims — 1, {sizey, sizes, ..., Siz€ndims—1}»
{subsizey, subsizea, ..., subsizendims—1}s
{starty, starta, ..., start,dims—1},

Subarray(1, {sizeg}, {subsizeg}, {starty}, oldtype))

Subarray(ndims, {sizeg, size1, ..., Siz€ndims—1}, (5.4)
{subsizeg, subsizey, ..., subsizendims—1},
{starty, starty, ..., start,qgims—1},oldtype)
= Subarray(ndims — 1, {sizeq, size1, ..., Siz€ndims—2}»
{subsizey, subsizey, ..., subsizengims—2}»
{starty, starty, ..., start,dgims—2},

Subarray (1, {sizendgims—1}, {subsizendgims—1}, {startngims—1}, oldtype))

For an example use of MPI_TYPE_CREATE_SUBARRAY in the context of I/O see Sec-
tion 14.9.2.
5.1.4 Distributed Array Datatype Constructor

The distributed array type constructor supports HPF-like [47] data distributions. However,
unlike in HPF, the storage order may be specified for C arrays as well as for Fortran arrays.

Adwvice to users. One can create an HPF-like file view using this type constructor as
follows. Complementary filetypes are created by having every process of a group call

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

46

47

136 CHAPTER 5. DATATYPES

this constructor with identical arguments (with the exception of rank which should be
set appropriately). These filetypes (along with identical disp and etype) are then used
to define the view (via MPI_FILE_SET_VIEW), see MPI I/O, especially Section 14.1.1
and Section 14.3. Using this view, a collective data access operation (with identical
offsets) will yield an HPF-like distribution pattern. (End of advice to users.)

MPI_TYPE_CREATE_DARRAY (size, rank, ndims, array_of_gsizes, array_of _distribs,
array_of _dargs, array_of _psizes, order, oldtype, newtype)

IN size size of process group (positive integer)
IN rank rank in process group (non-negative integer)
IN ndims number of array dimensions as well as process grid

dimensions (positive integer)

IN array_of _gsizes number of elements of type oldtype in each dimension
of global array (array of positive integers)

IN array_of _distribs distribution of array in each dimension (array of
states)
IN array_of _dargs distribution argument in each dimension (array of

positive integers)

IN array_of _psizes size of process grid in each dimension (array of
positive integers)

IN order array storage order flag (state)
IN oldtype old datatype (handle)
ouT newtype new datatype (handle)

C binding

int MPI_Type_create_darray(int size, int rank, int ndims,
const int array_of_gsizes[], const int array_of_distribs[],
const int array_of_dargs[], const int array_of_psizes[],
int order, MPI_Datatype oldtype, MPI_Datatype *newtype)

int MPI_Type_create_darray_c(int size, int rank, int ndims,
const MPI_Count array_of_gsizesl[],
const int array_of_distribs[], const int array_of_dargsl[],
const int array_of_psizes[], int order, MPI_Datatype oldtype,
MPI_Datatype *newtype)

Fortran 2008 binding

MPI_Type_create_darray(size, rank, ndims, array_of_gsizes,
array_of_distribs, array_of_dargs, array_of_psizes, order,
oldtype, newtype, ierror)

INTEGER, INTENT(IN) :: size, rank, ndims, array_of_gsizes(ndims),
array_of_distribs(ndims), array_of_dargs(ndims),
array_of_psizes(ndims), order

TYPE(MPI_Datatype), INTENT(IN) :: oldtype

5.1. DERIVED DATATYPES 137

TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_create_darray(size, rank, ndims, array_of_gsizes,
array_of_distribs, array_of_dargs, array_of_psizes, order,
oldtype, newtype, ierror) !(_c)

INTEGER, INTENT(IN) :: size, rank, ndims, array_of_distribs(ndims),
array_of _dargs(ndims), array_of_psizes(ndims), order

INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: array_of_gsizes(ndims)

TYPE(MPI_Datatype), INTENT(IN) :: oldtype

TYPE(MPI_Datatype), INTENT(OUT) :: newtype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_TYPE_CREATE_DARRAY(SIZE, RANK, NDIMS, ARRAY_OF_GSIZES,
ARRAY_OF_DISTRIBS, ARRAY_OF_DARGS, ARRAY_OF_PSIZES, ORDER,
OLDTYPE, NEWTYPE, IERROR)
INTEGER SIZE, RANK, NDIMS, ARRAY_OF_GSIZES(*), ARRAY_OF_DISTRIBS(*),
ARRAY_OF_DARGS(*), ARRAY_OF_PSIZES(*), ORDER, OLDTYPE,
NEWTYPE, IERROR

MPI_TYPE_CREATE_DARRAY can be used to generate the datatypes corresponding
to the distribution of an ndims-dimensional array of oldtype elements onto an
ndims-dimensional grid of logical processes. Unused dimensions of array_of _psizes should be
set to 1 (see Example 5.7). For a call to MPI_TYPE_CREATE_DARRAY to be correct, the
equation ;ﬁgm* array_of _psizes|i] = size must be satisfied. The ordering of processes
in the process grid is assumed to be row-major, as in the case of virtual Cartesian process

topologies.

Advice to users. For both Fortran and C arrays, the ordering of processes in the
process grid is assumed to be row-major. This is consistent with the ordering used in
virtual Cartesian process topologies in MPI. To create such virtual process topologies,
or to find the coordinates of a process in the process grid, etc., users may use the
corresponding process topology functions, see Chapter 8. (End of advice to users.)

Each dimension of the array can be distributed in one of three ways:
e MPI_DISTRIBUTE_BLOCK - Block distribution
e MPI_DISTRIBUTE_CYCLIC - Cyclic distribution
e MPI_DISTRIBUTE_NONE - Dimension not distributed

The constant MPI_DISTRIBUTE_DFLT_DARG specifies a default distribution argument.
The distribution argument for a dimension that is not distributed is ignored. For any
dimension i in which the distribution is MPI_DISTRIBUTE_BLOCK, it is erroneous to specify
array_of _dargs[i] * array_of _psizes[i| < array_of _gsizes][i].

For example, the HPF layout ARRAY(CYCLIC(15)) corresponds to
MPI_DISTRIBUTE_CYCLIC with a distribution argument of 15, and the HPF layout AR-
RAY(BLOCK) corresponds to MPI_DISTRIBUTE_BLOCK with a distribution argument of
MPI_DISTRIBUTE_DFLT _DARG.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

138 CHAPTER 5. DATATYPES

The order argument is used as in MPI_TYPE_CREATE_SUBARRAY to specify the stor-
age order. Therefore, arrays described by this type constructor may be stored in Fortran
(column-major) or C (row-major) order. Valid values for order are MPI_ORDER_FORTRAN
and MPI_ORDER_C.

This routine creates a new MPI datatype with a typemap defined in terms of a function
called “cyclic()” (see below).

Without loss of generality, it suffices to define the typemap for the
MPI_DISTRIBUTE_CYCLIC case where MPI_DISTRIBUTE_DFLT_DARG is not used.

MPI_DISTRIBUTE_BLOCK and MPI_DISTRIBUTE_NONE can be reduced to the
MPI_DISTRIBUTE_CYCLIC case for dimension i as follows.

MPI_DISTRIBUTE_BLOCK with array_of _dargs]i] equal to MPI_DISTRIBUTE_DFLT_DARG
is equivalent to MPI_DISTRIBUTE_CYCLIC with array_of _dargs[i] set to

(array_of _gsizes|[i] + array_of _psizes[i] — 1)/array_of_psizes][i].

If array_of _dargs][i] is not MPI_DISTRIBUTE_DFLT_DARG, then MPI_DISTRIBUTE_BLOCK and
MPI_DISTRIBUTE_CYCLIC are equivalent.

MPI_DISTRIBUTE_NONE is equivalent to MPI_DISTRIBUTE_CYCLIC with
array_of _dargs[i] set to array_of _gsizes]i].

Finally, MPI_DISTRIBUTE_CYCLIC with array_of_dargs[i] equal to
MPI_DISTRIBUTE_DFLT_DARG is equivalent to MPI_DISTRIBUTE_CYCLIC with
array_of _dargs[i] set to 1.

For MPI_ORDER_FORTRAN, an ndims-dimensional distributed array (newtype) is defined
by the following code fragment:

oldtypes[0] = oldtype;
for (i = 0; i < ndims; i++) {
oldtypes[i+1] = cyclic(array_of_dargsl[i],

array_of_gsizes[i],
rli],
array_of_psizes[i],
oldtypes[il);

}

newtype = oldtypes[ndims];

For MPI_ORDER_C, the code is:

oldtypes[0] = oldtype;
for (i = 0; i < ndims; i++) {
oldtypes[i + 1] = cyclic(array_of_dargs[ndims - i - 1],

array_of_gsizes[ndims - i - 1],
r[ndims - i - 1],
array_of_psizes[ndims - i - 1],
oldtypes[il);

}

newtype = oldtypes[ndims];

where r[i] is the position of the process (with rank rank) in the process grid at dimension
i. The values of r[i] are given by the following code fragment:

5.1.

DERIVED DATATYPES 139

t_rank = rank;
t_size = 1;
for (i = 0; i < ndims; i++)
t_size *= array_of_psizes[i];
for (i = 0; i < ndims; i++) {
t_size = t_size / array_of_psizesl[i];
r[i] = t_rank / t_size;
t_rank = t_rank % t_size;

}

Let the typemap of oldtype have the form:

{(typeo, dispo), (typer, disp1), . .., (typen—1, dispn—1)}

where type; is a predefined MPI datatype, and let ex be the extent of oldtype. The follow-
ing function uses the conceptual datatypes Ib_marker and ub_marker, see Section 5.1.6 for
details.

Given the above, the function cyclic() is defined as follows:

cyclic(darg, gsize, r, psize, oldtype)
= {(Ib_marker, 0),
(typeo, dispy + r X darg X ex), ...,
(typen—1,dispn—1 + 1 x darg x ex),
(typeo, dispg + (r x darg + 1) x ex), ...,
(typen—1,dispp—1 + (r x darg + 1) x ex),

(typeo,dispg + ((r + 1) X darg — 1) x ex), ...,
(typen—1, dispn—1 + ((r + 1) x darg — 1) x ex),

(typeo, dispy + r x darg X ex + psize X darg X ex), ...,
(typen—1,disp,—1 + 1 x darg x ex + psize X darg X ex),

(typeo, dispy + (r x darg + 1) X ex + psize x darg x ex), ...,
(typen—1,dispp—1 + (r x darg + 1) X ex + psize X darg X ex),

ypeo, arspo + ((r + 1) X darg — 1) X ex + psize X darg X ex), ...,
t di 1) xd 1) d
(typen—1,dispp—1 + ((r +1) x darg — 1) x ex + psize X darg X ex),

(typeo, dispg + r x darg X ex + psize X darg X ex X (count — 1)),...,
(typen—1,dispp—1 + 1 X darg X ex + psize x darg X ex X (count — 1)),
(typeo, dispg + (r x darg + 1) x ex + psize X darg x ex X (count —1)),...,
(typen—1,dispp—1 + (r x darg + 1) x ex
+psize x darg x ex X (count — 1)),

(typeo, dispy + (r x darg + dargest — 1) X ex

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

140 CHAPTER 5. DATATYPES

+psize x darg x ex X (count — 1)),...,
(typen—1,dispp—1 + (r x darg + dargpast — 1) X ex
+psize x darg x ex X (count — 1)),

(ub_marker, gsize x ex)}
where count is defined by this code fragment:

nblocks = (gsize + (darg - 1)) / darg;
count = nblocks / psize;
left_over = nblocks - count * psize;
if (r < left_over)

count = count + 1;

Here, nblocks is the number of blocks that must be distributed among the processors.
Finally, dargp.s: is defined by this code fragment:

if ((num_in_last_cyclic = gsize % (psize * darg)) == 0)
darg_last = darg;
else {

darg_last = num_in_last_cyclic - darg * r;
if (darg_last > darg)

darg_last = darg;
if (darg_last <= 0)

darg_last = darg;

Example 5.7 Consider generating the filetypes corresponding to the HPF distribution:

<oldtype> FILEARRAY(100, 200, 300)
|HPF$ PROCESSORS PROCESSES(2, 3)
'HPF$ DISTRIBUTE FILEARRAY(CYCLIC(10), *, BLOCK) ONTO PROCESSES

This can be achieved by the following Fortran code, assuming there will be six processes
attached to the run:

ndims = 3

array_of_gsizes(1) = 100

array_of _distribs(1) = MPI_DISTRIBUTE_CYCLIC
array_of _dargs(1) = 10

array_of _gsizes(2) = 200

array_of_distribs(2) = MPI_DISTRIBUTE_NONE
array_of_dargs(2) = 0

array_of_gsizes(3) = 300

array_of_distribs(3) = MPI_DISTRIBUTE_BLOCK
array_of_dargs(3) = MPI_DISTRIBUTE_DFLT_DARG
array_of _psizes(1) = 2

array_of_psizes(2) = 1

array_of_psizes(3) = 3

call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

5.1. DERIVED DATATYPES 141

call MPI_TYPE_CREATE_DARRAY(size, rank, ndims, array_of_gsizes, &
array_of_distribs, array_of_dargs, array_of_psizes, &
MPI_ORDER_FORTRAN, oldtype, newtype, ierr)

5.1.5 Address and Size Functions

The displacements in a general datatype are relative to some initial buffer address. Abso-
lute addresses can be substituted for these displacements: we treat them as displacements
relative to “address zero,” the start of the address space. This initial address zero is in-
dicated by the constant MPI_BOTTOM. Thus, a datatype can specify the absolute address
of the entries in the communication buffer, in which case the buf argument is passed the
value MPI_BOTTOM. Note that in Fortran MPI_BOTTOM is not usable for initialization or
assignment, see Section 2.5.4.

The address of a location in memory can be found by invoking the function
MPI_GET_ADDRESS. The relative displacement between two absolute addresses can
be calculated with the function MPI_AINT_DIFF. A new absolute address as sum of an
absolute base address and a relative displacement can be calculated with the function
MPI_AINT_ADD. To ensure portability, arithmetic on absolute addresses should not be
performed with the intrinsic operators “-” and “+”. See also Sections 2.5.6 and 5.1.12 on
pages 22 and 156.

Rationale. Address sized integer values, i.e., MPI_Aint or

INTEGER (KIND=MPI_ADDRESS_KIND) values, are signed integers, while absolute ad-
dresses are unsigned quantities. Direct arithmetic on addresses stored in address
sized signed variables can cause overflows, resulting in undefined behavior. (End of
rationale.)

MPI_GET_ADDRESS(location, address)

IN location location in caller memory (choice)
ouT address address of location (integer)
C binding

int MPI_Get_address(const void *location, MPI_Aint *address)

Fortran 2008 binding

MPI_Get_address(location, address, ierror)
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: location
INTEGER (KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: address
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_GET_ADDRESS(LOCATION, ADDRESS, IERROR)
<type> LOCATION (*)
INTEGER (KIND=MPI_ADDRESS_KIND) ADDRESS
INTEGER IERROR

Returns the (byte) address of location.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

142 CHAPTER 5. DATATYPES

Rationale. In the mpi_f08 module, the location argument is not defined with
INTENT (IN) because existing applications may use MPI_GET_ADDRESS as a substi-
tute for MPI_F_SYNC_REG, which was not defined before MPI-3.0. (End of rationale.)

Example 5.8 Using MPI_GET_ADDRESS for an array.

REAL A(100,100)

INTEGER (KIND=MPI_ADDRESS_KIND) I1, I2, DIFF

CALL MPI_GET_ADDRESS(A(1,1), I1, IERROR)

CALL MPI_GET_ADDRESS(A(10,10), I2, IERROR)

DIFF = MPI_AINT_DIFF(I2, I1)

! The value of DIFF is 909*SIZEOF(REAL); the values of I1 and I2 are
! implementation dependent.

Advice to users. C users may be tempted to avoid the usage of
MPI_GET_ADDRESS and rely on the availability of the address operator &. Note,
however, that & cast-expression is a pointer, not an address. ISO C does not require
that the value of a pointer (or the pointer cast to int) be the absolute address of
the object pointed at—although this is commonly the case. Furthermore, referencing
may not have a unique definition on machines with a segmented address space. The
use of MPI_GET_ADDRESS to “reference” C variables guarantees portability to such
machines as well. (End of advice to users.)

Advice to users. To prevent problems with the argument copying and register
optimization done by Fortran compilers, please note the hints in Sections 19.1.10-

19.1.20. (End of advice to users.)

To ensure portability, arithmetic on MPI addresses must be performed using the
MPI_AINT_ADD and MPI_AINT_DIFF functions.

MPI_AINT_ADD(base, disp)

IN base base address (integer)
IN disp displacement (integer)
C binding

MPI_Aint MPI_Aint_add(MPI_Aint base, MPI_Aint disp)

Fortran 2008 binding
INTEGER (KIND=MPI_ADDRESS_KIND) MPI_Aint_add(base, disp)
INTEGER (KIND=MPI_ADDRESS_KIND), INTENT(IN) :: base, disp

Fortran binding
INTEGER (KIND=MPI_ADDRESS_KIND) MPI_AINT_ADD(BASE, DISP)
INTEGER (KIND=MPI_ADDRESS_KIND) BASE, DISP

MPI_AINT_ADD produces a new MPI_Aint value that is equivalent to the sum of
the base and disp arguments, where base represents a base address returned by a call to

5.1. DERIVED DATATYPES 143

MPI_GET_ADDRESS and disp represents a signed integer displacement. The resulting ad-
dress is valid only at the process that generated base, and it must correspond to a location
in the same object referenced by base, as described in Section 5.1.12. The addition is per-
formed in a manner that results in the correct MPI_Aint representation of the output address,
as if the process that originally produced base had called:

MPI_Get_address((char *) base + disp, &result);

MPI_AINT_DIFF(addrl, addr2)

IN addrl minuend address (integer)
IN addr2 subtrahend address (integer)
C binding

MPI_Aint MPI_Aint_diff (MPI_Aint addrl, MPI_Aint addr2)

Fortran 2008 binding
INTEGER (KIND=MPI_ADDRESS_KIND) MPI_Aint_diff(addrl, addr2)
INTEGER (KIND=MPI_ADDRESS_KIND), INTENT(IN) :: addrl, addr2

Fortran binding
INTEGER (KIND=MPI_ADDRESS_KIND) MPI_AINT_DIFF (ADDR1, ADDR2)
INTEGER (KIND=MPI_ADDRESS_KIND) ADDR1, ADDR2

MPI_AINT_DIFF produces a new MPI_Aint value that is equivalent to the difference
between addrl and addr2 arguments, where addrl and addr2 represent addresses returned
by calls to MPI_GET_ADDRESS. The resulting address is valid only at the process that
generated addrl and addr2, and addrl and addr2 must correspond to locations in the same
object in the same process, as described in Section 5.1.12. The difference is calculated in
a manner that results in the signed difference from addrl to addr2, as if the process that
originally produced the addresses had called (char *) addrl - (char *) addr2 on the
addresses initially passed to MPI_GET_ADDRESS.

The following auxiliary functions provide useful information on derived datatypes.

MPI_TYPE_SIZE(datatype, size)

IN datatype datatype to get information on (handle)
ouT size datatype size (integer)
C binding

int MPI_Type_size(MPI_Datatype datatype, int *size)
int MPI_Type_size_c(MPI_Datatype datatype, MPI_Count *size)

Fortran 2008 binding

MPI_Type_size(datatype, size, ierror)
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(OUT) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

144 CHAPTER 5. DATATYPES

MPI_Type_size(datatype, size, ierror) !(_c)
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER (KIND=MPI_COUNT_KIND), INTENT(QUT) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_TYPE_SIZE(DATATYPE, SIZE, IERROR)
INTEGER DATATYPE, SIZE, IERROR

MPI_TYPE_SIZE_X(datatype, size)

IN datatype datatype to get information on (handle)
ouT size datatype size (integer)
C binding

int MPI_Type_size_x(MPI_Datatype datatype, MPI_Count *size)

Fortran 2008 binding

MPI_Type_size_x(datatype, size, ierror)
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER (KIND=MPI_COUNT_KIND), INTENT(OUT) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_TYPE_SIZE_X(DATATYPE, SIZE, IERROR)
INTEGER DATATYPE, IERROR
INTEGER (KIND=MPI_COUNT_KIND) SIZE

MPI_TYPE_SIZE and MPI_TYPE_SIZE_X set the value of size to the total size, in
bytes, of the entries in the type signature associated with datatype; i.e., the total size of the
data in a message that would be created with this datatype. Entries that occur multiple
times in the datatype are counted with their multiplicity. For both functions, if the OUT
parameter cannot express the value to be returned (e.g., if the parameter is too small to
hold the output value), it is set to MPI_UNDEFINED.

5.1.6 Lower-Bound and Upper-Bound Markers

It is often convenient to define explicitly the lower bound and upper bound of a type map,
and override the definition given on page 145. This allows one to define a datatype that has
“holes” at its beginning or its end, or a datatype with entries that extend above the upper
bound or below the lower bound. Examples of such usage are provided in Section 5.1.14.
Also, the user may want to overide the alignment rules that are used to compute upper
bounds and extents. E.g., a C compiler may allow the user to overide default alignment
rules for some of the structures within a program. The user has to specify explicitly the
bounds of the datatypes that match these structures.

To achieve this, we add two additional conceptual datatypes, lb_marker and
ub_marker, that represent the lower bound and upper bound of a datatype. These con-
ceptual datatypes occupy no space (extent(Ib_marker) = extent(ub_marker) = 0) . They do
not affect the size or count of a datatype, and do not affect the content of a message created

5.1. DERIVED DATATYPES 145

with this datatype. However, they do affect the definition of the extent of a datatype and,
therefore, affect the outcome of a replication of this datatype by a datatype constructor.

Example 5.9 A call to MPI_TYPE_CREATE_RESIZED(MPI_INT, -3, 9, typel) creates a
new datatype that has an extent of 9 (from -3 to 5, 5 included), and contains an integer
at displacement 0. This is the datatype defined by the typemap {(Ib_marker, -3), (int, 0),
(ub_marker, 6)}. If this type is replicated twice by a call to MPI_TYPE_CONTIGUOUS(2,
typel, type2) then the newly created type can be described by the typemap {(Ib_marker, -3),
(int, 0), (int,9), (ub_marker, 15)}. (An entry of type ub_marker can be deleted if there is
another entry of type ub_marker with a higher displacement; an entry of type Ib_marker can
be deleted if there is another entry of type Ib_marker with a lower displacement.)

In general, if
Typemap = {(typeo, dispo), - . ., (typen—1, dispn—1)},
then the lower bound of Typemap is defined to be

if no entry has type

Ib_marker
min;{disp; such that type; = Ib_marker} otherwise

min; disp;

Ib(Typemap) = {

Similarly, the upper bound of Typemap is defined to be

if no entry has type

ub_marker
max;{disp; such that type; = ub_marker} otherwise

ub(Typemap) = { max;(disp; + sizeof (type;)) + €

Then
extent(Typemap) = ub(Typemap) — Ib(Typemap)

If type; requires alignment to a byte address that is a multiple of k;, then € is the least
non-negative increment needed to round extent(Typemap) to the next multiple of max; ;.
In Fortran, it is implementation dependent whether the MPI implementation computes
the alignments k; according to the alignments used by the compiler in common blocks,
SEQUENCE derived types, BIND (C) derived types, or derived types that are neither SEQUENCE
nor BIND(C).

The formal definitions given for the various datatype constructors apply now, with the
amended definition of extent.

Rationale. Before Fortran 2003, MPI_TYPE_CREATE_STRUCT could be applied to
Fortran common blocks and SEQUENCE derived types. With Fortran 2003, this list
was extended by BIND(C) derived types and MPI implementors have implemented the
alignments k; differently, i.e., some based on the alignments used in SEQUENCE derived
types, and others according to BIND(C) derived types. (End of rationale.)

Advice to implementors. In Fortran, it is generally recommended to use BIND(C)
derived types instead of common blocks or SEQUENCE derived types. Therefore it is
recommended to calculate the alignments k; based on BIND(C) derived types. (End
of advice to implementors.)

10

12

13

14

15

16

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

146

CHAPTER 5. DATATYPES

Advice to users. Structures combining different basic datatypes should be defined
so that there will be no gaps based on alignment rules. If such a datatype is used
to create an array of structures, users should also avoid an alignment-gap at the
end of the structure. In MPI communication, the content of such gaps would not
be communicated into the receiver’s buffer. For example, such an alignment-gap
may occur between an odd number of floats or REALs before a double or DOUBLE
PRECISION data. Such gaps may be added explicitly to both the structure and the MPI
derived datatype handle because the communication of a contiguous derived datatype
may be significantly faster than the communication of one that is noncontiguous
because of such alignment-gaps.

As an example, instead of

TYPE, BIND(C) :: my_data
REAL, DIMENSION(3) :: x
! there may be a gap of the size of one REAL
! if the alignment of a DOUBLE PRECISION is
! two times the size of a REAL
DOUBLE PRECISION :: p

END TYPE

one should define

TYPE, BIND(C) :: my_data
REAL, DIMENSION(3) :: x

REAL :: gapl
DOUBLE PRECISION :: p
END TYPE

and also include gapl in the matching MPI derived datatype. It is required that all
processes in a communication add the same gaps, i.e., defined with the same basic
datatype. Both the original and the modified structures are portable, but may have
different performance implications for the communication and memory accesses during
computation on systems with different alignment values.

In principle, a compiler may define an additional alignment rule for structures, e.g., to
use at least 4 or 8 byte alignment, although the content may have a max;k; alignment
less than this structure alignment. To maintain portability, users should always resize
structure derived datatype handles if used in an array of structures, see the Example
in Section 19.1.15. (End of advice to users.)

5.1. DERIVED DATATYPES

5.1.7 Extent and Bounds of Datatypes

MPI_TYPE_GET_EXTENT (datatype, Ib, extent)

IN datatype datatype to get information on (handle)
ouT Ib lower bound of datatype (integer)
ouT extent extent of datatype (integer)

C binding

int MPI_Type_get_extent(MPI_Datatype datatype, MPI_Aint x1b,
MPI_Aint *extent)

int MPI_Type_get_extent_c(MPI_Datatype datatype, MPI_Count *lb,
MPI_Count *extent)

Fortran 2008 binding

MPI_Type_get_extent(datatype, lb, extent, ierror)
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER (KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: 1b, extent
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_get_extent(datatype, 1lb, extent, ierror) !(_c)
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER (KIND=MPI_COUNT_KIND), INTENT(OUT) :: 1b, extent
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_TYPE_GET_EXTENT(DATATYPE, LB, EXTENT, IERROR)
INTEGER DATATYPE, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) LB, EXTENT

MPI_TYPE_GET_EXTENT _X(datatype, Ib, extent)

IN datatype datatype to get information on (handle)
ouT Ib lower bound of datatype (integer)
ouT extent extent of datatype (integer)

C binding

int MPI_Type_get_extent_x(MPI_Datatype datatype, MPI_Count *lb,
MPI_Count *extent)

Fortran 2008 binding

MPI_Type_get_extent_x(datatype, lb, extent, ierror)
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER (KIND=MPI_COUNT_KIND), INTENT(OUT) :: 1b, extent
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

147

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

148 CHAPTER 5. DATATYPES

Fortran binding

MPI_TYPE_GET_EXTENT_X(DATATYPE, LB, EXTENT, IERROR)
INTEGER DATATYPE, IERROR
INTEGER (KIND=MPI_COUNT_KIND) LB, EXTENT

Returns the lower bound and the extent of datatype (as defined in Equation 5.1).

For both functions, if either OUT parameter cannot express the value to be returned
(e.g., if the parameter is too small to hold the output value), it is set to MPI_UNDEFINED.

MPI allows one to change the extent of a datatype, using lower bound and upper bound
markers. This provides control over the stride of successive datatypes that are replicated
by datatype constructors, or are replicated by the count argument in a send or receive call.

MPI_TYPE_CREATE_RESIZED(oldtype, Ib, extent, newtype)

IN oldtype input datatype (handle)
IN Ib new lower bound of datatype (integer)
IN extent new extent of datatype (integer)
ouT newtype output datatype (handle)
C binding

int MPI_Type_create_resized(MPI_Datatype oldtype, MPI_Aint 1b,
MPI_Aint extent, MPI_Datatype *newtype)

int MPI_Type_create_resized_c(MPI_Datatype oldtype, MPI_Count 1lb,
MPI_Count extent, MPI_Datatype *newtype)

Fortran 2008 binding

MPI_Type_create_resized(oldtype, 1lb, extent, newtype, ierror)
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
INTEGER (KIND=MPI_ADDRESS_KIND), INTENT(IN) :: 1lb, extent
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_create_resized(oldtype, 1lb, extent, newtype, ierror) !'(_c)
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: 1lb, extent
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(QUT) :: ierror

Fortran binding

MPI_TYPE_CREATE_RESIZED(OLDTYPE, LB, EXTENT, NEWTYPE, IERROR)
INTEGER OLDTYPE, NEWTYPE, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) LB, EXTENT

Returns in newtype a handle to a new datatype that is identical to oldtype, except that
the lower bound of this new datatype is set to be Ib, and its upper bound is set to be Ib
+ extent. Any previous lb and ub markers are erased, and a new pair of lower bound and
upper bound markers are put in the positions indicated by the Ib and extent arguments.

5.1. DERIVED DATATYPES 149

This affects the behavior of the datatype when used in communication operations, with
count > 1, and when used in the construction of new derived datatypes.

5.1.8 True Extent of Datatypes

Suppose we implement gather (see also Section 6.5) as a spanning tree implemented on
top of point-to-point routines. Since the receive buffer is only valid on the root pro-
cess, one will need to allocate some temporary space for receiving data on intermedi-
ate nodes. However, the datatype extent cannot be used as an estimate of the amount
of space that needs to be allocated, if the user has modified the extent, for example
by using MPI_TYPE_CREATE_RESIZED. The functions MPI_TYPE_GET_TRUE_EXTENT
and MPI_TYPE_GET_TRUE_EXTENT_X are provided which return the true extent of the
datatype.

MPI_TYPE_GET_TRUE_EXTENT (datatype, true_lb, true_extent)

IN datatype datatype to get information on (handle)
ouT true_lb true lower bound of datatype (integer)
ouT true_extent true extent of datatype (integer)

C binding

int MPI_Type_get_true_extent(MPI_Datatype datatype, MPI_Aint *true_lb,
MPI_Aint *true_extent)

int MPI_Type_get_true_extent_c(MPI_Datatype datatype, MPI_Count *true_lb,
MPI_Count *true_extent)

Fortran 2008 binding

MPI_Type_get_true_extent(datatype, true_lb, true_extent, ierror)
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER (KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: true_lb, true_extent
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_get_true_extent(datatype, true_lb, true_extent, ierror) !(_c)
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER (KIND=MPI_COUNT_KIND), INTENT(OUT) :: true_lb, true_extent
INTEGER, OPTIONAL, INTENT(QOUT) :: ierror

Fortran binding

MPI_TYPE_GET_TRUE_EXTENT (DATATYPE, TRUE_LB, TRUE_EXTENT, IERROR)
INTEGER DATATYPE, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) TRUE_LB, TRUE_EXTENT

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

150 CHAPTER 5. DATATYPES

MPI_TYPE_GET_TRUE_EXTENT_X(datatype, true_Ib, true_extent)

IN datatype datatype to get information on (handle)
ouT true_lb true lower bound of datatype (integer)
ouT true_extent true extent of datatype (integer)

C binding

int MPI_Type_get_true_extent_x(MPI_Datatype datatype, MPI_Count *true_lb,
MPI_Count *true_extent)

Fortran 2008 binding

MPI_Type_get_true_extent_x(datatype, true_lb, true_extent, ierror)
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER (KIND=MPI_COUNT_KIND), INTENT(OUT) :: true_lb, true_extent
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_TYPE_GET_TRUE_EXTENT_X(DATATYPE, TRUE_LB, TRUE_EXTENT, IERROR)
INTEGER DATATYPE, IERROR
INTEGER (KIND=MPI_COUNT_KIND) TRUE_LB, TRUE_EXTENT

true_lb returns the offset of the lowest unit of store which is addressed by the datatype,
i.e., the lower bound of the corresponding typemap, ignoring explicit lower bound mark-
ers. true_extent returns the true size of the datatype, i.e., the extent of the correspond-
ing typemap, ignoring explicit lower bound and upper bound markers, and performing no
rounding for alignment. If the typemap associated with datatype is

Typemap = {(typeo, dispo), - . ., (typen—1, dispn—1)}
Then

true_lb(Typemap) = min;{disp; : type; # Ib_marker, ub_marker},
true_ub(Typemap) = max;{disp; + sizeof(type;) : type; # Ib_marker,ub_marker},
and

true_extent(Typemap) = true_ub(Typemap) — true_lb(typemap).

(Readers should compare this with the definitions in Section 5.1.6 and Section 5.1.7, which
describe the function MPI_TYPE_GET_EXTENT.)

The true_extent is the minimum number of bytes of memory necessary to hold a
datatype, uncompressed.

For both functions, if either OUT parameter cannot express the value to be returned
(e.g., if the parameter is too small to hold the output value), it is set to MPI_UNDEFINED.

5.1.9 Commit and Free

A datatype object has to be committed before it can be used in a communication. As
an argument in datatype constructors, uncommitted and also committed datatypes can be
used. There is no need to commit basic datatypes. They are “pre-committed.”

5.1. DERIVED DATATYPES 151

MPI_TYPE_COMMIT (datatype)
INOUT datatype datatype that is committed (handle)

C binding
int MPI_Type_commit(MPI_Datatype *datatype)

Fortran 2008 binding

MPI_Type_commit(datatype, ierror)
TYPE(MPI_Datatype), INTENT(INOUT) :: datatype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_TYPE_COMMIT(DATATYPE, IERROR)
INTEGER DATATYPE, IERROR

The commit operation commits the datatype, that is, the formal description of a com-
munication buffer, not the content of that buffer. Thus, after a datatype has been commit-
ted, it can be repeatedly reused to communicate the changing content of a buffer or, indeed,
the content of different buffers, with different starting addresses.

Advice to implementors. The system may “compile” at commit time an internal
representation for the datatype that facilitates communication, e.g., change from a
compacted representation to a flat representation of the datatype, and select the most
convenient transfer mechanism. (End of advice to implementors.)

MPI_TYPE_COMMIT will accept a committed datatype; in this case, it is equivalent
to a no-op.

Example 5.10 The following code fragment gives examples of using MPI_TYPE_COMMIT.

INTEGER typel, type2
CALL MPI_TYPE_CONTIGUOUS(5, MPI_REAL, typel, ierr)

! new type object created
CALL MPI_TYPE_COMMIT(typel, ierr)

! now typel can be used for communication
type2 = typel

! type2 can be used for communication

! (it is a handle to same object as typel)
CALL MPI_TYPE_VECTOR(3, 5, 4, MPI_REAL, typel, ierr)

! new uncommitted type object created
CALL MPI_TYPE_COMMIT(typel, ierr)

! now typel can be used anew for communication

MPI_TYPE_FREE(datatype)
INOUT datatype datatype that is freed (handle)

C binding
int MPI_Type_free(MPI_Datatype *datatype)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

152 CHAPTER 5. DATATYPES

Fortran 2008 binding

MPI_Type_free(datatype, ierror)
TYPE(MPI_ Datatype), INTENT(INOUT) :: datatype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_TYPE_FREE (DATATYPE, IERROR)
INTEGER DATATYPE, IERROR

Marks the datatype object associated with datatype for deallocation and sets datatype
to MPI_DATATYPE_NULL. Any communication that is currently using this datatype will
complete normally. Freeing a datatype does not affect any other datatype that was built
from the freed datatype. The system behaves as if input datatype arguments to derived
datatype constructors are passed by value.

Advice to implementors. 'The implementation may keep a reference count of active
communications that use the datatype, in order to decide when to free it. Also, one
may implement constructors of derived datatypes so that they keep pointers to their
datatype arguments, rather than copying them. In this case, one needs to keep track
of active datatype definition references in order to know when a datatype object can
be freed. (End of advice to implementors.)

5.1.10 Duplicating a Datatype

MPI_TYPE_DUP(oldtype, newtype)

IN oldtype datatype (handle)
ouT newtype copy of oldtype (handle)
C binding

int MPI_Type_dup(MPI_Datatype oldtype, MPI_Datatype *newtype)

Fortran 2008 binding

MPI_Type_dup(oldtype, newtype, ierror)
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_TYPE_DUP(OLDTYPE, NEWTYPE, IERROR)
INTEGER OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_DUP is a type constructor which duplicates the existing oldtype with as-
sociated key values. For each key value, the respective copy callback function determines
the attribute value associated with this key in the new communicator; one particular action
that a copy callback may take is to delete the attribute from the new datatype. Returns
in newtype a new datatype with exactly the same properties as oldtype and any copied
cached information, see Section 7.7.4. The new datatype has identical upper bound and

5.1. DERIVED DATATYPES 153

lower bound and yields the same net result when fully decoded with the functions in Sec-
tion 5.1.13. The newtype has the same committed state as the old oldtype.

5.1.11 Use of General Datatypes in Communication

Handles to derived datatypes can be passed to a communication call wherever a datatype
argument is required. A call of the form MPI_SEND(buf, count, datatype, ...), where count >
1, is interpreted as if the call was passed a new datatype which is the concatenation of count
copies of datatype. Thus, MPI_SEND(buf, count, datatype, dest, tag, comm) is equivalent to,

MPI_TYPE_CONTIGUOUS(count, datatype, newtype)
MPI_TYPE_COMMIT (newtype)

MPI_SEND(buf, 1, newtype, dest, tag, comm)
MPI_TYPE_FREE (newtype) .

Similar statements apply to all other communication functions that have a count and
datatype argument.

Suppose that a send operation MPI_SEND(buf, count, datatype, dest, tag, comm) is
executed, where datatype has type map,

{(typ607 d’iSp()), ey (typen—lv diSpn_l)},

and extent extent. (Explicit lower bound and upper bound markers are not listed in the
type map, but they affect the value of extent.) The send operation sends n - count entries,
where entry i - n + j is at location addr; ; = buf + extent - i + disp; and has type type;, for
1=0,...,count—1and j =0,...,n—1. These entries need not be contiguous, nor distinct;
their order can be arbitrary.

The variable stored at address addr; ; in the calling program should be of a type that
matches type;, where type matching is defined as in Section 3.3.1. The message sent contains
n - count entries, where entry i - n + j has type type;.

Similarly, suppose that a receive operation MPI_RECV(buf, count, datatype, source, tag,
comm, status) is executed, where datatype has type map,

{(typeoa diSp()), ey (typen—lv diSpn_l)}7

with extent extent. (Again, explicit lower bound and upper bound markers are not listed in
the type map, but they affect the value of extent.) This receive operation receives n - count
entries, where entry i -n + j is at location buf + extent - i + disp; and has type type;. If the
incoming message consists of k elements, then we must have k£ < n - count; the ¢ - n 4+ j-th
element of the message should have a type that matches type;.

Type matching is defined according to the type signature of the corresponding
datatypes, that is, the sequence of basic type components. Type matching does not depend
on some aspects of the datatype definition, such as the displacements (layout in memory)
or the intermediate types used.

Example 5.11 This example shows that type matching is defined in terms of the basic
types that a derived type consists of.

CALL MPI_TYPE_CONTIGUOUS(2, MPI_REAL, type2, ...)
CALL MPI_TYPE_CONTIGUOUS(4, MPI_REAL, type4, ...)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

154 CHAPTER 5. DATATYPES

CALL MPI_TYPE_CONTIGUOUS(2, type2, type22, ...)
CALL MPI_SEND(a, 4, MPI_REAL, ...)

CALL MPI_SEND(a, 2, type2, o)

CALL MPI_SEND(a, 1, type22, ...)

CALL MPI_SEND(a, 1, type4, ...)

CALL MPI_RECV(a, 4, MPI_REAL, ...)

CALL MPI_RECV(a, 2, type2, ...)

CALL MPI_RECV(a, 1, type22, col)

CALL MPI_RECV(a, 1, type4, ...)

Each of the sends matches any of the receives.

A datatype may specify overlapping entries. The use of such a datatype in any com-
munication in association with a buffer updated by the operation is erroneous. (This is
erroneous even if the actual message received is short enough not to write any entry more
than once.)

Suppose that MPI_RECV(buf, count, datatype, dest, tag, comm, status) is executed,
where datatype has type map,

{(typ€07 disp())a L) (typen—lv dispn—l)}-

The received message need not fill all the receive buffer, nor does it need to fill a number of
locations which is a multiple of n. Any number, k, of basic elements can be received, where
0 < k < count-n. The number of basic elements received can be retrieved from status using
the query functions MPI_GET_ELEMENTS or MPI_GET_ELEMENTS_X.

MPI_GET_ELEMENTS(status, datatype, count)

IN status return status of receive operation (status)

IN datatype datatype used by receive operation (handle)

ouT count number of received basic elements (integer)
C binding

int MPI_Get_elements(const MPI_Status #*status, MPI_Datatype datatype,
int *count)

int MPI_Get_elements_c(const MPI_Status *status, MPI_Datatype datatype,
MPI_Count *count)

Fortran 2008 binding

MPI_Get_elements(status, datatype,
TYPE(MPI_Status), INTENT(IN)
TYPE(MPI_Datatype), INTENT(IN)
INTEGER, INTENT(OUT) :: count
INTEGER, OPTIONAL, INTENT(OUT)

MPI_Get_elements(status, datatype,
TYPE(MPI_Status), INTENT(IN)

count, ierror)

:: status

:: datatype

:: ilerror

1(_c)

count, ierror)

:: status

5.1. DERIVED DATATYPES 155

TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER (KIND=MPI_COUNT_KIND), INTENT(OUT) :: count
INTEGER, OPTIONAL, INTENT(QUT) :: ierror

Fortran binding
MPI_GET_ELEMENTS (STATUS, DATATYPE, COUNT, IERROR)
INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR

MPI_GET_ELEMENTS_X(status, datatype, count)

IN status return status of receive operation (status)

IN datatype datatype used by receive operation (handle)

ouT count number of received basic elements (integer)
C binding

int MPI_Get_elements_x(const MPI_Status *status, MPI_Datatype datatype,
MPI_Count *count)

Fortran 2008 binding

MPI_Get_elements_x(status, datatype, count, ierror)
TYPE(MPI_Status), INTENT(IN) :: status
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER (KIND=MPI_COUNT_KIND), INTENT(OUT) :: count
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_GET_ELEMENTS_X(STATUS, DATATYPE, COUNT, IERROR)
INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, IERROR
INTEGER (KIND=MPI_COUNT_KIND) COUNT

The datatype argument should match the argument provided by the receive call that
set the status variable. For both functions, if the OUT parameter cannot express the value
to be returned (e.g., if the parameter is too small to hold the output value), it is set to
MPI_UNDEFINED.

The previously defined function MPI_GET_COUNT (Section 3.2.5), has a different be-
havior. It returns the number of “top-level entries” received, i.e. the number of “copies” of
type datatype. In the previous example, MPI_GET_COUNT may return any integer value
k, where 0 < k < count. If MPI_GET_COUNT returns k, then the number of basic elements
received (and the value returned by MPI_GET_ELEMENTS or MPI_GET_ELEMENTS_X) is
n - k. If the number of basic elements received is not a multiple of n, that is, if the receive
operation has not received an integral number of datatype “copies,” then MPI_GET_COUNT
sets the value of count to MPI_UNDEFINED.

Example 5.12 Usage of MPI_GET_COUNT and MPI_GET_ELEMENTS.

CALL MPI_TYPE_CONTIGUOUS(2, MPI_REAL, Type2, ierr)
CALL MPI_TYPE_COMMIT(Type2, ierr)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

156 CHAPTER 5. DATATYPES

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN
CALL MPI_SEND(a, 2, MPI_REAL, 1, O, comm, ierr)
CALL MPI_SEND(a, 3, MPI_REAL, 1, 0O, comm, ierr)

ELSE IF (rank.EQ.1) THEN
CALL MPI_RECV(a, 2, Type2, 0, O, comm, stat, ierr)
CALL MPI_GET_COUNT(stat, Type2, i, ierr) ! returns
CALL MPI_GET_ELEMENTS(stat, Type2, i, ierr) ! returns
CALL MPI_RECV(a, 2, Type2, O, O, comm, stat, ierr)
CALL MPI_GET_COUNT(stat, Type2, i, ierr) ! returns i=MPI_UNDEFINED
CALL MPI_GET_ELEMENTS(stat, Type2, i, ierr) ! returns i=3

END IF

The functions MPI_GET_ELEMENTS and MPI_GET_ELEMENTS_X can also be used
after a probe to find the number of elements in the probed message. Note that the
MPI_GET_COUNT, MPI_GET_ELEMENTS, and MPI_GET_ELEMENTS_X return the same
values when they are used with basic datatypes as long as the limits of their respective
count arguments are not exceeded.

Rationale. The extension given to the definition of MPI_GET_COUNT seems natural:
one would expect this function to return the value of the count argument, when the
receive buffer is filled. Sometimes datatype represents a basic unit of data one wants
to transfer, for example, a record in an array of records (structures). One should be
able to find out how many components were received without bothering to divide by
the number of elements in each component. However, on other occasions, datatype
is used to define a complex layout of data in the receiver memory, and does not
represent a basic unit of data for transfers. In such cases, one needs to use the
function MPI_GET_ELEMENTS or MPI_GET_ELEMENTS_X. (End of rationale.)

Advice to implementors. The definition implies that a receive cannot change the
value of storage outside the entries defined to compose the communication buffer. In
particular, the definition implies that padding space in a structure should not be mod-
ified when such a structure is copied from one process to another. This would prevent
the obvious optimization of copying the structure, together with the padding, as one
contiguous block. The implementation is free to do this optimization when it does not
impact the outcome of the computation. The user can “force” this optimization by
explicitly including padding as part of the message. (End of advice to implementors.)

5.1.12 Correct Use of Addresses

Successively declared variables in C or Fortran are not necessarily stored at contiguous
locations. Thus, care must be exercised that displacements do not cross from one variable
to another. Also, in machines with a segmented address space, addresses are not unique
and address arithmetic has some peculiar properties. Thus, the use of addresses, that is,
displacements relative to the start address MPI_BOTTOM, has to be restricted.

Variables belong to the same sequential storage if they belong to the same array,
to the same COMMON block in Fortran, or to the same structure in C. Valid addresses are
defined recursively as follows:

5.1. DERIVED DATATYPES 157

1. The function MPI_GET_ADDRESS returns a valid address, when passed as argument
a variable of the calling program.

2. The buf argument of a communication function evaluates to a valid address, when
passed as argument a variable of the calling program.

3. If v is a valid address, and i is an integer, then v+i is a valid address, provided v and
v+i are in the same sequential storage.

A correct program uses only valid addresses to identify the locations of entries in
communication buffers. Furthermore, if u and v are two valid addresses, then the (integer)
difference u — v can be computed only if both u and v are in the same sequential storage.
No other arithmetic operations can be meaningfully Aexecuted on addresses.

The rules above impose no constraints on the use of derived datatypes, as long as
they are used to define a communication buffer that is wholly contained within the same
sequential storage. However, the construction of a communication buffer that contains
variables that are not within the same sequential storage must obey certain restrictions.
Basically, a communication buffer with variables that are not within the same sequential
storage can be used only by specifying in the communication call buf = MPI_BOTTOM, count
= 1, and using a datatype argument where all displacements are valid (absolute) addresses.

Advice to users. It is not expected that MPI implementations will be able to de-
tect erroneous, “out of bound” displacements—unless those overflow the user address
space—since the MPI call may not know the extent of the arrays and records in the
host program. (End of advice to users.)

Advice to implementors. There is no need to distinguish (absolute) addresses and
(relative) displacements on a machine with contiguous address space: MPI_BOTTOM
is zero, and both addresses and displacements are integers. On machines where the
distinction is required, addresses are recognized as expressions that involve
MPI_BOTTOM. (End of advice to implementors.)

5.1.13 Decoding a Datatype

MPI datatype objects allow users to specify an arbitrary layout of data in memory. There
are several cases where accessing the layout information in opaque datatype objects would
be useful. The opaque datatype object has found a number of uses outside MPI. Further-
more, a number of tools wish to display internal information about a datatype. To achieve
this, datatype decoding functions are provided. The two functions in this section are used
together to decode datatypes to recreate the calling sequence used in their initial defini-
tion. These can be used to allow a user to determine the type map and type signature of a
datatype.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

158 CHAPTER 5. DATATYPES

MPI_TYPE_GET_ENVELOPE(datatype, num_integers, num_addresses, num_large_counts,
num_datatypes, combiner)

IN datatype datatype to decode (handle)

ouT num_integers number of input integers used in call constructing
combiner (non-negative integer)

ouT num_addresses number of input addresses used in call constructing
combiner (non-negative integer)

ouT num_large_counts number of input large counts used in call
constructing combiner (non-negative integer, only
present for large count variants)

ouT num_datatypes number of input datatypes used in call constructing
combiner (non-negative integer)
ouT combiner combiner (state)
C binding

int MPI_Type_get_envelope(MPI_Datatype datatype, int *num_integers,
int *num_addresses, int *num_datatypes, int *combiner)

int MPI_Type_get_envelope_c(MPI_Datatype datatype, MPI_Count *num_integers,
MPI_Count *num_addresses, MPI_Count *num_large_counts,
MPI_Count *num_datatypes, int *combiner)

Fortran 2008 binding
MPI_Type_get_envelope(datatype, num_integers, num_addresses, num_datatypes,
combiner, ierror)
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(OUT) :: num_integers, num_addresses, num_datatypes,
combiner
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_get_envelope(datatype, num_integers, num_addresses,
num_large_counts, num_datatypes, combiner, ierror) !(_c)
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER (KIND=MPI_COUNT_KIND), INTENT(OUT) :: num_integers,
num_addresses, num_large_counts, num_datatypes
INTEGER, INTENT(OUT) :: combiner
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_TYPE_GET_ENVELOPE(DATATYPE, NUM_INTEGERS, NUM_ADDRESSES, NUM_DATATYPES,
COMBINER, IERROR)
INTEGER DATATYPE, NUM_INTEGERS, NUM_ADDRESSES, NUM_DATATYPES, COMBINER,
TERROR

For the given datatype, MPI_TYPE_GET_ENVELOPE returns information on the num-
ber and type of input arguments used in the call that created the datatype. The number-of-

arguments values returned can be used to provide sufficiently large arrays in the decoding
routine MPI_TYPE_GET_CONTENTS. This call and the meaning of the returned values is

5.1. DERIVED DATATYPES 159

described below. The combiner reflects the MPI datatype constructor call that was used in
creating datatype.

Rationale. By requiring that the combiner reflect the constructor used in the creation
of the datatype, the decoded information can be used to effectively recreate the calling
sequence used in the original creation. This is the most useful information and was felt
to be reasonable even though it constrains implementations to remember the original
constructor sequence even if the internal representation is different.

The decoded information keeps track of datatype duplications. This is important as
one needs to distinguish between a predefined datatype and a dup of a predefined
datatype. The former is a constant object that cannot be freed, while the latter is a
derived datatype that can be freed. (End of rationale.)

The list in Table 5.1 has the values that can be returned in combiner on the left and
the call associated with them on the right.

MPI_COMBINER_NAMED a named predefined datatype
MPI_COMBINER_DUP MPI_TYPE_DUP
MPI_COMBINER_CONTIGUQOUS MPI_TYPE_CONTIGUOUS
MPI_COMBINER_VECTOR MPI_TYPE_VECTOR
MPI_COMBINER_HVECTOR MPI_TYPE_CREATE_HVECTOR
MPI_COMBINER_INDEXED MPI_TYPE_INDEXED
MPI_COMBINER_HINDEXED MPI_TYPE_CREATE_HINDEXED

MPI_COMBINER_INDEXED_BLOCK MPI_TYPE_CREATE_INDEXED_BLOCK
MPI_COMBINER_HINDEXED_BLOCK MPI_TYPE_CREATE_HINDEXED_BLOCK

MPI_COMBINER_STRUCT MPI_TYPE_CREATE_STRUCT
MPI_COMBINER_SUBARRAY MPI_TYPE_CREATE_SUBARRAY
MPI_COMBINER_DARRAY MPI_TYPE_CREATE_DARRAY
MPI_COMBINER_F90_REAL MPI_TYPE_CREATE_F90_REAL
MPI_COMBINER_F90_COMPLEX MPI_TYPE_CREATE_F90_COMPLEX
MPI_COMBINER_F90_INTEGER MPI_TYPE_CREATE_F90_INTEGER
MPI_COMBINER_RESIZED MPI_TYPE_CREATE_RESIZED

Table 5.1: combiner values returned from MPI_TYPE_GET_ENVELOPE

If combiner is MPI_COMBINER_NAMED then datatype is a named predefined datatype.

If the MPI_TYPE_GET_ENVELOPE variant without num_large_counts is invoked with
a datatype that requires an output value of num_large_counts > 0, then an error of class
MPI_ERR_TYPE is raised.

Rationale. The large count variant of this MPI procedure was added in MPI-4.
It contains a new num_large_counts parameter. The other variant—the variant that
existed before MPI-4—was not changed in order to preserve backwards compatibility.
(End of rationale.)

The actual arguments used in the creation call for a datatype can be obtained using
MPI_TYPE_GET_CONTENTS.

MPI_TYPE_GET_ENVELOPE and MPI_TYPE_GET_CONTENTS also support large
count types in separate additional MPI procedures in C (suffixed with the “_c”) and inter-
face polymorphism in Fortran when using USE mpi_£08.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

37

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

160

CHAPTER 5. DATATYPES

MPI_TYPE_GET_CONTENTS(datatype, max_integers, max_addresses, max_large_counts,
max_datatypes, array_of_integers, array_of _addresses,
array_of _large_counts, array_of _datatypes)

IN
IN

ouT

ouT

ouT

ouT

C binding

datatype

max_integers

max_addresses

max_large_counts

max_datatypes

array_of _integers

array_of _addresses

array_of _large_counts

array_of _datatypes

datatype to decode (handle)

number of elements in array_of _integers
(non-negative integer)

number of elements in array_of_addresses
(non-negative integer)

number of elements in array_of _large_counts
(non-negative integer, only present for large
count variants)

number of elements in array_of _datatypes
(non-negative integer)
contains integer arguments used in constructing

datatype (array of integers)

contains address arguments used in constructing
datatype (array of integers)

contains large count arguments used in constructing
datatype (array of integers, only present for large
count variants)

contains datatype arguments used in constructing
datatype (array of handles)

int MPI_Type_get_contents(MPI_Datatype datatype, int max_integers,

int max_addresses, int max_datatypes, int array_of_integers[],
MPI_Aint array_of_addresses[],

MPI_Datatype array_of_datatypes[])

int MPI_Type_get_contents_c(MPI_Datatype datatype, MPI_Count max_integers,
MPI_Count max_addresses, MPI_Count max_large_counts,
MPI_Count max_datatypes, int array_of_integersl[],

MPI_Aint array_of_addresses[],

MPI_Count array_of_large_counts[],

MPI_Datatype array_of_datatypesl[])

Fortran 2008 binding
MPI_Type_get_contents(datatype, max_integers, max_addresses, max_datatypes,
array_of_integers, array_of_addresses, array_of_datatypes,

TYPE(MPI_Datatype), INTENT(IN)
INTEGER, INTENT(IN)

ierror)

INTEGER, INTENT(OUT)
INTEGER (KIND=MPI_ADDRESS_KIND), INTENT(OUT)
array_of _addresses(max_addresses)

:: datatype

: max_integers, max_addresses, max_datatypes
array_of_integers(max_integers)

5.1. DERIVED DATATYPES 161

TYPE(MPI_Datatype), INTENT(OUT) :: array_of_datatypes(max_datatypes)
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_get_contents(datatype, max_integers, max_addresses,
max_large_counts, max_datatypes, array_of_integers,
array_of_addresses, array_of_large_counts, array_of_datatypes,
ierror) !(_c)

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: max_integers,
max_addresses, max_large_counts, max_datatypes

INTEGER, INTENT(OUT) :: array_of_integers(max_integers)

INTEGER (KIND=MPI_ADDRESS_KIND), INTENT(OUT)
array_of_addresses(max_addresses)

INTEGER (KIND=MPI_COUNT_KIND), INTENT(QOUT)
array_of_large_counts(max_large_counts)

TYPE(MPI_Datatype), INTENT(OUT) :: array_of_datatypes(max_datatypes)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_TYPE_GET_CONTENTS(DATATYPE, MAX_INTEGERS, MAX_ADDRESSES, MAX_DATATYPES,
ARRAY_OF_INTEGERS, ARRAY_OF_ADDRESSES, ARRAY_OF_DATATYPES,
IERROR)
INTEGER DATATYPE, MAX_INTEGERS, MAX_ADDRESSES, MAX_DATATYPES,
ARRAY_OF_INTEGERS(*), ARRAY_OF_DATATYPES(*), IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) ARRAY_OF_ADDRESSES (*)

datatype must be a predefined unnamed or a derived datatype; the call is erroneous if
datatype is a predefined named datatype.

The values given for max_integers, max_addresses, max_large_counts, and
max_datatypes must be at least as large as the value returned in num_integers,
num_addresses, num_large_counts, and num_datatypes, respectively, in the call
MPI_TYPE_GET_ENVELOPE for the same datatype argument.

Rationale. The arguments max_integers, max_addresses, max_large_counts, and
max_datatypes allow for error checking in the call. (End of rationale.)

If the MPI_TYPE_GET_CONTENTS variant without max_large_counts is invoked with
a datatype that requires > 0 values in array_of _large_counts, then an error of class
MPI_ERR_TYPE is raised.

Rationale. The large count variant of this MPI procedure was added in MPI-4.
It contains new max_large_counts and array_of _large_counts parameters. The other
variant—the variant that existed before MPl-4—was not changed in order to preserve
backwards compatibility. (End of rationale.)

The datatypes returned in array_of_datatypes are handles to datatype objects that
are equivalent to the datatypes used in the original construction call. If these were derived
datatypes, then the returned datatypes are new datatype objects, and the user is responsible
for freeing these datatypes with MPI_TYPE_FREE. If these were predefined datatypes, then
the returned datatype is equal to that (constant) predefined datatype and cannot be freed.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

162 CHAPTER 5. DATATYPES

The committed state of returned derived datatypes is undefined, i.e., the datatypes may
or may not be committed. Furthermore, the content of attributes of returned datatypes is
undefined.

Note that MPI_TYPE_GET_CONTENTS can be invoked with a
datatype argument that was constructed using MPI_TYPE_CREATE_F90_REAL,
MPI_TYPE_CREATE_F90_INTEGER, or MPI_TYPE_CREATE_F90_COMPLEX (an unnamed
predefined datatype). In such a case, an empty array_of _datatypes is returned.

Rationale. The definition of datatype equivalence implies that equivalent predefined
datatypes are equal. By requiring the same handle for named predefined datatypes,
it is possible to use the == or .EQ. comparison operator to determine the datatype
involved. (End of rationale.)

Advice to implementors. The datatypes returned in array_of _datatypes must appear
to the user as if each is an equivalent copy of the datatype used in the type constructor
call. Whether this is done by creating a new datatype or via another mechanism such
as a reference count mechanism is up to the implementation as long as the semantics
are preserved. (End of advice to implementors.)

Rationale. The committed state and attributes of the returned datatype is delib-
erately left vague. The datatype used in the original construction may have been
modified since its use in the constructor call. Attributes can be added, removed, or
modified as well as having the datatype committed. The semantics given allow for
a reference count implementation without having to track these changes. (End of
rationale.)

In the deprecated datatype constructor calls, the address arguments in Fortran are
of type INTEGER. In the preferred calls, the address arguments are of type
INTEGER (KIND=MPI_ADDRESS_KIND). The call MPI_TYPE_GET_CONTENTS returns all ad-
dresses in an argument of type INTEGER (KIND=MPI_ADDRESS_KIND). This is true even if the
deprecated calls were used. Thus, the location of values returned can be thought of as being
returned by the C bindings. It can also be determined by examining the preferred calls for
datatype constructors for the deprecated calls that involve addresses.

Rationale. By having all address arguments returned in the

array_of _addresses argument, the result from a C and Fortran decoding of a datatype
gives the result in the same argument. It is assumed that an integer of type
INTEGER (KIND=MPI_ADDRESS_KIND) will be at least as large as the INTEGER argument
used in datatype construction with the old MPI-1 calls so no loss of information will
occur. (End of rationale.)

The following defines what values are placed in each entry of the returned arrays
depending on the datatype constructor used for datatype. It also specifies the size of the
arrays needed which is the values returned by MPI_TYPE_GET_ENVELOPE. In Fortran,
the following calls were made:

PARAMETER (LARGE = 1000)
INTEGER TYPE, NI, NA, ND, COMBINER, I(LARGE), D(LARGE), IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) A(LARGE)

5.1. DERIVED DATATYPES

| CONSTRUCT DATATYPE TYPE (NOT SHOWN)

CALL MPI_TYPE_GET_ENVELOPE(TYPE, NI, NA, ND, COMBINER, IERROR)

IF ((NI .GT. LARGE) .OR. (NA .GT. LARGE) .OR. (ND .GT. LARGE)) THEN
WRITE (%, *) "NI, NA, OR ND = ", NI, NA, ND, &
" RETURNED BY MPI_TYPE_GET_ENVELOPE IS LARGER THAN LARGE = ", LARGE
CALL MPI_ABORT(MPI_COMM_WORLD, 99, IERROR)

ENDIF

CALL MPI_TYPE_GET_CONTENTS(TYPE, NI, NA, ND, I, A, D, IERROR)

or in C the analogous calls of:

#define LARGE 1000

int ni, na, nd, combiner, i[LARGE];

MPI_Aint a[LARGE];

MPI_Datatype type, d[LARGE];

/* construct datatype type (not shown) */
MPI_Type_get_envelope(type, &ni, &na, &nd, &combiner);
if ((ni > LARGE) || (na > LARGE) || (nd > LARGE)) {

fprintf(stderr, "ni, na, or nd = %d %d %d returned by ", ni, na, nd);
fprintf(stderr, "MPI_Type_get_envelope is larger than LARGE = %d\n",

LARGE) ;
MPI_Abort (MPI_COMM_WORLD, 99);
};
MPI_Type_get_contents(type, ni, na, nd, i, a, d);

163

The following describes the values of the arguments for each combiner. The lower case
name of arguments is used. Also, the descriptions below refer to MPI datatypes created

with procedures without large count arguments.

MPI_COMBINER_NAMED the datatype represent a predefined type and therefore it is er-

roneous to call MPI_TYPE_GET_CONTENTS.

MPI_COMBINER_DUP ni = 0,na = 0,nd = 1, and

Constructor argument C Fortran location
oldtype d[0] D(1)

MPI_COMBINER_CONTIGUOUS ni = 1,na = 0, nd = 1, and

Constructor argument C Fortran location
count i[0] I(1)
oldtype d[0] D(1)

MPI_COMBINER_VECTOR ni = 3,na = 0,nd = 1, and

Constructor argument C Fortran location

count i[0] I(1)
blocklength i[1] I(2)
stride i[2] 1(3)

oldtype d[0] D(1)

10

11

12

13

14

15

16

17

18

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

164 CHAPTER 5. DATATYPES

MPI_COMBINER_HVECTOR ni = 2,na = 1,nd = 1, and

Constructor argument C Fortran location

count i[0] I(1)
blocklength i[1] 1(2)
stride a[0] A(1)
oldtype d[0] D(1)

MPI_COMBINER_INDEXED ni = 2*count+1,na = 0,nd = 1, and

Constructor argument C Fortran location
count i[0] I(1)

array _of _blocklengths i[1] to i[i]0]] I(2) to I(I(1)+1)
array_of _displacements i[i[0]+1] to i[2*i[0]] I(I(1)42) to I(2*I(1)+1)
oldtype d[0] D(1)

MPI_COMBINER_HINDEXED ni = count+1, na = count,nd = 1, and

Constructor argument C Fortran location
count i[0] I(1)
array_of _blocklengths i[1] to i[i[0]] I(2) to I(I(1)+1)
array_of_displacements a[0] to a[i[0]-1] A(1) to A(I(1))
oldtype d[0] D(1)

MPI_COMBINER_INDEXED_BLOCK ni = count+2,na = 0,nd = 1, and

Constructor argument C Fortran location
count i[0] I(1)
blocklength i[1] 1(2)
array_of _displacements i[2] to i[i[0]+1] I(3) to I(I(1)+2)
oldtype d[0] D(1)

MPI_COMBINER_HINDEXED_BLOCK ni = 2, na = count, nd = 1, and

Constructor argument C Fortran location
count i[0] I(1)
blocklength i[1] 1(2)
array_of _displacements al0] to a[i[0]-1] A(1) to A(I(1))

o
oldtype d[0] D(1)

MPI_COMBINER_STRUCT ni = count+1, na = count, nd = count, and

Constructor argument C Fortran location
count i[0] I(1)

array _of _blocklengths i[1] to i[i[0]] I(2) to I(I(1)+1)
array_of_displacements a[0] to a[i[0]-1] A(1) to A(I(1))
array _of _types d[0] to d[i[0]-1] D(1) to D(I(1))

5.1. DERIVED DATATYPES

MPI_COMBINER_SUBARRAY ni = 3*ndims+2,na = 0,nd = 1, and

Constructor argument C Fortran location
ndims i[0] I(1)

array_of _sizes i[1] to i[i[0]] I(2) to I(I(1)+1)
array _of _subsizes i[i[0]+1] to i[2*i[0]] I(I(1)+2) to I(2*I(1)+1)
array _of _starts i[2*1[0]+1] to 1[3*i[0]] I(2*I(1)+2) to I(3*I(1)+1)
order i[3*1[0]+1] I(3*1(1)+2]
oldtype d[0] D(1)

MPI_COMBINER_DARRAY ni = 4*ndims+4,na = 0,nd = 1, and

Constructor argument C Fortran location

size i[0] I(1)

rank i[1] 1(2)

ndims i[2] I(3)

array _of _gsizes i[3] to i[i[2]+2] I(4) to I(I(3)+3)
array_of _distribs i[i[2]4+3] to i[2*i[2]+2] I(I(3)+4) to I(2*I(3)+3)
array_of _dargs i[2*i[2]+3] to i[3*1[2]+2] I(2*1(3)+4) to I(3*I(3)+3)
array_of _psizes i[3%1]2]+3] to i[4*i[2]+2] I(3*1(3)+4) to I(4*(3)+3)
order i[4%i[2] +3] 1(4%1(3)+4)
oldtype d[0] D(1)

MPI_COMBINER_F90_REAL ni = 2,na = 0,nd = 0, and

Constructor argument C Fortran location

p i[0] I(1)
r i[1] 1(2)

MPI_COMBINER_F90_COMPLEX ni = 2, na = 0, nd = 0, and

Constructor argument C Fortran location

D i0] I(1)
r i1] 1(2)

MPI_COMBINER_F90_INTEGER ni = 1,na = 0, nd = 0, and

Constructor argument C Fortran location
r i[0] I(1)

MPI_COMBINER_RESIZED ni = 0,na = 2,nd = 1, and

Constructor argument C Fortran location

Ib a[0] A(1)
extent a[l] A(2)
oldtype d[0] D(1)

5.1.14 Examples

The following examples illustrate the use of derived datatypes.

165

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

166 CHAPTER 5. DATATYPES

Example 5.13 Send and receive a section of a 3D array.

REAL a(100,100,100), e(9,9,9)

INTEGER oneslice, twoslice, threeslice, myrank, ierr
INTEGER (KIND=MPI_ADDRESS_KIND) 1b, sizeofreal
INTEGER status(MPI_STATUS_SIZE)

| extract the section a(1:17:2, 3:11, 2:10)
| and store it in e(:,:,:).

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
CALL MPI_TYPE_GET_EXTENT(MPI_REAL, 1b, sizeofreal, ierr)

| create datatype for a 1D section
CALL MPI_TYPE_VECTOR(9, 1, 2, MPI_REAL, oneslice, ierr)

! create datatype for a 2D section
CALL MPI_TYPE_CREATE_HVECTOR(9, 1, 100*sizeofreal, oneslice, &
twoslice, ierr)

! create datatype for the entire section
CALL MPI_TYPE_CREATE_HVECTOR(9, 1, 100%100*sizeofreal, twoslice, &
threeslice, ierr)

CALL MPI_TYPE_COMMIT(threeslice, ierr)
CALL MPI_SENDRECV(a(1,3,2), 1, threeslice, myrank, 0, e, 9%9%9, &
MPI_REAL, myrank, O, MPI_COMM_WORLD, status, ierr)

Example 5.14 Copy the (strictly) lower triangular part of a matrix.

REAL a(100,100), b(100,100)
INTEGER disp(100), blocklen(100), ltype, myrank, ierr
INTEGER status(MPI_STATUS_SIZE)

! copy lower triangular part of array a
! onto lower triangular part of array b

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)

I compute start and size of each column
DO i=1,100

disp(i) = 100*(i-1) + i

blocklen(i) = 100-i
END DO

! create datatype for lower triangular part

5.1. DERIVED DATATYPES

CALL MPI_TYPE_INDEXED(100, blocklen, disp, MPI_REAL, ltype, ierr)
CALL MPI_TYPE_COMMIT(ltype, ierr)

CALL MPI_SENDRECV(a, 1, ltype, myrank, O, b, 1, &
ltype, myrank, O, MPI_COMM_WORLD, status, ierr)

Example 5.15 Transpose a matrix.

REAL a(100,100), b(100,100)

INTEGER row, xpose, myrank, ierr

INTEGER (KIND=MPI_ADDRESS_KIND) 1lb, sizeofreal
INTEGER status(MPI_STATUS_SIZE)

| transpose matrix a onto b

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)

CALL MPI_TYPE_GET_EXTENT(MPI_REAL, 1b, sizeofreal, ierr)

! create datatype for one row
CALL MPI_TYPE_VECTOR(100, 1, 100, MPI_REAL, row, ierr)

| create datatype for matrix in row-major order
CALL MPI_TYPE_CREATE_HVECTOR(100, 1, sizeofreal, row, xpose, ierr)

CALL MPI_TYPE_COMMIT(xpose, ierr)

! send matrix in row-major order and receive in column major order
CALL MPI_SENDRECV(a, 1, xpose, myrank, O, b, 100%100, &

MPI_REAL, myrank, O, MPI_COMM_WORLD, status, ierr)

Example 5.16 Another approach to the transpose problem:

REAL a(100,100), b(100,100)

INTEGER row, rowl

INTEGER (KIND=MPI_ADDRESS_KIND) 1lb, sizeofreal
INTEGER myrank, ierr

INTEGER status(MPI_STATUS_SIZE)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
| transpose matrix a onto b
CALL MPI_TYPE_GET_EXTENT(MPI_REAL, 1b, sizeofreal, ierr)

I create datatype for one row
CALL MPI_TYPE_VECTOR(100, 1, 100, MPI_REAL, row, ierr)

167

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

168 CHAPTER 5. DATATYPES

| create datatype for one row, with the extent of one real number
1b =0
CALL MPI_TYPE_CREATE_RESIZED(row, 1lb, sizeofreal, rowl, ierr)

CALL MPI_TYPE_COMMIT(rowl, ierr)
! send 100 rows and receive in column major order

CALL MPI_SENDRECV(a, 100, rowl, myrank, O, b, 100*x100, &
MPI_REAL, myrank, O, MPI_COMM_WORLD, status, ierr)

Example 5.17 Use of MPI datatypes to manipulate an array of structures.

struct Partstruct

{

int type; /* particle type */

double d[6]; /* particle coordinates */

char bl[7]; /* some additional information */
3

struct Partstruct particle[1000];

int i, dest, tag;

MPI_Comm comm;

/* build datatype describing structure */

MPI_Datatype Particlestruct, Particletype;
MPI_Datatype typel[3] = {MPI_INT, MPI_DOUBLE, MPI_CHAR};

int blocklen[3] = {1, 6, 7};
MPI_Aint disp[3];
MPI_Aint base, 1lb, sizeofentry;

/* compute displacements of structure components */

MPI_Get_address(particle, disp);
MPI_Get_address(particle[0].d, disp+1);
MPI_Get_address(particle[0].b, disp+2);

base = displ[0];

for (i=0; i < 3; i++) disp[i] = MPI_Aint_diff(disp[i], base);

MPI_Type_create_struct(3, blocklen, disp, type, &Particlestruct);

/* Since the compiler may pad the structure, it is best to explicitly
set the extent of the MPI datatype for a structure element using

5.1. DERIVED DATATYPES 169

MPI_Type_create_resized */

/* compute extent of the structure */
MPI_Get_address(particle+l, &sizeofentry);
sizeofentry = MPI_Aint_diff(sizeofentry, base);

/* build datatype describing structure */
MPI_Type_create_resized(Particlestruct, O, sizeofentry, &Particletype);

/* 4.1: send the entire array */

MPI_Type_commit (&Particletype) ;
MPI_Send(particle, 1000, Particletype, dest, tag, comm);

/* 4.2: send only the entries of type zero particles,
preceded by the number of such entries */

MPI_Datatype Zparticles; /* datatype describing all particles
with type zero (needs to be recomputed
if types change) */

MPI_Datatype Ztype;

int zdisp[1000] ;

int zblock[1000], j, k;
int zzblock[2] = {1,1};
MPI_Aint zzdisp[2];

MPI_Datatype zztypel[2];

/* compute displacements of type zero particles */
j=20;
for (i=0; i < 1000; i++)
if (particle[i].type == 0)
{

zdispl[j] = 1i;

zblock[j] = 1;

j++s

}

/* create datatype for type zero particles */
MPI_Type_indexed(j, zblock, zdisp, Particletype, &Zparticles);

/* prepend particle count */
MPI_Get_address(&j, zzdisp);
MPI_Get_address(particle, zzdisp+1);
zztype[0] = MPI_INT;

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

170 CHAPTER 5. DATATYPES

zztype[1] = Zparticles;
MPI_Type_create_struct(2, zzblock, zzdisp, zztype, &Ztype);

MPI_Type_commit (&Ztype) ;
MPI_Send(MPI_BOTTOM, 1, Ztype, dest, tag, comm);

/* A probably more efficient way of defining Zparticles */

/* consecutive particles with index zero are handled as one block */
j=0;
for (i=0; i < 1000; i++)

if (particle[i].type == 0)

{
for (k=i+1; (k < 1000)&&(particle[k].type == 0); k++);
zdisp[j] = i;
zblock[j] = k-i;
jtts
i = k;
}

MPI_Type_indexed(j, zblock, zdisp, Particletype, &Zparticles);

/* 4.3: send the first two coordinates of all entries */
MPI_Datatype Allpairs; /* datatype for all pairs of coordinates */
MPI_Type_get_extent(Particletype, &lb, &sizeofentry);

/* sizeofentry can also be computed by subtracting the address
of particle[0] from the address of particle[1] */

MPI_Type_create_hvector (1000, 2, sizeofentry, MPI_DOUBLE, &Allpairs);
MPI_Type_commit (&Allpairs);

MPI_Send(particle[0].d, 1, Allpairs, dest, tag, comm);

/* an alternative solution to 4.3 */

MPI_Datatype Twodouble;

MPI_Type_contiguous(2, MPI_DOUBLE, &Twodouble);

MPI_Datatype Onepair; /* datatype for one pair of coordinates, with
the extent of one particle entry */

MPI_Type_create_resized(Twodouble, O, sizeofentry, &Onepair);
MPI_Type_commit (&0nepair) ;

5.1. DERIVED DATATYPES 171

MPI_Send(particle[0].d, 1000, Onepair, dest, tag, comm);

Example 5.18 The same manipulations as in the previous example, but use absolute
addresses in datatypes.

struct Partstruct

{
int type;
double d[6];
char bl[7];
};

struct Partstruct particle[1000];
/* build datatype describing first array entry */

MPI_Datatype Particletype;

MPI_Datatype typel[3] = {MPI_INT, MPI_DOUBLE, MPI_CHAR};
int block[3] = {1, 6, 7};

MPI_Aint disp([3];

MPI_Get_address(particle, disp);
MPI_Get_address(particle[0].d, disp+1);
MPI_Get_address(particle[0].b, disp+2);
MPI_Type_create_struct(3, block, disp, type, &Particletype);

/* Particletype describes first array entry -- using absolute
addresses */

/* 5.1: send the entire array */

MPI_Type_commit (&Particletype) ;

MPI_Send (MPI_BOTTOM, 1000, Particletype, dest, tag, comm);
/* 5.2: send the entries of type zero,

preceded by the number of such entries */

MPI_Datatype Zparticles, Ztype;

int zdisp[1000] ;

int zblock[1000], i, j, k;
int zzblock[2] = {1,1};
MPI_Datatype zztypel[2];

MPI_Aint zzdisp[2] ;

3=0;

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

172 CHAPTER 5. DATATYPES

for (i=0; i < 1000; i++)
if (particle[i].type == 0)

{
for (k=i+1; (k < 1000)&&(particle[k].type == 0); k++);
zdispl[j] = 1i;
zblock[j] = k-i;
jtts
i = k;
}

MPI_Type_indexed(j, zblock, zdisp, Particletype, &Zparticles);
/* Zparticles describe particles with type zero, using
their absolute addresses*/

/* prepend particle count */

MPI_Get_address(&]j, zzdisp);

zzdisp[1] (MPI_Aint)O;

zztype [0] MPI_INT;

zztype[1] = Zparticles;

MPI_Type_create_struct(2, zzblock, zzdisp, zztype, &Ztype);

MPI_Type_commit (&Ztype) ;
MPI_Send (MPI_BOTTOM, 1, Ztype, dest, tag, comm);

Example 5.19 This example shows how datatypes can be used to handle unions.
union {
int ival;

float fval;
} ul[1000];

int i, utype;

/* A1l entries of u have identical type; variable
utype keeps track of their current type */

MPI_Datatype mpi_utypel2];
MPI_Aint ubase, extent;

/* compute an MPI datatype for each possible union type;
assume values are left-aligned in union storage. */

MPI_Get_address(u, &ubase);
MPI_Get_address(u+1l, &extent);

extent = MPI_Aint_diff (extent, ubase);

MPI_Type_create_resized (MPI_INT, O, extent, &mpi_utypel0]);

5.1.

DERIVED DATATYPES

MPI_Type_create_resized (MPI_FLOAT, O, extent, &mpi_utypel[1]);

for(i=0; i<2; i++) MPI_Type_commit (&mpi_utypel[il);

/* actual communication */
MPI_Send(u, 1000, mpi_utypelutypel, dest, tag, comm);

Example 5.20 This example shows how a datatype can be decoded. The routine

printdatatype prints out the elements of the datatype. Note the use of MPI_Type_free for

datatypes that are not predefined.

/*
Example of decoding a datatype.

Returns 0 if the datatype is predefined, 1 otherwise

#include <stdio.h>

#include <stdlib.h>

#include "mpi.h"

int printdatatype(MPI_Datatype datatype)

{

int *array_of_ints;

MPI_Aint *array_of_adds;

MPI_Datatype *array_of_dtypes;

int num_ints, num_adds, num_dtypes, combiner;
int i;

MPI_Type_get_envelope(datatype,
&num_ints, &num_adds, &num_dtypes, &combiner);
switch (combiner) {
case MPI_COMBINER_NAMED:
printf ("Datatype is named:");
/* To print the specific type, we can match against the
predefined forms. We can NOT use a switch statement here
We could also use MPI_TYPE_GET_NAME if we prefered to use
names that the user may have changed.
*/
if (datatype == MPI_INT) printf ("MPI_INT\n");
else if (datatype == MPI_DOUBLE) printf ("MPI_DOUBLE\n");
. else test for other types
return O;
break;
case MPI_COMBINER_STRUCT:
case MPI_COMBINER_STRUCT_INTEGER:
printf ("Datatype is struct containing");
array_of_ints = (int *)malloc(num_ints * sizeof(int));
array_of_adds =

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

174 CHAPTER 5. DATATYPES

(MPI_Aint *) malloc(num_adds * sizeof (MPI_Aint));
array_of_dtypes = (MPI_Datatype *)
malloc(num_dtypes * sizeof (MPI_Datatype));
MPI_Type_get_contents(datatype, num_ints, num_adds, num_dtypes,
array_of_ints, array_of_adds, array_of_dtypes);
printf (" %d datatypes:\n", array_of_ints[0]);
for (i=0; i<array_of_ints[0]; i++) {
printf ("blocklength %d, displacement %1d, type:\n",
array_of _ints[i+1], (long)array_of_adds[il);
if (printdatatype(array_of_dtypes[i])) {
/* Note that we free the type ONLY if it
is not predefined */
MPI_Type_free(&array_of_dtypes[il);

}

free(array_of_ints) ;

free(array_of_adds);

free(array_of_dtypes);

break;

. other combiner values ...

default:

printf ("Unrecognized combiner type\n");
}

return 1;

5.2 Pack and Unpack

Some existing communication libraries provide pack/unpack functions for sending noncon-
tiguous data. In these, the user explicitly packs data into a contiguous buffer before sending
it, and unpacks it from a contiguous buffer after receiving it. Derived datatypes, which are
described in Section 5.1, allow one, in most cases, to avoid explicit packing and unpacking.
The user specifies the layout of the data to be sent or received, and the communication
library directly accesses a noncontiguous buffer. The pack/unpack routines are provided
for compatibility with previous libraries. Also, they provide some functionality that is not
otherwise available in MPI. For instance, a message can be received in several parts, where
the receive operation done on a later part may depend on the content of a former part.
Another use is that outgoing messages may be explicitly buffered in user supplied space,
thus overriding the system buffering policy. Finally, the availability of pack and unpack
operations facilitates the development of additional communication libraries layered on top
of MPIL.

5.2. PACK AND UNPACK 175

MPI_PACK(inbuf, incount, datatype, outbuf, outsize, position, comm)

IN inbuf input buffer start (choice)
IN incount number of input data items (non-negative integer)
IN datatype datatype of each input data item (handle)
ouT outbuf output buffer start (choice)
IN outsize output buffer size, in bytes (non-negative integer)
INOUT position current position in buffer, in bytes (integer)
IN comm communicator for packed message (handle)
C binding

int MPI_Pack(const void *inbuf, int incount, MPI_Datatype datatype,
void *outbuf, int outsize, int *position, MPI_Comm comm)

int MPI_Pack_c(const void *inbuf, MPI_Count incount, MPI_Datatype datatype,
void *outbuf, MPI_Count outsize, MPI_Count *position,
MPI_Comm comm)

Fortran 2008 binding
MPI_Pack(inbuf, incount, datatype, outbuf, outsize, position, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: inbuf
INTEGER, INTENT(IN) :: incount, outsize
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(*), DIMENSION(..) :: outbuf
INTEGER, INTENT(INOUT) :: position
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Pack(inbuf, incount, datatype, outbuf, outsize, position, comm, ierror)
1(_c)
TYPE(*), DIMENSION(..), INTENT(IN) :: inbuf
INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: incount, outsize
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(*), DIMENSION(..) :: outbuf
INTEGER (KIND=MPI_COUNT_KIND), INTENT(INOUT) :: position
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_PACK(INBUF, INCOUNT, DATATYPE, OUTBUF, OUTSIZE, POSITION, COMM, IERROR)
<type> INBUF(*), OUTBUF (%)
INTEGER INCOUNT, DATATYPE, OUTSIZE, POSITION, COMM, IERROR

Packs the message in the send buffer specified by inbuf, incount, datatype into the buffer
space specified by outbuf and outsize. The input buffer can be any communication buffer
allowed in MPI_SEND. The output buffer is a contiguous storage area containing outsize
bytes, starting at the address outbuf (length is counted in bytes, not elements, as if it were
a communication buffer for a message of type MPI_PACKED).

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

30

31

32

33

34

35

36

37

38

39

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

36

37

38

39

40

41

42

43

44

45

47

48

176

CHAPTER 5. DATATYPES

The input value of position is the first location in the output buffer to be used for

packing. position is incremented by the size of the packed message, and the output value
of position is the first location in the output buffer following the locations occupied by the
packed message. The comm argument is the communicator that will be subsequently used
for sending the packed message.

MPI_UNPACK(inbuf, insize, position, outbuf, outcount, datatype, comm)

IN inbuf input buffer start (choice)
IN insize size of input buffer, in bytes (non-negative integer)
INOUT position current position in bytes (integer)
ouT outbuf output buffer start (choice)
IN outcount number of items to be unpacked (integer)
IN datatype datatype of each output data item (handle)
IN comm communicator for packed message (handle)
C binding
int MPI_Unpack(const void *inbuf, int insize, int *position, void *outbuf,

int

int outcount, MPI_Datatype datatype, MPI_Comm comm)

MPI_Unpack_c(const void *inbuf, MPI_Count insize, MPI_Count *position,
void *outbuf, MPI_Count outcount, MPI_Datatype datatype,
MPI_Comm comm)

Fortran 2008 binding

MPI_

MPI_

Unpack (inbuf, insize, position, outbuf, outcount, datatype, comm,
ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: inbuf

INTEGER, INTENT(IN) :: insize, outcount

INTEGER, INTENT(INOUT) :: position

TYPE(*), DIMENSION(..) :: outbuf

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Unpack (inbuf, insize, position, outbuf, outcount, datatype, comm,
ierror) !'(_c)

TYPE(*), DIMENSION(..), INTENT(IN) :: inbuf

INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: insize, outcount

INTEGER (KIND=MPI_COUNT_KIND), INTENT(INOUT) :: position

TYPE(*), DIMENSION(..) :: outbuf

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(QOUT) :: ierror

Fortran binding

MPI_

UNPACK (INBUF, INSIZE, POSITION, OUTBUF, OUTCOUNT, DATATYPE, COMM,
IERROR)

5.2. PACK AND UNPACK 177

<type> INBUF(*), OUTBUF ()
INTEGER INSIZE, POSITION, OUTCOUNT, DATATYPE, COMM, IERROR

Unpacks a message into the receive buffer specified by outbuf, outcount, datatype from
the buffer space specified by inbuf and insize. The output buffer can be any communication
buffer allowed in MPI_RECV. The input buffer is a contiguous storage area containing insize
bytes, starting at address inbuf. The input value of position is the first location in the input
buffer occupied by the packed message. position is incremented by the size of the packed
message, so that the output value of position is the first location in the input buffer after
the locations occupied by the message that was unpacked. comm is the communicator used
to receive the packed message.

Advice to users. Note the difference between MPI_RECV and MPI_UNPACK: in
MPI_RECV, the count argument specifies the maximum number of items that can
be received. The actual number of items received is determined by the length of
the incoming message. In MPI_UNPACK;, the count argument specifies the actual
number of items that are unpacked; the “size” of the corresponding message is the
increment in position. The reason for this change is that the “incoming message size”
is not predetermined since the user decides how much to unpack; nor is it easy to
determine the “message size” from the number of items to be unpacked. In fact, in a
heterogeneous system, this number may not be determined a priori. (End of advice
to users.)

To understand the behavior of pack and unpack, it is convenient to think of the data
part of a message as being the sequence obtained by concatenating the successive values sent
in that message. The pack operation stores this sequence in the buffer space, as if sending
the message to that buffer. The unpack operation retrieves this sequence from buffer space,
as if receiving a message from that buffer. (It is helpful to think of internal Fortran files or
sscanf in C, for a similar function.)

Several messages can be successively packed into one packing unit. This is effected
by several successive related calls to MPI_PACK, where the first call provides position = 0,
and each successive call inputs the value of position that was output by the previous call,
and the same values for outbuf, outcount and comm. This packing unit now contains the
equivalent information that would have been stored in a message by one send call with a
send buffer that is the “concatenation” of the individual send buffers.

A packing unit can be sent using type MPI_PACKED. Any point-to-point or collective
communication function can be used to move the sequence of bytes that forms the packing
unit from one process to another. This packing unit can now be received using any receive
operation, with any datatype: the type matching rules are relaxed for messages sent with
type MPI_PACKED.

A message sent with any type (including MPI_PACKED) can be received using the type
MPI_PACKED. Such a message can then be unpacked by calls to MPI_UNPACK.

A packing unit (or a message created by a regular, “typed” send) can be unpacked into
several successive messages. This is effected by several successive related calls to
MPI_UNPACK, where the first call provides position = 0, and each successive call inputs the
value of position that was output by the previous call, and the same values for inbuf, insize
and comm.

The concatenation of two packing units is not necessarily a packing unit; nor is a
substring of a packing unit necessarily a packing unit. Thus, one cannot concatenate two

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

178

CHAPTER 5. DATATYPES

packing units and then unpack the result as one packing unit; nor can one unpack a substring
of a packing unit as a separate packing unit. Each packing unit, that was created by a related
sequence of pack calls, or by a regular send, must be unpacked as a unit, by a sequence of

related unpack calls.

Rationale. The restriction on “atomic” packing and unpacking of packing units
allows the implementation to add at the head of packing units additional information,
such as a description of the sender architecture (to be used for type conversion, in a
heterogeneous environment) (End of rationale.)

The following call allows the user to find out how much space is needed to pack a
message and, thus, manage space allocation for buffers.

MPI_PACK_SIZE(incount, datatype, comm, size)

IN incount
IN datatype
IN comm
ouT size

C binding

count argument to packing call (non-negative integer)
datatype argument to packing call (handle)
communicator argument to packing call (handle)

upper bound on size of packed message, in bytes
(non-negative integer)

int MPI_Pack_size(int incount, MPI_Datatype datatype, MPI_Comm comm,

int *size)

int MPI_Pack_size_c(MPI_Count incount, MPI_Datatype datatype,
MPI_Comm comm, MPI_Count *size)

Fortran 2008 binding

MPI_Pack_size(incount, datatype, comm, size, ierror)

INTEGER, INTENT(IN) :: incount
TYPE(MPI_Datatype), INTENT(IN)
TYPE(MPI_Comm), INTENT(IN)
INTEGER, INTENT(OUT) :: size
INTEGER, OPTIONAL, INTENT(OUT)

: datatype

comm

:: ierror

MPI_Pack_size(incount, datatype, comm, size, ierror) !(_c)
INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: incount

TYPE(MPI_Datatype), INTENT(IN)
TYPE(MPI_Comm), INTENT(IN)

: datatype

comm

INTEGER (KIND=MPI_COUNT_KIND), INTENT(OUT) :: size

INTEGER, OPTIONAL, INTENT(QUT)

Fortran binding

:: ierror

MPI_PACK_SIZE(INCOUNT, DATATYPE, COMM, SIZE, IERROR)
INTEGER INCOUNT, DATATYPE, COMM, SIZE, IERROR

A call to MPI_PACK_SIZE(incount, datatype, comm, size) returns in size an upper bound
on the increment in position that is effected by a call to MPI_PACK(inbuf, incount, datatype,

5.2. PACK AND UNPACK 179

outbuf, outcount, position, comm). If the packed size of the datatype cannot be expressed
by the size parameter, then MPI_PACK_SIZE sets the value of size to MPI_UNDEFINED

Rationale. The call returns an upper bound, rather than an exact bound, since the
exact amount of space needed to pack the message may depend on the context (e.g.,
first message packed in a packing unit may take more space). (End of rationale.)

Example 5.21 An example using MPI_PACK.

int position, i, j, al2];
char buff[1000] ;

MPI_Comm_rank (MPI_COMM_WORLD, &myrank);
if (myrank == 0)

{
/* SENDER CODE x*/
position = 0;
MPI_Pack(&i, 1, MPI_INT, buff, 1000, &position, MPI_COMM_WORLD) ;
MPI_Pack(&j, 1, MPI_INT, buff, 1000, &position, MPI_COMM_WORLD) ;
MPI_Send(buff, position, MPI_PACKED, 1, 0, MPI_COMM_WORLD) ;

3

else /* RECEIVER CODE */
MPI_Recv(a, 2, MPI_INT, O, O, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

Example 5.22 An elaborate example.

int position, i = 200;
float a[200];
char buff[1000]; /* larger than or equal to the size returned
from MPI_PACK_SIZE for 1,newtype */
MPI_Comm_rank (MPI_COMM_WORLD, &myrank);
if (myrank == 0)
{
/* SENDER CODE */

int len[2];
MPI_Aint disp[2];
MPI_Datatype typel2], newtype;

/* build datatype for i followed by al[0]...al[i-1] */

len[0] 1;

len[1] i;
MPI_Get_address(&i, disp);
MPI_Get_address(a, disp+1);
type[0] = MPI_INT;

type[1] MPI_FLOAT;

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

180

/%

}

els

{

Example 5.23 Each process sends a count, followed by count characters to the root; the

CHAPTER 5. DATATYPES

MPI_Type_create_struct(2, len, disp, type, &newtype);
MPI_Type_commit (&newtype) ;
/* Pack i followed by a[0]...a[i-1]*/
position = 0;
MPI_Pack(MPI_BOTTOM, 1, newtype, buff, 1000, &position, MPI_COMM_WORLD) ;
/* Send */
MPI_Send(buff, position, MPI_PACKED, 1, O,

MPI_COMM_WORLD) ;
*okokokok

One can replace the last three lines with
MPI_Send (MPI_BOTTOM, 1, newtype, 1, O, MPI_COMM_WORLD);

*kkokk *x/

e if (myrank == 1)

/* RECEIVER CODE */

MPI_Status status;

/* Receive */

MPI_Recv(buff, 1000, MPI_PACKED, 0, 0, MPI_COMM_WORLD, &status);

/* Unpack i */

position = 0;
MPI_Unpack(buff, 1000, &position, &i, 1, MPI_INT, MPI_COMM_WORLD);

/* Unpack al[0]...a[i-1] */
MPI_Unpack(buff, 1000, &position, a, i, MPI_FLOAT, MPI_COMM_WORLD);

root concatenates all characters into one string.

int

count, gsize, counts[64], totalcount, k1, k2, k,
displs[64], position, concat_pos;

char chr[100], *1buf, *rbuf, *cbuf;

MPI
MPI

_Comm_size(comm, &gsize);
_Comm_rank (comm, &myrank) ;

5.2. PACK AND UNPACK

/* allocate local pack buffer */
MPI_Pack_size(1, MPI_INT, comm, &k1);
MPI_Pack_size(count, MPI_CHAR, comm, &k2);
k = k1+k2;
lbuf = (char *)malloc(k);

/* pack count, followed by count characters */
position = O;
MPI_Pack(&count, 1, MPI_INT, lbuf, k, &position, comm);
MPI_Pack(chr, count, MPI_CHAR, lbuf, k, &position, comm);

if (myrank != root) {
/* gather at root sizes of all packed messages */
MPI_Gather(&position, 1, MPI_INT, NULL, O,
MPI_DATATYPE_NULL, root, comm);

/* gather at root packed messages */
MPI_Gatherv(lbuf, position, MPI_PACKED, NULL,
NULL, NULL, MPI_DATATYPE_NULL, root, comm);

} else { /* root code */
/* gather sizes of all packed messages */
MPI_Gather (&position, 1, MPI_INT, counts, 1,
MPI_INT, root, comm);

/* gather all packed messages */
displs[0] = 0;
for (i=1; i < gsize; i++)
displs[i] = displs[i-1] + counts[i-1];
totalcount = displs[gsize-1] + counts([gsize-1];
rbuf = (char *)malloc(totalcount);
cbuf = (char *)malloc(totalcount);
MPI_Gatherv(lbuf, position, MPI_PACKED, rbuf,
counts, displs, MPI_PACKED, root, comm);

/* unpack all messages and concatenate strings */
concat_pos = 0;
for (i=0; i < gsize; i++) {
position = O;
MPI_Unpack(rbuf+displs[i], totalcount-displs[i],
&position, &count, 1, MPI_INT, comm);
MPI_Unpack(rbuf+displs[i], totalcount-displs[i],
&position, cbuf+concat_pos, count, MPI_CHAR, comm);
concat_pos += count;
X
cbuf [concat_pos] = ’\0’;

181

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

18

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

182 CHAPTER 5. DATATYPES

5.3 Canonical MPI_PACK and MPI_UNPACK

These functions read/write data to/from the buffer in the "external32" data format specified
in Section 14.5.2, and calculate the size needed for packing. Their first arguments specify
the data format, for future extensibility, but currently the only valid value of the datarep
argument is "external32".

Adwvice to users. These functions could be used, for example, to send typed data in a
portable format from one MPI implementation to another. (End of advice to users.)

The buffer will contain exactly the packed data, without headers. MPI_BYTE should
be used to send and receive data that is packed using MPI_PACK_EXTERNAL.

Rationale. MPI_PACK_EXTERNAL specifies that there is no header on the message
and further specifies the exact format of the data. Since MPI_PACK may (and is
allowed to) use a header, the datatype MPI_PACKED cannot be used for data packed
with MPI_PACK_EXTERNAL. (End of rationale.)

MPI_PACK_EXTERNAL(datarep, inbuf, incount, datatype, outbuf, outsize, position)

IN datarep data representation (string)

IN inbuf input buffer start (choice)

IN incount number of input data items (integer)

IN datatype datatype of each input data item (handle)

ouT outbuf output buffer start (choice)

IN outsize output buffer size, in bytes (integer)

INOUT position current position in buffer, in bytes (integer)
C binding

int MPI_Pack_external(const char datarep[], const void *inbuf, int incount,
MPI_Datatype datatype, void *outbuf, MPI_Aint outsize,
MPI_Aint *position)

int MPI_Pack_external_c(const char datarep[], const void *inbuf,
MPI_Count incount, MPI_Datatype datatype, void *outbuf,
MPI_Count outsize, MPI_Count *position)

Fortran 2008 binding
MPI_Pack_external(datarep, inbuf, incount, datatype, outbuf, outsize,
position, ierror)
CHARACTER (LEN=*), INTENT(IN) :: datarep
TYPE(*), DIMENSION(..), INTENT(IN) :: inbuf
INTEGER, INTENT(IN) :: incount
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(*), DIMENSION(..) :: outbuf
INTEGER (KIND=MPI_ADDRESS_KIND), INTENT(IN) :: outsize
INTEGER (KIND=MPI_ADDRESS_KIND), INTENT(INOUT) :: position

5.3. CANONICAL MPI_PACK AND MPI_UNPACK

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Pack_external(datarep, inbuf, incount, datatype, outbuf, outsize,

position, ierror) !(_c)

CHARACTER (LEN=%), INTENT(IN) :: datarep

TYPE(*), DIMENSION(..), INTENT(IN) :: inbuf

INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: incount, outsize

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(*), DIMENSION(..) :: outbuf

INTEGER (KIND=MPI_COUNT_KIND), INTENT(INOUT) :: position

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_PACK_EXTERNAL (DATAREP, INBUF, INCOUNT, DATATYPE, OUTBUF, OUTSIZE,
POSITION, IERROR)
CHARACTER* (*) DATAREP
<type> INBUF (%), OUTBUF (%)
INTEGER INCOUNT, DATATYPE, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) OUTSIZE, POSITION

MPI_UNPACK_EXTERNAL(datarep, inbuf, insize, position, outbuf, outcount, datatype)

IN datarep data representation (string)
IN inbuf input buffer start (choice)
IN insize input buffer size, in bytes (integer)
INOUT position current position in buffer, in bytes (integer)
ouT outbuf output buffer start (choice)
IN outcount number of output data items (integer)
IN datatype datatype of output data item (handle)
C binding

int MPI_Unpack_external(const char datarep[], const void *inbuf,
MPI_Aint insize, MPI_Aint *position, void *outbuf,
int outcount, MPI_Datatype datatype)

int MPI_Unpack_external_c(const char datarep[], const void *inbuf,
MPI_Count insize, MPI_Count *position, void *outbuf,
MPI_Count outcount, MPI_Datatype datatype)

Fortran 2008 binding
MPI_Unpack_external (datarep, inbuf, insize, position, outbuf, outcount,
datatype, ierror)
CHARACTER (LEN=%), INTENT(IN) :: datarep
TYPE(*), DIMENSION(..), INTENT(IN) :: inbuf
INTEGER (KIND=MPI_ADDRESS_KIND), INTENT(IN) :: insize
INTEGER (KIND=MPI_ADDRESS_KIND), INTENT(INOUT) :: position
TYPE(*), DIMENSION(..) :: outbuf

183

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

10

11

12

13

15

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

184 CHAPTER 5. DATATYPES

INTEGER, INTENT(IN) :: outcount
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Unpack_external (datarep, inbuf, insize, position, outbuf, outcount,

datatype, ierror) !(_c)

CHARACTER (LEN=%), INTENT(IN) :: datarep

TYPE(*), DIMENSION(..), INTENT(IN) :: inbuf

INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: insize, outcount

INTEGER (KIND=MPI_COUNT_KIND), INTENT(INOUT) :: position

TYPE(*), DIMENSION(..) :: outbuf

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, OPTIONAL, INTENT(QOUT) :: ierror

Fortran binding
MPI_UNPACK_EXTERNAL (DATAREP, INBUF, INSIZE, POSITION, OUTBUF, OUTCOUNT,
DATATYPE, IERROR)
CHARACTER* (*) DATAREP
<type> INBUF (%), OUTBUF (%)
INTEGER (KIND=MPI_ADDRESS_KIND) INSIZE, POSITION
INTEGER QUTCOUNT, DATATYPE, IERROR

MPI_PACK_EXTERNAL_SIZE(datarep, incount, datatype, size)

IN datarep data representation (string)
IN incount number of input data items (integer)
IN datatype datatype of each input data item (handle)
ouT size output buffer size, in bytes (integer)
C binding

int MPI_Pack_external_size(const char datarep[], int incount,
MPI_Datatype datatype, MPI_Aint *size)

int MPI_Pack_external_size_c(const char datarep[], MPI_Count incount,
MPI_Datatype datatype, MPI_Count *size)

Fortran 2008 binding
MPI_Pack_external_size(datarep, incount, datatype, size, ierror)
CHARACTER (LEN=%), INTENT(IN) :: datarep
INTEGER, INTENT(IN) :: incount
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER (KIND=MPI_ADDRESS_KIND), INTENT(QOUT) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Pack_external_size(datarep, incount, datatype, size, ierror) !(_c)
CHARACTER (LEN=%), INTENT(IN) :: datarep
INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: incount
TYPE(MPI_Datatype), INTENT(IN) :: datatype

5.3. CANONICAL MPI_PACK AND MPI_UNPACK

INTEGER (KIND=MPI_COUNT_KIND), INTENT(QUT) :: size
INTEGER, OPTIONAL, INTENT(QUT) :: ierror

Fortran binding

MPI_PACK_EXTERNAL_SIZE(DATAREP, INCOUNT, DATATYPE, SIZE, IERROR)
CHARACTER* (*) DATAREP
INTEGER INCOUNT, DATATYPE, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) SIZE

185

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

186

CHAPTER 5. DATATYPES

Chapter 6

Collective Communication

6.1 Introduction and Overview

Collective communication is defined as communication that involves a group or groups of
processes. The functions of this type provided by MPI are the following:

e MPI_BARRIER, MPI_IBARRIER, MPI_BARRIER_INIT: Barrier synchronization across
all members of a group (Section 6.3, Section 6.12.1, and Section 6.13.1).

e MPI_BCAST, MPI_IBCAST, MPI_BCAST_INIT: Broadcast from one member to all
members of a group (Section 6.4, Section 6.12.2, and Section 6.13.2). This is shown
as “broadcast” in Figure 6.1.

e MPI_GATHER, MPI_IGATHER, MPI_GATHER_INIT, MPI_GATHERV,
MPI_IGATHERV, MPI_GATHERV_INIT, : Gather data from all members of a group
to one member (Section 6.5, Section 6.12.3, and Section 6.13.3). This is shown as
“gather” in Figure 6.1.

e MPI_SCATTER, MPI_ISCATTER, MPI_SCATTERL_INIT, MPI_SCATTERYV,
MPI_ISCATTERV, MPI_SCATTERV_INIT: Scatter data from one member to all mem-
bers of a group (Section 6.6, Section 6.12.4, and Section 6.13.4). This is shown as
“scatter” in Figure 6.1.

e MPI_ALLGATHER, MPI_IALLGATHER, MPI_ALLGATHER_INIT,
MPI_ALLGATHERV, MPI_IALLGATHERV, MPI_ALLGATHERV_INIT: A variation on
Gather where all members of a group receive the result (Section 6.7, Section 6.12.5,
and Section 6.13.5). This is shown as “allgather” in Figure 6.1.

e MPI_ALLTOALL, MPI_IALLTOALL, MPI_ALLTOALL_INIT, MPI_ALLTOALLYV,
MPI_IALLTOALLV, MPI_ALLTOALLV_INIT, MPI_ALLTOALLW, MPI_IALLTOALLW,
MPI_ALLTOALLW_INIT: Scatter/Gather data from all members to all members of a
group (also called complete exchange) (Section 6.8, Section 6.12.6, and Section 6.13.6).
This is shown as “complete exchange” in Figure 6.1.

e MPI_ALLREDUCE, MPI_IALLREDUCE, MPI_ALLREDUCE_INIT, MPI_REDUCE,
MPI_IREDUCE, MPI_REDUCE_INIT: Global reduction operations such as sum, max,
min, or user-defined functions, where the result is returned to all members of a group
(Section 6.9.6, Section 6.12.8, and Section 6.13.8) and a variation where the result is
returned to only one member (Section 6.9, Section 6.12.7, and Section 6.13.7).

187

© o0 -~ =] t - w [=

> - > - Lo - = - w w w w w w w w w w [[[[N %) [} N [V} [—= - - = —- = — = - =
~ =] (o)) - w M) - o © oo ~ [=2] ot = w N - o © oo ~ =] (o)) - w V) - o © oo ~ (=2} ot > w [- o

'
oo

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

188 CHAPTER 6. COLLECTIVE COMMUNICATION

e MPI_REDUCE_SCATTER_BLOCK, MPI_IREDUCE_SCATTER_BLOCK,
MPI_REDUCE_SCATTER_BLOCK_INIT, MPI_REDUCE_SCATTER,
MPI_IREDUCE_SCATTER, MPI_REDUCE_SCATTER_INIT: A combined reduction and
scatter operation (Section 6.10, Section 6.12.9, Section 6.12.10, Section 6.13.9, and
Section 6.13.10).

e MPI_SCAN, MPI_ISCAN, MPI_SCAN_INIT, MPI_EXSCAN, MPI_IEXSCAN,
MPI_EXSCANL_INIT: Scan across all members of a group (also called prefix) (Sec-
tion 6.11, Section 6.11.2, Section 6.12.11, Section 6.12.12, Section 6.13.11, and Sec-
tion 6.13.12).

One of the key arguments in a call to a collective routine is a communicator that
defines the group or groups of participating processes and provides a context for the oper-
ation. This is discussed further in Section 6.2. The syntax and semantics of the collective
operations are defined to be consistent with the syntax and semantics of the point-to-point
operations. Thus, general datatypes are allowed and must match between sending and re-
ceiving processes as specified in Chapter 5. Several collective routines such as broadcast
and gather have a single originating or receiving process. Such a process is called the root.
Some arguments in the collective functions are specified as “significant only at root,” and
are ignored for all participants except the root. The reader is referred to Chapter 5 for
information concerning communication buffers, general datatypes and type matching rules,
and to Chapter 7 for information on how to define groups and create communicators.

The type-matching conditions for the collective operations are more strict than the cor-
responding conditions between sender and receiver in point-to-point. Namely, for collective
operations, the amount of data sent must exactly match the amount of data specified by
the receiver. Different type maps (the layout in memory, see Section 5.1) between sender
and receiver are still allowed.

Collective operations can (but are not required to) complete as soon as the caller’s
participation in the collective communication is finished. A blocking operation is complete
as soon as the call returns. A nonblocking (immediate) call requires a separate completion
call (cf. Section 3.7). The completion of a collective operation indicates that the caller is free
to modify locations in the communication buffer. It does not indicate that other processes
in the group have completed or even started the operation (unless otherwise implied by the
description of the operation). Thus, a collective communication operation may, or may not,
have the effect of synchronizing all participating MPI processes.

Collective communication calls may use the same communicators as point-to-point
communication; MP| guarantees that messages generated on behalf of collective communi-
cation calls will not be confused with messages generated by point-to-point communication.
The collective operations do not have a message tag argument. A more detailed discussion
of correct use of collective routines is found in Section 6.14.

Rationale. The equal-data restriction (on type matching) was made so as to avoid
the complexity of providing a facility analogous to the status argument of MPI_RECV
for discovering the amount of data sent. Some of the collective routines would require
an array of status values.

The statements about synchronization are made so as to allow a variety of implemen-
tations of the collective functions.

(End of rationale.)

6.1. INTRODUCTION AND OVERVIEW

data —

I

B %0

7p]

(]

(]

(@]

S

o
Aol Arl ALl Al All Ag
Ao
Bo
o
Do
Eo
Fo
Aol Arl ALl Al All Ag
Bo| B1|B,| B3| Byl Bs
Col €1l C5|CalCulCs
Dy[D4|D,| 05| D, D
Eo| E1| E»| E3| E4| Es
Fol F1| Fol F3| Fal Fs

Figure 6.1:

broadcast

—>

scatter

—>

gather

<

allgather

—>

complete
exchange

—>

Ag
Ao
Ao
Ag
Ao
Ao
Ag
Aq
Ao
As
Ay
Ag
Ag Co| Po| Eo
Ao €o| Po| Eo
Ag €o| Po| Eo
Ag Co| Po| Eo
Ag €o| Pol| Eo
Ag €o| Po| Eo
Ag Co| Po| Eo
Aq C1]DP1| By
Ao €| Da| B2
As C3| D3| B3
Ay C4| P4l Ba
Ag C5|D5| Es

189

Collective move functions illustrated for a group of six processes. In each case,

each row of boxes represents data locations in one process. Thus, in the broadcast, initially
just the first process contains the data Ag, but after the broadcast all processes contain it.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

190 CHAPTER 6. COLLECTIVE COMMUNICATION

Advice to users. It is dangerous to rely on synchronization side-effects of the col-
lective operations for program correctness. For example, even though a particular
implementation may provide a broadcast routine with a side-effect of synchroniza-
tion, the standard does not require this, and a program that relies on this will not be
portable.

On the other hand, a correct, portable program must allow for the fact that a collective
call may be synchronizing. Though one cannot rely on any synchronization side-effect,
one must program so as to allow it. These issues are discussed further in Section 6.14.
(End of advice to users.)

Advice to implementors. ~ While vendors may write optimized collective routines
matched to their architectures, a complete library of the collective communication
routines can be written entirely using the MPI point-to-point communication func-
tions and a few auxiliary functions. If implementing on top of point-to-point, a hidden,
special communicator might be created for the collective operation so as to avoid inter-
ference with any on-going point-to-point communication at the time of the collective
call. This is discussed further in Section 6.14. (End of advice to implementors.)

Many of the descriptions of the collective routines provide illustrations in terms of
blocking MPI point-to-point routines. These are intended solely to indicate what data is
sent or received by what process. Many of these examples are not correct MPI programs;
for purposes of simplicity, they often assume infinite buffering.

6.2 Communicator Argument

The key concept of the collective functions is to have a group or groups of participating
processes. The routines do not have group identifiers as explicit arguments. Instead, there
is a communicator argument. Groups and communicators are discussed in full detail in
Chapter 7. For the purposes of this chapter, it is sufficient to know that there are two types
of communicators: intra-communicators and inter-communicators. An intra-communicator
can be thought of as an identifier for a single group of processes linked with a context. An
inter-communicator identifies two distinct groups of processes linked with a context.

6.2.1 Specifics for Intra-Communicator Collective Operations

All processes in the group identified by the intra-communicator must call the collective
routine.

In many cases, collective communication can occur “in place” for intra-communicators,
with the output buffer being identical to the input buffer. This is specified by providing
a special argument value, MPI_IN_PLACE, instead of the send buffer or the receive buffer
argument, depending on the operation performed.

Rationale. The “in place” operations are provided to reduce unnecessary memory
motion by both the MPIl implementation and by the user. Note that while the simple
check of testing whether the send and receive buffers have the same address will
work for some cases (e.g., MPI_ALLREDUCE), they are inadequate in others (e.g.,
MPI_GATHER, with root not equal to zero). Further, Fortran explicitly prohibits
aliasing of arguments; the approach of using a special value to denote “in place”
operation eliminates that difficulty. (End of rationale.)

6.2. COMMUNICATOR ARGUMENT 191

Advice to users. By allowing the “in place” option, the receive buffer in many of the
collective calls becomes a send-and-receive buffer. For this reason, a Fortran binding
that includes INTENT must mark these as INOUT, not OUT.

Note that MPI_IN_PLACE is a special kind of value; it has the same restrictions on its
use that MPI_BOTTOM has (not usable in Fortran for initialization or assignment).
See Section 2.5.4. (End of advice to users.)

6.2.2 Applying Collective Operations to Inter-Communicators

To understand how collective operations apply to inter-communicators, we can view most
MPI intra-communicator collective operations as fitting one of the following categories (see,
for instance, [63]):

All-To-All All processes contribute to the result. All processes receive the result.
e MPI_ALLGATHER, MPI_IALLGATHER, MPI_ALLGATHER_INIT,

MPI_ALLGATHERV, MPI_IALLGATHERV, MPI_ALLGATHERV_INIT

e MPI_ALLTOALL, MPI_IALLTOALL, MPI_ALLTOALL_INIT, MPI_ALLTOALLV,
MPI_IALLTOALLV, MPI_ALLTOALLV_INIT, MPI_ALLTOALLW,
MPI_IALLTOALLW, MPI_ALLTOALLW_INIT

e MPI_ALLREDUCE, MPI_IALLREDUCE, MPI_ALLREDUCE_INIT,
MPI_REDUCE_SCATTER_BLOCK, MPI_IREDUCE_SCATTER_BLOCK,
MPI_REDUCE_SCATTER_BLOCKL_INIT, MPI_REDUCE_SCATTER,
MPI_IREDUCE_SCATTER, MPI_REDUCE_SCATTER_INIT

e MPI_BARRIER, MPI_IBARRIER, MPI_BARRIER_INIT
All-To-One All processes contribute to the result. One process receives the result.
e MPI_GATHER, MPI_IGATHER, MPI_GATHER_INIT, MPI_GATHERYV,

MPI_IGATHERV, MPI_GATHERV_INIT
e MPI_REDUCE, MPI_IREDUCE, MPI_REDUCE_INIT,

One-To-All One process contributes to the result. All processes receive the result.

e MPI_BCAST, MPI_IBCAST, MPI_BCAST_INIT

e MPI_SCATTER, MPI_ISCATTER, MPI_SCATTERL_INIT, MPI_SCATTERYV,
MPI_ISCATTERV, MPI_SCATTERV_INIT

Other Collective operations that do not fit into one of the above categories.

e MPI_SCAN, MPI_ISCAN, MPI_SCAN_INIT MPI_EXSCAN, MPI_IEXSCAN,
MPI_EXSCAN_INIT

The data movement patterns of MPI_SCAN, MPI_ISCAN, MPI_EXSCAN, and
MPI_IEXSCAN do not fit this taxonomy.

The application of collective communication to inter-communicators is best described
in terms of two groups. For example, an all-to-all MPI_ALLGATHER operation can be
described as collecting data from all members of one group with the result appearing in all
members of the other group (see Figure 6.2). As another example, a one-to-all

© o] -~ =] t - w [=

[- [t - Lo - = - w w w w w w w w w w [[[[N [%) [} N [V} [- - - = —- = —- = - =
~ =] (o)) - w M) - o © oo ~ [=2] ot = w S - o © oo ~ =] (o)) - w) - [=] © oo ~ (=2} ot - w [} - o

'
oo

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

192 CHAPTER 6. COLLECTIVE COMMUNICATION

MPI_BCAST operation sends data from one member of one group to all members of the
other group. Collective computation operations such as MPI_REDUCE_SCATTER have a
similar interpretation (see Figure 6.3). For intra-communicators, these two groups are the
same. For inter-communicators, these two groups are distinct. For the all-to-all operations,
each such operation is described in two phases, so that it has a symmetric, full-duplex
behavior.

The following collective operations also apply to inter-communicators:

e MPI_BARRIER, MPI_IBARRIER, MPI_BARRIER_INIT,
e MPI_BCAST, MPI_IBCAST, MPI_BCAST_INIT,

e MPI_GATHER, MPI_IGATHER, MPI_GATHER_INIT, MPI_GATHERV,
MPI_IGATHERV, MPI_GATHERV_INIT,

e MPI_SCATTER, MPI_ISCATTER, MPI_SCATTER_INIT, MPI_SCATTERYV,
MPI_ISCATTERV, MPI_SCATTERV_INIT,

e MPI_ALLGATHER, MPI_IALLGATHER, MPI_ALLGATHER_INIT, MPI_ALLGATHERV,
MPI_IALLGATHERV, MPI_ALLGATHERV_INIT,

e MPI_ALLTOALL, MPI_IALLTOALL, MPI_ALLTOALL_INIT, MPI_ALLTOALLV,
MPI_IALLTOALLV, MPI_ALLTOALLV_INIT, MPI_ALLTOALLW, MPI_IALLTOALLW,
MPI_ALLTOALLW_INIT,

e MPI_ALLREDUCE, MPI_IALLREDUCE, MPI_ALLREDUCE_INIT, MPI_REDUCE,
MPI_IREDUCE, MPI_REDUCE_INIT,

e MPI_REDUCE_SCATTER_BLOCK, MPI_IREDUCE_SCATTER_BLOCK,
MPI_REDUCE_SCATTER_BLOCK_INIT, MPI_REDUCE_SCATTER,
MPI_IREDUCE_SCATTER, MPI_REDUCE_SCATTERL_INIT.

6.2.3 Specifics for Inter-Communicator Collective Operations

All processes in both groups identified by the inter-communicator must call the collective
routine.

Note that the “in place” option for intra-communicators does not apply to inter-
communicators since in the inter-communicator case there is no communication from a
process to itself.

For inter-communicator collective communication, if the operation is in the All-To-One
or One-To-All categories, then the transfer is unidirectional. The direction of the transfer is
indicated by a special value of the root argument. In this case, for the group containing the
root process, all processes in the group must call the routine using a special argument for
the root. For this, the root process uses the special root value MPI_ROOT; all other processes
in the same group as the root use MPI_PROC_NULL. All processes in the other group (the
group that is the remote group relative to the root process) must call the collective routine
and provide the rank of the root. If the operation is in the All-To-All category, then the
transfer is bidirectional.

6.2. COMMUNICATOR ARGUMENT 193
4 N
Lcomm Rcomm
G J
4 N
Lcomm Rcomm
(N J

Figure 6.2: Inter-communicator allgather. The focus of data to one process is represented,
not mandated by the semantics. The two phases do allgathers in both directions.

4 N\
Lcomm Rcomm

& J

4 N
Lcomm Rcomm

N J

Figure 6.3: Inter-communicator reduce-scatter. The focus of data to one process is rep-

resented, not mandated by the semantics.
directions.

The two phases do reduce-scatters in both

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

47

48

194 CHAPTER 6. COLLECTIVE COMMUNICATION

Rationale. Operations in the All-To-One and One-To-All categories are unidirectional
by nature, and there is a clear way of specifying direction. Operations in the All-To-All
category will often occur as part of an exchange, where it makes sense to communicate
in both directions at once. (End of rationale.)

6.3 Barrier Synchronization

MPI_BARRIER(comm)

IN comm communicator (handle)

C binding
int MPI_Barrier (MPI_Comm comm)

Fortran 2008 binding

MPI_Barrier(comm, ierror)
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_BARRIER(COMM, IERROR)
INTEGER COMM, IERROR

If comm is an intra-communicator, MPI_BARRIER blocks the caller until all group
members have called it. The call returns at any process only after all group members have
entered the call.

If comm is an inter-communicator, MPI_BARRIER involves two groups. The call returns
at processes in one group (group A) of the inter-communicator only after all members of
the other group (group B) have entered the call (and vice versa). A process may return
from the call before all processes in its own group have entered the call.

6.4 Broadcast

MPI_BCAST (buffer, count, datatype, root, comm)

INOUT buffer starting address of buffer (choice)
IN count number of entries in buffer (non-negative integer)
IN datatype datatype of buffer (handle)
IN root rank of broadcast root (integer)
IN comm communicator (handle)
C binding

int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root,
MPI_Comm comm)

6.4. BROADCAST 195

int MPI_Bcast_c(void *buffer, MPI_Count count, MPI_Datatype datatype,
int root, MPI_Comm comm)

Fortran 2008 binding

MPI_Bcast (buffer, count, datatype, root, comm, ierror)
TYPE(*), DIMENSION(..) :: buffer
INTEGER, INTENT(IN) :: count, root
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Bcast(buffer, count, datatype, root, comm, ierror) !(_c)
TYPE(*), DIMENSION(..) :: buffer
INTEGER (KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(IN) :: root
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_BCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR)
<type> BUFFER (%)
INTEGER COUNT, DATATYPE, ROOT, COMM, IERROR

If comm is an intra-communicator, MPI_BCAST broadcasts a message from the process
with rank root to all processes of the group, itself included. It is called by all members of
the group using the same arguments for comm and root. On return, the content of root’s
buffer is copied to all other processes

General, derived datatypes are allowed for datatype. The type signature of count,
datatype on any process must be equal to the type signature of count, datatype at the root.
This implies that the amount of data sent must be equal to the amount received, pairwise
between each process and the root. MPI_BCAST and all other data-movement collective
routines make this restriction. Distinct type maps between sender and receiver are still
allowed.

The “in place” option is not meaningful here.

If comm is an inter-communicator, then the call involves all processes in the inter-
communicator, but with one group (group A) defining the root process. All processes in
the other group (group B) pass the same value in argument root, which is the rank of the
root in group A. The root passes the value MPI_ROOT in root. All other processes in group
A pass the value MPI_PROC_NULL in root. Data is broadcast from the root to all processes
in group B. The buffer arguments of the processes in group B must be consistent with the
buffer argument of the root.

6.4.1 Example using MPI_BCAST

The examples in this section use intra-communicat